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Abstract. Micro-optomechanical systems are central to a number of recent
proposals for realizing quantum mechanical effects in relatively massive
systems. Here, we focus on a particular class of experiments which aim to
demonstrate massive quantum superpositions, although the obtained results
should be generalizable to similar experiments. We analyze in detail the effects
of finite temperature on the interpretation of the experiment, and obtain a
lower bound on the degree of non-classicality of the cantilever. Although it is
possible to measure the quantum decoherence time when starting from finite
temperature, an unambiguous demonstration of a quantum superposition requires
the mechanical resonator to be in or near the ground state. This can be achieved
by optical cooling of the fundamental mode, which also provides a method
to measure the mean phonon number in that mode. We also calculate the
rate of environmentally induced decoherence and estimate the timescale for
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gravitational collapse mechanisms as proposed by Penrose and Diosi. In view
of recent experimental advances, practical considerations for the realization of
the described experiment are discussed.
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1. Introduction

Micro-optomechanical systems have recently attracted significant interest as a potential
architecture for observing quantum mechanical effects on scales many orders of magnitude
more massive than previous experiments. Proposals include entangling states of mechanical
resonators to each other [1]–[3] or cavity fields [4, 5], the creation of entangled photon pairs [6],
ground state optical feedback cooling of the fundamental vibrational mode [7]–[11], observation
of discrete quantum jumps [12], quantum state transfer [13] and the creation of massive quantum
superpositions or so-called ‘Schrödinger’s cat’ states [14]–[16]. Here we focus on the latter class
of experiments, in particular the one as described in Marshall et al [16].

The heart of this experiment is a Michelson interferometer with high finesse optical cavities
in each of its arms (figure 1). In one arm the traditional end mirror is replaced with a tiny
mirror on a micromechanical cantilever, hereafter referred to as the ‘cantilever’. Under the
right conditions, the radiation pressure of a single photon in this arm of the experiment will
be enough to excite the cantilever into a distinguishable quantum state. A single photon incident
on the 50-50 beam splitter will form an optical superposition of being in either of the two
arms; the coupling between the photon and the cantilever will then entangle their states, putting
the cantilever into a superposition as well. If the photon leaves the interferometer with the
cantilever in a distinguishable state, an outside observer could in principle determine which arm
the photon took, and so the interference visibility is destroyed. After a full mechanical period of
the cantilever, however, it returns to its original position: if the photon leaves the interferometer
at this time, the interference visibility should return provided the cantilever was able to remain
in a quantum superposition in the intermediate period. Alternatively, if the state of the cantilever
collapses during this period due to environmentally induced decoherence, measurement by an
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Figure 1. A diagram of the experimental setup. An input pulse is split between
the two arms of a Michelson interferometer, labeled A and B, both of which
contain high finesse cavities. One end of the cavity in arm A is a tiny end mirror
on a micromechanical cantilever, whose motion is affected by the radiation
pressure of light in the cavity. Each output port of the interferometer is monitored
by a single photon detector, and results are analyzed by a computer to calculate
the interference visibility.

outside observer or perhaps an exotic mechanism (e.g. [17]–[19]), the visibility will not return.
In this sense the interference revival constitutes evidence that the cantilever was able to exist in
a quantum superposition, and a measurement of its magnitude constitutes a measurement of the
quantum decoherence in this time interval. In a real experiment, however, one must be careful
about drawing conclusions from the visibility dynamics as similar results can be obtained from
a fully classical argument.

In this work, we address the issue of classicality by first calculating the quantum dynamics
of the system for both a pure state and a thermal density matrix (section 2). We also calculate the
Wigner function of the system as a method of determining the transition from the quantum to
classical regime (section 3). Finally, we discuss quantum decoherence mechanisms (section 4)
and prospects for realization in view of recent experimental results (section 5).

2. Quantum mechanical description

A more detailed analysis of the system begins with the Hamiltonian, given by Law [20]:

H = h̄ωa
�
a†a + b†b

�
+ h̄ωc

�
c†c − κa†a

�
c + c†�� , (1)

where ωa is the frequency of the optical field, a†/b† and a/b are the photon creation and
annihilation operators for photons the arms A and B of the interferometer, ωc is the mechanical
frequency of the cantilever and c† and c are the phonon creation and annihilation operators for
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its fundamental vibrational mode. The dimensionless optomechanical coupling constant κ is
defined as:

κ = ωa

Lωc

�
h̄

2mωc
(2a)

=
√

2N x0

λ
, (2b)

where m is the mass of the cantilever, L is the length of the optical cavity, N is the number
of cavity round trips per mechanical period, λ is the optical wavelength, and x0 =

�
h̄

mωc
is the

size of the ground state wavepacket for the cantilever. The Hamiltonian treats the mechanical
resonator as completely linear, which should be a valid assumption. Nonlinearities have not
been observed in experiments conducted on similar systems, which is expected given that the
typical vibration amplitudes are many orders of magnitude smaller than the dimensions of the
resonator. From this we can derive the unitary evolution operator [14]:

U (t) = exp
�
−iωat

�
a†a + b†b

�
− i

�
κa†a

�2
(ωct − sin ωct)

�

× exp
�
κa†a

��
1 − e−iωct� c† −

�
1 − eiωct� c

��
exp

�
−iωcc†ct

�
. (3)

2.1. Coherent state

If we consider a cantilever initially in a coherent state with complex amplitude β, the total initial
state is given by |�(0)� = 1√

2
(|0, 1�na,nb + |1, 0�na,nb) ⊗ |β�c. Under the action of the unitary

operator equation (3) this unentangled state evolves to:

|�(t)� = 1√
2

e−iωa t
�
|0, 1� ⊗ |βe−iωct�

+eiκ2(ωct−sin(ωct))+iκIm[β(1−e−iωct )]|1, 0� ⊗ |κ(1 − e−iωct) + βe−iωct�
�

(4a)

= 1√
2

e−iωa t
�
|0, 1� ⊗ |�0(t)� + eiκ2(ωct−sin(ωct))−iIm[�0(t)�1(t)∗]|1, 0� ⊗ |�1(t)�

�
. (4b)

Because the cantilever is only displaced if the photon is in arm A, the state of the photon and
the state of the cantilever become entangled. The cantilever then enters a superposition of two
different coherent states, with time dependent amplitude �0(t) when no photon is present and
�1(t) if there is a photon. After half a mechanical period, the spatial distance between the
two cantilever states |�0� and |�1� is given by �x =

√
8κx0, and the two cantilever states

have the lowest overlap, |��0|�1�| = e−2κ2
. After a full mechanical period |�0� and |�1� are

identical again, and so the photon and cantilever are disentangled. For a proper demonstration
of a superposition, we require the overlap between the states to be relatively small during part
of the experiment, implying κ � 1/

√
2. This is equivalent to stipulating that a measurement of

the cantilever state alone is sufficient to determine which path a photon took with a reasonable
fidelity. As will be discussed in section 5, obtaining this large a value of κ poses the most
significant barrier to experimental realization.
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Figure 2. Left panel: the visibility v(t) as a function of time for different values
of the optomechanical coupling constant, κ . Right panel: the von Neumann
entropy S(t) versus the visibility, v(t).

In practice, the actual quantity measured is the interferometric visibility as seen by the two
single photon detectors. This visibility is given by twice the absolute value of the off-diagonal
elements of the reduced photon density matrix:

v(t) = e−κ2(1−cos(ωct)). (5)

It exhibits a periodic behavior characterized by a suppression of the interference visibility after
half a mechanical period and a revival of perfect visibility after a full period (figure 2) provided
there is no decoherence in the state of the cantilever. The visibility can be mapped directly to the
entanglement between the photon and the cantilever. For a pure bipartite state, we can express
the entanglement as the von Neumann entropy of the photon S(t) in terms of the visibility v(t)
(figure 2):

S(t) = −Trph
�
ρph log2 ρph

�
(6a)

= 1 +
v(t)

2
log2

�
1 − v(t)
1 + v(t)

�
− 1

2
log2

�
1 − v(t)2� , (6b)

where ρph is the reduced density matrix for the photon. Since for a pure bipartite system a
high von Neumann entropy of one subsystem corresponds to high entanglement between the
two subsystems, we conclude that when the initial state is pure, the visibility alone is a good
measure for the non-classical behavior of the cantilever. This is true even in the presence of
an arbitrary decoherence mechanism, which will destroy the quantum nature of the system and
thus produce a corresponding loss of interference visibility.

2.2. The cantilever at finite temperatures

At finite temperatures the exact wavefunction of the cantilever is unknown, so the state is instead
described by a density matrix:

ρc(0) =
�

n e−En/kBT |n��n|�
n e−En/kBT

= 1
π n̄

�
d2βe−|β|2/n̄|β��β|, (7)

where n̄ = 1/(eh̄ωc/kBT − 1) is the average thermal occupation number of the cantilever’s center
of mass mode, |n� are energy eigenstates and |β� coherent states of the cantilever. Here, we only
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consider the effects of a thermally excited initial state, i.e. for a cantilever with no dissipation
(Q → ∞). The effects of dissipation and resulting decoherence are discussed in section 4.

The evolution of equation (7) under the action of equation (3) yields the visibility:

v(t) = e−κ2(2n̄+1)(1−cos(ωct)). (8)

At finite temperatures the density matrix represents an average over coherent states with
different phases which destroys the interference visibility. Although there is also a phase shift
from the entanglement as discussed earlier, in principle this shift is known and repeatable,
while the same is not true for the thermal state. A good indicator that the visibility no longer
captures the quantum behavior is that it becomes independent of h̄ if the initial temperature of
the cantilever is high [21]. This can be seen most easily by noting that in the limit kbT � h̄ωc,
the mean phonon number is given by n̄ ≈ kbT/h̄ωc − 1/2. Thus the visibility equation (8) can
be rewritten as:

v(t) ≈ e−(kbT/mω2
c )((2N/λ))2(1−cos(ωct)). (9)

This is the classically expected result, which differs primarily from the quantum result in that
the visibility is always one at zero temperature because the distinguishability of the cantilever
state is irrelevant. At higher temperatures it is difficult to determine when the cantilever was in
a superposition state. Because the experiment requires averaging over many runs, the quantum
distinguishability is masked by the unknown classical phase shifts.

However, after a full mechanical period the net phase shift from any initial state goes to zero
and so full visibility should still return in a narrow window whose width scales like n̄−1/2. This
leaves open the possibility for measuring quantum collapse mechanisms at higher temperatures
if one assumes that the cantilever was in a superposition state. Provided that the optomechanical
coupling strength κ is relatively well known (e.g. by independently measuring m, ωc, L , etc)
and the instantaneous quantum state of the cantilever is regarded as some random coherent state
(as should be the case for the weakly mechanically damped systems discussed here) it can be
easily determined when a superposition should have been created.

Although equation (9) suggests the visibility should always return in the classical case, we
note that this can only be true if both the optical and mechanical modes are behaving classically.
On the other hand, if we regard only the optical field as quantum we should always expect no
interference visibility because the classical cantilever would measure which path the photon
took. Thus the return of visibility at higher temperatures can be used to strongly imply the
existence of a quantum superposition when κ � 1/

√
2, even though the superposition cannot be

directly measured by the visibility loss at t ∼ πωc.8

Nevertheless, an unambiguous demonstration can be provided if the temperature is low
enough such that the visibility loss due to quantum distinguishability is still resolvable. At
finite cantilever temperatures the interferometric visibility becomes a bad measure for the non-
classicality of the mirror. This can be easily seen by the relation between the von Neumann
entropy and the visibility, equation (6b). It is valid at arbitrary temperatures, but at T > 0 the

8 The presence of a ‘loop hole’ in such a demonstration could be regarded as analogous to experimental tests
of Bell’s inequalities, where even though it is generally regarded that quantum mechanics has been adequately
demonstrated, an unambiguous proof has remained elusive. In our case, the loop hole is caused by the unknown
intermediate state caused by finite temperature. Even though a weakly damped system should produce something
that is very nearly a coherent state at any given instance of time, there is no way to directly show the cantilever is
in this state.
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system is in a mixed state and the entropy is only an upper bound for the entanglement of
formation [22]. One thus needs to analyze the non-classicality of the cantilever state by other
means. In the next section, we use the integrated negativity of the Wigner function [23] to
quantify the non-classicality of the cantilever with respect to temperature.

3. The Wigner function and the classical limit

To study transitions between the quantum and the classical regimes, it is often convenient to
refer to quasi-probability distributions, with which quantum mechanics can be formulated in
the common classical phase space. One such distribution was proposed in 1932 by Wigner [24]
and can be obtained from the density matrix ρ:

W (x, p) = 1
π h̄

� +∞

−∞
dy�x − y|ρ|x + y�e2ipy/h̄. (10)

It is well known that in the classical limit h̄ → 0 the Wigner function tends to a classical
probability distribution describing a microstate in phase space [25]. This can most easily be
seen in the case of a single particle moving in a potential V (x). The time evolution of the
Wigner function for this closed system is described by the quantum Liouville equation [24, 26]

�
∂

∂t
+

p
m

∂

∂x
− dV (x)

dx
∂

∂p

�
W (x, p, t) =

∞�

k=1

h̄2k (−1)k

4k(2k + 1)!
d2k+1V (x)

dx2k+1

∂2k+1

∂p2k+1
W (x, p, t). (11)

For h̄ → 0, the right-hand side goes to 0, as long as no derivatives diverge. In this limit the
Wigner function W (x, p, t) thus evolves according to the classical Liouville equation. However,
the quantum nature of W (x, p, t) is also contained in its initial conditions. In fact, in the special
case of a harmonic potential, all non-classical behavior is encoded in the initial conditions of
the Wigner function only since the right-hand side of equation (11) is always 0. But for h̄ → 0
also the initial conditions become classical and W (x, p, t) can be fully identified with some
classical probability density.

If, on the other hand, the Wigner function is negative then no classical interpretation is
possible, making it a useful tool to indicate the non-classicality of an arbitrary state. It is thus
convenient to quantify the total negativity of the Wigner function [23]:

N =
� +∞

−∞
dx

� +∞

−∞
dp {|W (x, p)| − W (x, p)}

=
�

dx
�

dp|W (x, p)| − 1. (12)

For the experiment at hand, we compute the cantilever’s Wigner function for dimensionless
x and p, with the photon projected into the superposition state |0, 1� + eiθ |1, 0� to avoid
destroying the quantum state of the cantilever to which it is entangled. This projection is
equivalent to detecting a single photon at one output of the interferometer, where the phase
term in the projection accounts for path length differences in the arms. Generally speaking,
varying θ shifts the interference peaks but does not modify the Wigner function in a significant
way; hereafter we will set it to 0. The resulting Wigner function of the cantilever indeed shows
that the system periodically exists in a highly non-classical state (figure 3).
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Figure 3. The time evolution of the cantilever’s projected Wigner function
for β = 0, κ = 2 and h̄ = ωc = m = 1. Regions where the Wigner function is
negative, shown in yellow and red, have no classical analogue.

A calculation of the thermally averaged Wigner function shows that the non-classical
features are quickly washed out with increasing initial temperature (figure 4). However, as
long as part of the Wigner function is negative, the cantilever is clearly in a non-classical
superposition state. The negativity of the Wigner function at half a mechanical round trip
decreases rapidly with n̄ and is also dependent on κ (figure 5). In practice, this implies that
n̄ must be of order 1 for κ ≈ 1, with somewhat higher values being tolerable for higher κ . This
analysis confirms our earlier assertion that direct proof of a superposition requires low mean
phonon number.

Finally, we mention that it is also possible to demonstrate the non-classical nature of a
mechanical resonator by calculating a measure of entanglement [5]. For example, in a related
experiment in which two micromechanical systems are coupled to one another with a light field,
the entanglement is lost at higher temperatures [3, 4] (the larger temperature bound obtained is
due to a large amplitude coherent state in the optical mode).

4. Decoherence

In addition to ‘classical’ phase scrambling caused by the initial thermal motion of the cantilever
as discussed above, there are other effects which cause ‘quantum’ decoherence of the cantilever.
The signature of this type of decoherence is a reduction of the visibility’s revival peak—
this is caused by information loss during a single experimental run. This is different from
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Figure 4. The thermally averaged projected Wigner function of the cantilever
at time t = π for κ = 1/

√
2 and different mean thermal phonon numbers, n̄.

(h̄ = ωc = m = 1) The negative regions of the Wigner function, shown in yellow
and red, can be seen to quickly wash out with increasing temperature.
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Figure 5. Negativity of the projected cantilever state as a function of coupling
constant κ for several different mean phonon numbers, n̄. The oscillations
present when n̄ = 0 are due to a phase shift in the interference terms, which
are washed out at higher temperatures.

the previously discussed effect which is a narrowing of the visibility revival peaks caused by
averaging of states in a thermal mixture, where no information is lost. Thus, to be able to detect
a signature of a macroscopic superposition, the timescale on which decoherence occurs should
be larger than a single mechanical period.

4.1. Environmentally induced decoherence

Environmentally induced decoherence is due to the coupling of the system to a finite
temperature bath, and results in a finite lifetime for the quantum superposition of the cantilever.
Decoherence happens when the thermal bath measures the state of the cantilever while the
photon is in the cavity, introducing a phase shift that cannot be compensated for even in
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principle. To find the timescale for this mechanism we need to solve the open quantum
representation of the system. This is generally done by coupling the cantilever to an infinite
bath of harmonic oscillators and integrating out the environmental degrees of freedom. In doing
so, one obtains a time-local master equation for the density matrix of the system incorporating
the influence of the environment.

We start with the Hamiltonian:

H = Hsys + Hbath + Hint, (13)

where:

Hsys = h̄ωa
�
a†a + b†b

�
+ h̄ωc

�
c†c − κa†a

�
c + c†�� ,

Hbath =
�

i

h̄ωi d
†
i di , (14)

Hint = (c + c†)
�

i

λi(di + d†
i ).

Here, d†
i (di ) are the creation (annihilation) operators of the bath modes, ωi is the frequency

of each mode and λi are coupling constants. Using the Feynman–Vernon influence functional
method [27] we can eliminate the bath degrees of freedom. When the thermal energy of the bath
sets the highest energy scale we can use the Born–Markov approximation to obtain a master
equation for the density matrix of our system [28]:

ρ̇(t) = 1
ih̄

�
H̃ sys, ρ(t)

�
− iγ

h̄
[x, {p, ρ(t)}] − D

h̄2 [x, [x, ρ(t)]] , (15)

where H̃ sys is the system Hamiltonian in equation (1), renormalized by the interaction of
the cantilever with the bath. γ = ωc/Q is the damping coefficient as determined from the
mechanical Q factor and D = 2mγ kBTb is the diffusion coefficient where Tb is the temperature
of the bath. The first term on the right-hand side of (15) is the unitary part of the evolution
with a renormalized frequency. The other terms are due to the interaction with the environment
only and incorporate the dissipation and diffusion of the cantilever. The equation is valid in the
Markovian regime when memory effects in the bath can be neglected; this is satisfied when the
coupling to the bath is weak (Q � 1) and the thermal energy is much higher than the phonon
energy (kBTb � h̄ωc). Both conditions are easily satisfied for realistic devices.

Following Zurek [29], we note that in the macroscopic regime (to highest order in h̄−1), the
master equation is dominated by the diffusion term proportional to D/h̄2. Evaluating it in the
position basis, one finds the timescale:

τdec = h̄2

D(�x)2
= h̄Q

16kBTbκ2
, (16)

where �x =
√

8κx0, as before. A calculation of the Wigner function which includes
decoherence of the off-diagonal elements with the above dependence shows how the non-
classicality of the state is dissipated with time (figure 6).

An exact open quantum system analysis of the experimental setup based on equation (15)
has been performed by Bassi et al [30] and Bernád et al [21]. The former authors neglect the
term proportional to p in equation (15) and solve the resulting equation for the off-diagonal
matrix elements of the reduced photon density matrix. The latter authors use the full equation.
The results for the decoherence of the revival peaks in these papers are remarkably close to the

New Journal of Physics 10 (2008) 095020 (http://www.njp.org/)

http://www.njp.org/


11

Figure 6. Wigner function of the system in the presence of environmentally
induced decoherence for Tb = TEID/64, κ = 2 and h̄ = ωc = m = 1.

above estimate, both predicting a longer coherence time by only a factor of 8/3. The order of
magnitude is thus well captured by (16).

For an optomechanical system the important parameter is the mechanical quality factor, Q.
It is convenient to define a characteristic environmentally induced decoherence temperature:

TEID = h̄ωc Q
kB

. (17)

With this definition, the decoherence time (16) can be written as τ−1
dec = 16κ2ωc(

Tb
TEID

). Above this
temperature the interference revival peak will be drastically reduced in magnitude. We note that
the environmentally induced decoherence rate is dependent only on the bath temperature, Tb,
not the effective temperature of the cantilever mode, T , which can be made different from the
bath temperature by optical cooling (see section 5.2). Since a high-Q resonator is only weakly
coupled to the bath, it is sufficient to treat these two temperatures as independent.

4.2. Gravitationally induced quantum collapse

To explain the apparent classicality of the macroscopic world, it has been suggested that there
may be a quantum state collapse mechanism for large objects, possibly induced by mass.
Several proposals have been made which lead to such a collapse, among them reformulations
of quantum mechanics [31, 32] and the use of the intrinsic incompatibility between general
relativity and quantum mechanics [17]–[19]. Unlike environmentally induced decoherence,
which is largely a nuisance in the realization of a massive superposition experiment,
measurement of a mass-induced collapse would be evidence of new physics and is hence of
considerable interest.

Here we review the gravitational collapse model given by Penrose [18]. Penrose argues
that a superposition of a massive object will result in a co-existence of two different space–time
geometries which cannot be matched in a coordinate independent way. Any difference in the
causal structure will then generate different time translation operators ∂/∂t in the respective
space–times. Only an asymptotic identification would be possible, but if a local notion is
required the failure to identify a single time structure for two superposed space–times will be a
fundamental obstacle to unitary quantum evolution. Any time translation operator ∂/∂t in such
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a superposition of space-times will have an intrinsic error and hence a unitary evolution cannot
take place indefinitely. This will eventually result in a collapse of the superposed state.

To give an order of magnitude estimate for the identification of the two superposed space-
times, Penrose uses the Newtonian limit of gravity including the principle of general covariance.
The error is quantified by the difference of free falls (geodesics) throughout both space–times,
which turns out to correspond to the gravitational self energy �E of the superposed system,
defined the following way:

Ei, j = −G
� �

d �r1d �r2
ρi( �r1)ρ j( �r2)

| �r1 − �r2|
, (18a)

�E = 2E1,2 − E1,1 − E2,2, (18b)

where ρ1 and ρ2 are the mass distributions for the two states in question. A similar result was
obtained by Diosi [19]. This energy yields a timescale for the decay of a superposition given by
τG ≈ h̄/�E .

When attempting to apply this to the proposed superposition experiment, it is unclear
precisely what form the mass distributions should take (see also [33]). For simplicity we
will consider the mass to be evenly distributed over a number of spheres, corresponding to
atomic nuclei, each with mass m1, radius a, and the superposition states to be separated by a
distance �x . The total mass is given by m, as before. If the atomic spacing is much larger than
the effective mass radius, the energy due to the interaction between different atomic sites is
negligible and the gravitational self-energy is given by:

�E = 2Gmm1

�
6

5a
− 1

�x

�
, (given: �x � 2a). (19)

If we set the sphere radius to be the approximate size of a nucleus (a = 10−15 m) and use
the parameters of an ideal optomechanical device (m = 10−12 kg, ωc = 2π × 1 kHz, κ = 1/

√
2

and m1 = 4.7 × 10−26 kg, the silicon nuclear mass), this results in a timescale of the order of
milliseconds. Alternatively, one could argue that the effective diameter of the spheres should
be the ground-state wavepacket size (a = x0/2). With the maximum separation of the states
(�x =

√
8κx0), the resulting energy is:

�E = Gmm1

x0

�
24
5

− 1√
2κ

�
. (20)

Using the ideal device parameters results in a timescale of the order of 1 s.
In order to practically measure such a collapse mechanism, we require the timescale

to be not much larger than a mechanical period so that a significant visibility reduction is
present in the first revival peak. This means it may be possible to measure a mass-induced
collapse effect with the proposed experiment, although we note that the collapse timescale given
above is intended only to be a rough estimate. To contrast with previous large superposition
experiments, the collapse timescale for interferometry of large molecules like C60 [34] is
calculated to be 1010 s (using the nuclear radius, a = 10−15 m, and assuming comparatively
larger separation). Other demonstrated experiments have similar or larger timescales, meaning
a collapse mechanism of this type would have certainly been undetectable in all experiments
to date.
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5. Prospects for experimental realization

5.1. Optomechanical devices

In practice, the experimental realization of a macroscopic quantum superposition is severely
technically demanding. Perhaps the most challenging aspect is achieving sufficient optical
quality, which is required to put the cantilever into a distinguishable state via interaction with a
single photon, i.e. κ � 1/

√
2. Although κ can be increased by shortening the optical cavity, this

will also reduce the ring-down time, making it extremely unlikely to observe a photon in the
revival period. A reasonable compromise is reached by requiring the optical finesse, F , to be
equal to the required number of round trips per period as given by (2b). In this case, the fraction
of photons still in the optical cavity after a mechanical period is e−2π (0.2%), a small number
but enough to measure the visibility on the timescale of hours. This resulting requirement for
the finesse has a rather intuitive form:

F � λ

2x0
. (21)

In order to prevent diffraction from limiting the finesse, the mirror on the cantilever
needs a diameter of order 10 µm or larger [35]. If the mirror is a dielectric Bragg reflector,
the conventional choice for achieving very high optical quality, the required finesse is of
order 106–107 given the minimum resulting mass and assuming it is placed on a cantilever
with frequency ∼1 kHz. Finesses of over 106 have been realized in several experiments with
larger, cm size, dielectric mirrors (for example [36]), so the primary challenge in using these
mirrors is finding a way to micro-fabricate them without degrading their properties. State of
the art is currently F = 104–105, although rapid progress has been made in recent years due
to a growing interest in optomechanical systems in general. See figure 7 for a comparison of
different devices. An interesting alternative to the tiny mirror on the cantilever approach is the
so-called ‘membrane in the middle’. In this case the optomechanical element is a dielectric
membrane placed between two high quality mirrors; the cavity detuning induced by motion
of the membrane produces a result functionally equivalent to moving an end mirror on a
mechanical resonator. Commercially available silicon nitride membranes have recently been
demonstrated in cavities with finesses of over 104 and with remarkably high mechanical quality
factors, Q > 107 [37]. In theory, this type of system would require a lower finesse to achieve a
superposition, as the thickness of the optical element can be an order of magnitude less than a
dielectric mirror. To take advantage of this, however, would require the membranes be micro-
fabricated into cantilever or bridge-resonator structures to reduce their total mass, something
that has not yet been attempted.

The other important parameter for an optomechanical system is the mechanical quality
factor, Q, governing the characteristic environmentally induced decoherence temperature TEID,
as defined in (17). Optomechanical devices have already been demonstrated for which TEID is
experimentally accessible with common cryogenic techniques (figure 7), although operating
the devices in the sub-Kelvin regime is likely to be difficult. Resonators used in magnetic
force resonance microscopy experiments, which have similar mechanical properties, have been
cooled to temperatures of around 100 mK, limited by heating due to optical absorption in
the readout [39]. Although the magnitude of this effect should be smaller for high finesse
optomechanical systems due to lower absorption and incident light levels, at temperatures of
order 1 mK absorption of even single photons should produce non-negligible heating [44].

New Journal of Physics 10 (2008) 095020 (http://www.njp.org/)

http://www.njp.org/


14

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
–7

10
–6

10
–5

10
–4

10
–3

10
–2

10
–1

10
0

Finesse

G
ro

u
n

d
 s

ta
te

 w
a

v
e

p
a

c
k
e

t 
s
iz

e
, 

x 0
 (

p
m

)

(a) DBR on glass

(b) Metal on AFM Cant.

(c) MFRM Cant.

(d) DBR on AFM Cant.

(e) Microtoroid

(f) Suspended DBR

(g) DBR on Si bridge

(h) Gold on 2 µm Si Cant.

(i) Si
3
N

4
 membrane

(j) Ideal DBR

 on Si Cant.

κ >
1√
2

T
EID

1 mK

10 mK

100 mK

1 K

10 K

Figure 7. A comparison of optomechanical devices, showing the finesse and
size of the ground-state wavepacket, x0 =

√
h̄/mωc. All points apart from

( j) are based on experimental results. The shaded area in the upper right
corresponds to κ = 1/

√
2 for visible light (λ = 600 nm). The color of each

point corresponds to the characteristic environmentally induced decoherence
temperature, TEID = h̄ωc Q/kb. Many of the devices are the subject of ongoing
research, and so the listed parameters should be regarded as approximate.
(a) A dielectric Bragg reflector (DBR) with F = 2 × 106 deposited on a cm size
mirror. (b) Metal deposited on a conventional atomic force microscopy (AFM)
cantilever (for example, [38]). (c) A thin silicon cantilever used in magnetic
force resonance microscopy (MFRM) [39]. (d) A focused ion beam milled
DBR mirror glued to a commercial AFM cantilever [35]. (e) Microtoroidal
resonator [40]. (κ is not given by (2b) because of a different geometry.)
(f) Resonator made of a suspended DBR bridge [41]. (g) DBR deposited on a
silicon bridge resonator [42]. (h) A 2 µm silicon resonator with gold deposited on
it [43]. (i) Commercial Si3N4 membrane in a high finesse optical cavity [37]. (j)
Theoretical device with a tiny, high finesse DBR mirror attached to a cantilever
similar to those used in MFRM experiments (m = 10−12 kg, ωc = 2π × 500 Hz,
F = 2 × 106).

5.2. Optical cooling

As stated above, unambiguous observation of a macroscopic quantum superposition is possible
only when the cantilever’s fundamental mode is in a low phonon quantum number state. Given
that this requires temperatures of less than 1 µK for kHz resonators, the only way to practically
obtain this is optical feedback cooling. There are two primary forms of optical feedback cooling,
referred to as ‘active’ and ‘passive’. Active feedback cooling uses the optical cavity to read
out the position of the cantilever, and then an electronic feedback loop creates a force on

New Journal of Physics 10 (2008) 095020 (http://www.njp.org/)

http://www.njp.org/


15

10
–3

10
–2

10
–1

10
0

0.1

1

10

100

1000

M
e

a
n

 p
h

o
n

o
n

 n
u

m
b

e
r

Input power (α) Input power (α) 

ω
c
 / γ

a
 = 2

ω
c
 / γ

a
 = 1

ω
c
 / γ

a
 = 0.5

ω
c
 / γ

a
 = 0.2

10
–3

10
–2

10
–1

10
0

1

10

100

A
n

ti
–

s
to

k
e

s
/s

to
k
e

s
 r

a
ti
o

Figure 8. Left panel: mean phonon number, n̄ as a function of power for passive
optical feedback cooling. Right panel: anti-Stokes/Stokes ratio. The theoretical
model is derived from Marquardt et al [9]. The input optical field strength is
given in terms of a dimensionless power, α =

√
2n̄aκ where n̄a is the mean

number of photons in the optical cavity. γa is the power decay constant for
the optical cavity. Pump photons are detuned from the cavity resonance by
� = −ωc. When n̄ = 1, the anti-Stokes/Stokes ratio decreases to half its low
field (α → 0) limit, shown with circles in (b). The ratio, which can be measured
in the light leaving the cavity, provides a direct method to determine the effective
temperature of the cantilever.

the cantilever (using, e.g. a second intensity modulated laser) to dampen the motion of its
fundamental mode. Because the effective damping force is not subjected to thermal fluctuations,
this is equivalent to coupling the system to a zero temperature thermal bath, and so the effective
temperature of the fundamental mode can be dramatically reduced. Passive feedback cooling
uses the finite ring-down time of the optical cavity to intrinsically produce a similar damping
force without the use of an external feedback loop. Note that neither type of cooling significantly
reduces the temperature of the environmental bath, so the environmentally induced decoherence
timescale is virtually unaffected by optical cooling. Both active [44]–[46] and passive [12],
[40]–[43], [47]–[50] feedback cooling have been experimentally demonstrated by many groups,
in some cases achieving cooling factors of well over 103.

If one operates below the environmentally induced decoherence temperature given above,
it is theoretically possible to cool the fundamental mode of the cantilever near the ground state
using either active [7] or passive optical feedback cooling [8]–[10], although this has yet to be
demonstrated experimentally. Although heating due to optical absorption and linewidth of the
drive laser are serious concerns [51], these do not present fundamental obstacles. In the limit that
the ring-down time is comparable to the mechanical period, as indeed it must be for observing a
macroscopic superposition, passive cooling should be more effective. The equilibrium phonon
occupation number of the cantilever as a function of pumping power is shown in figure 8; the
situation where N = F , as discussed above, corresponds to ωc/γa = 1. Conveniently, passive
cooling also provides a method to directly measure the phonon number of the cantilever by
measuring the ratio of anti-Stokes to Stokes shifted photons in the outgoing cavity field (see
also figure 8) [8, 9]. In the limit of low pumping power and minimal cooling, this ratio remains
constant, but begins to rapidly decrease when the ground state is approached. When the ratio is

New Journal of Physics 10 (2008) 095020 (http://www.njp.org/)

http://www.njp.org/


16

less than half the low power value, the mean phonon number, n̄, is less than one, providing a
clear indication of ground state cooling. Because this type of cooling can be easily integrated
with the proposed macroscopic superposition experiment, it presents an ideal method for putting
the system in a known low phonon number state.

6. Conclusion

A detailed analysis of the effects of finite temperature on the proposed massive superposition
experiments show that a fully unambiguous demonstration requires low fundamental mode
temperatures, n̄ � 1. Despite this, observation of a revival of the interference visibility can be
used to strongly imply the existence of a superposition at higher temperatures, as proposed
in [16]. Additionally, the magnitude of the visibility revival provides an opportunity to test
environmentally induced decoherence models and possibly measure proposed mass-induced
collapse mechanisms. Although such an experiment is difficult to realize, comparison to several
related experiments suggests it should be technologically feasible. This is greatly aided by
growing interest in developing high quality micro-optomechanical devices for a range of
applications. Additionally, recently developed optical feedback cooling techniques can be used
to obtain fundamental mode temperatures far lower than are conventionally accessible, possibly
even cooling to the ground state.
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