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Abstract

Micro-Optomechanical Systems for Quantum Optics

by

Dustin Paul Kleckner

Optomechanical systems o↵er a potential platform for testing quantum ef-

fects in relatively massive objects. We first examine the theory of optomechanical

systems, primarily in the quantum limit, detailing a proposal for generating a

superposition of a micro-mechanical resonator and the theory of optical feedback

cooling. We then discuss the experimental requirements for observing these quan-

tum e↵ects and our attempts to construct an optomechanical system that meets

these requirements. In particular, we describe a prototype system built from a

tiny piece of dielectric mirror glued to an atomic force microscopy cantilever and

use it to optically cool the cantilever to sub-Kelvin temperatures. In an e↵ort

to better understand the optical cavities used in optomechanical systems, we de-

veloped a new method for simulating the mode profiles and losses of di↵raction

limited high-finesse cavities. Finally, we cover our recent e↵orts to produce an im-

proved optomechanical system, which includes the micro-fabrication of resonators

with integrated mirrors, improvements to the optical cavity as a whole and the

construction of a system capable of cryogenic temperatures.
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Chapter 1

Introduction

Our initial interest in optomechanical systems began with a proposal to test

quantum mechanics on relatively massive scales. In the late-90’s, a number of

theorists showed that the interaction between an optical cavity and a moving end

mirror, mediated by radiation pressure, could be used to generate non-classical

mechanical states of the moving end mirror[1–3]. This formed the basis for a

proposal by Marshall et al. to create and observe a mechanical resonator in a

superposition of vibrational states using the interference between two optical cav-

ities, one of which contains an optomechanical system [4]. If completed, this

experiment would constitute a demonstration of quantum mechanics in an object

some 1012 times more massive than previous realizations involving C60 molecules

[5, 6] or currents in superconducting devices [7, 8]. Unlike previous proposals, the

system described by Marshall et al. appeared to be feasible with state of the art

technology.

Shortly after this publication, work on building an appropriate optomechanical

system began in the group of Dirk Bouwmeester. This work was initiated by Will

Marshall and Michiel de Dood, with myself and others joining later. This resulted

in the demonstration of one of the first purpose-built optomechanical systems (§4)

and demonstrations of optical feedback cooling (§5), and work continues towards
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1 Introduction

realization of the original proposal.

Broadly speaking, an optomechanical system is any device with both an optical

and mechanical degree of freedom and some coupling between them. The canonical

example is a conventional optical cavity where one of the end mirrors is placed on a

mechanical resonator. The radiation pressure of the field inside the optical cavity

produces a force on the mechanical resonator, and the position of the mechanical

resonator/mirror a↵ects the detuning of the cavity. The theory of optomechanical

systems in the classical limit began with Braginsky [9]. The first demonstration

of the e↵ects he predicted were in conventional microwave and visible-light optical

cavities; modifications of the properties of the mechanical modes of the mirrors

were observed when they were pumped with large input powers [10–12].

In this dissertation we are primarily concerned with microscopic mechanical

systems, where the optomechanical coupling is strong enough that quantum ef-

fects can be potentially observed. Microtoroidal resonators could probably be

considered the first devices that operated in this regime; the strong driving of

vibrational modes via optical pumping was first observed in 2005 [13]. Since that

time, a number of micro-optomechanical systems have been created, including

gradient-force systems [14], membrane-in-the-middle systems [15] and others [16].

Gradient-force systems are nano-photonic cavities which are coupled to integrated

mechanical degrees of freedom. A “membrane-in-the-middle” optomechanical sys-

tem is made by putting a very thin dielectric membrane in the middle of a high

finesse optical cavity. Changes in the position of the membrane cause a shift

in the optical cavity modes, resulting in an interaction between the mechanical

resonances of the membrane and the optical field. For the purposes of this disser-

tation, we are mostly concerned with “classic” optomechanical systems, which are

quite literally composed of a tiny piece of mirror attached to a micro-mechanical

resonator. Despite the rapid development of other types of devices, we believe

this system is still best suited to the demonstration of quantum e↵ects. This is

2



1 Introduction

primarily because the clear separation of the optical and mechanical elements of

the systems allows for ideal choices of materials and design for each.

Although proposals to create macroscopic superpositions motivated our re-

search on optomechanical systems, a large number of other potential applications

have been put forth. In addition to superpositions, optomechanical systems can be

used to generate other quantum states in and between the mechanical and optical

degrees of freedom. Proposals in this vein include entangling states of mechanical

resonators to each other [17] or cavity fields [18], the creation of entangled pho-

ton pairs [19], the observation of discrete quantum jumps [15] and the cooling of

mechanical resonators to the ground state (§2.3)[20, 21]. The strong interaction

between the optical field and the mechanical oscillations makes the cavity behave

like a nonlinear medium since the length of the cavity depends upon the intensity

of the field in an analogous way to the optical length of a nonlinear material [22].

Because of this, micro-optomechanical systems would make an ideal test bed for

ponderomotive squeezing, which has been proposed as a method to reduce noise

in gravitational wave detectors [23] and may also have applications in information

theory [24].

This thesis is arranged in a mixture of logical and chronological order. §2

begins with a discussion of the theory of optomechanical systems, primarily in

a quantum framework, starting with the derivation of the quantum Hamiltonian

of a general optomechanical system. This framework is used to describe two

important experiments, the superposition proposal of Marshall et al. and optical

feedback cooling. The experimental barriers to observing quantum e↵ects in an

optomechanical system are then examined in detail, with particular attention paid

to the requirements of a superposition-type experiment (§3). Although these two

chapters are presented first for clarity, much of the theoretical work was actually

done in parallel with the experimental work described later.

§4 describes the realization of a prototype optomechanical system composed

3



1 Introduction

of a tiny piece of dielectric mirror attached to a mechanical resonator. This sys-

tem was then used to demonstrate active optical feedback cooling (§5). After the

completion of this experiment, we began to reconsider the design of our optomech-

anical system with the goal of meeting the requirements for demonstration of true

quantum phenomena. To better understand the e↵ects of di↵raction loss on ultra-

high finesse optical cavities, we developed a new method for calculating the modes

of cavities with finite end mirrors, which is described in §6. This method can be

used to determine the e↵ects of cavity geometry and the types of imperfections

present in real systems. Finally, §7 describes our recent e↵orts to build a better

optomechanical system, including the creation of micro-optomechanical systems

using micro-fabrication techniques, improvement in the optomechanical cavity as

a whole and early work on a system which can operate at cryogenic temperatures.

4



Chapter 2

Theory of Optomechanical

Systems

In this chapter we will consider optomechanical systems from a purely theo-

retical perspective. Because our primary interest in these systems is to use them

to demonstrate quantum e↵ects, we begin by deriving the quantum Hamiltonian

for a single mode optomechanical system (§2.1). Despite making a number of ap-

proximations, we show that this Hamiltonian is appropriate for realistic devices.

We then discuss in detail a proposed experiment for creating and observing a

quantum superposition of a micromechanical resonator, using an optomechanical

system to couple the quantum state of a single photon to a mechanical degree

of freedom (§2.2). At finite temperatures, the mechanical degree of freedom will

be excited well out of the ground state, posing significant questions about the in-

terpretation that experiment demonstrates a true quantum superposition. Using

the Wigner function as a tool, we examine the e↵ects of temperature and envi-

ronmentally induced decoherence in detail. We also briefly discuss some proposed

mass-induced decoherence mechanisms that have been postulated to arise from

the incompatibility of quantum mechanics and gravity. Although decoherence of

this type is purely theoretical at present, a superposition experiment with an op-

5



2 Theory of Optomechanical Systems

tomechanical system could o↵er the first opportunity to probe the relevant mass

regime.

In §2.3, we discuss optical feedback cooling, which uses the optical cavity in

an optomechanical system to measure and reduce the e↵ective temperature of the

mechanical degree of freedom. Feedback cooling potentially allows one to reach

the ground state of a mechanical resonator; we will discuss in which regimes this

is possible. Finally, we treat one form of optical cooling in the quantum limit

and show how it can be used to generate an unambiguous signal that the ground

state has been reached. As well as being an interesting demonstration of the

quantum nature of the mechanical resonator in its own right, this type of cooling

is useful for the realization of the aforementioned superposition proposal as well

as a number of related experiments.

2.1 Quantum Hamiltonian

To study optomechanical systems in the quantum limit, one first needs to con-

struct a fully quantum Hamiltonian to describe the coupling between the optical

and mechanical degrees of freedom. The simplest representation one can imagine

is a 1-D optical cavity with one stationary mirror located at z = 0 and one mov-

able mirror located at z = q, with mass m and moving in some potential V (q)

(fig. 2.1). We will assume both mirrors are perfectly reflecting and the motion

of the mirror is non-relativistic. If we treat the optical field as a scalar potential

that vanishes at the mirrors (ignoring polarization), the complete Hamiltonian of

the system, as found by C.K. Law [25], is given by:

6



2 Theory of Optomechanical Systems

(k = 3)
m

z
q

V (q)

Figure 2.1: A diagram of a 1-D optomechanical system. A moving optical end
mirror is located a z = q, has mass m and moves in a potential V (q). The electric
field of the third optical mode, k = 3, is sketched in white.
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â
k

+
1

2

�

(2.1)

!
k

(q̂) =
k⇡c

q̂
(2.2)

�̂ ⌘
i~
2q̂

X

k,j

g
kj



k

j

�1/2
h

â†
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â
j

+ â†
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where k is the longitudinal mode number and !
k

, â and â† are the corresponding

frequency, annihilation and creation operators; �̂ corresponds to an e↵ective mo-

mentum in the opto-mechanical interaction, arising from the mixing of di↵erent

spatial modes. As usual, the zero point energy of the optical field gives rise to an

infinite energy when summing over the full (infinite) set of modes. This can be

corrected by calculating the energy density of the continuum of modes outside the

cavity and finding the (finite) di↵erence of these two infinite energies as a function

of q̂. This gives rise to a Casimir term, resulting in a modified Hamiltonian:

Ĥ =
(p̂ + �̂)2

2m
+ V (q̂) + ~

X

k

!
k

(q̂)â†
k

â
k

�

~c⇡
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where the Casimir term would have twice this value if we included polarization.
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2 Theory of Optomechanical Systems

We can simplify the system by considering only a single optical mode, assuming

all others are unpopulated:

Ĥ =
p̂2

2m
+ V (q̂) + ~!

a

(q̂)â†â�
~c⇡

24q̂
, (2.6)

where !
a

is now the frequency of the single populated optical mode. Since �̂ gives

rise only to terms that mix the di↵erent modes, it must be zero if we restrict

ourselves to a single mode. As a result, we have implicitly treated the optical field

in the adiabatic limit; if the mechanical motion is not slow compared to the round

trip time of a photon in the cavity it will cause coupling between the di↵erent

modes, even if only one is initially occupied (see §2.1.1).

We will continue to simplify the system by assuming that the mechanical

potential is harmonic about some equilibrium position L:

V (q̂) = m!2
c

x̂2, (2.7)

where x̂ = q̂�L is the displacement from equilibrium. If the resonator only makes

a small motion about this equilibrium position (x̂⌧ L), we can consider only the

first order change in !
a

about this equilibrium point:

Ĥ = ~!
c

ĉ†ĉ + ~

"

!
a

(L) + x̂
d!

a

(q̂)

dq̂

�

�

�

�

q̂=L

+ · · ·

#

â†â (2.8)

⇠= ~!
a

â†â + ~!
c

ĉ†ĉ�
!

a

L
x0

| {z }

g

�

ĉ + ĉ†
�

â†â, (2.9)

where ĉ(†) are the annihilation (creation) operators for the mechanical harmonic

oscillator, defined in the usual way, x0 =
q

~
2m!c

is the size of the ground state

wavepacket of the mechanical harmonic oscillator and g is the optomechanical

coupling constant. In the second equation, and hereafter, we will let !
a

! !
a

(L).

We have used the fact that the mechanical potential is harmonic to obtain:

x̂ = x0

�

ĉ + ĉ†
�

. We have also dropped the Casimir term; for most systems it
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2 Theory of Optomechanical Systems

is negligibly weak. The second equation, eqn. 2.9, is the canonical optomechani-

cal Hamiltonian, and the usual starting point for the quantum theory of micro-

optomechanical systems.

2.1.1 Approximations

Before proceeding, it is worth checking the validity of our assumptions for

realistic device parameters:

1. The mechanical motion is non-relativistic. The maximum velocity of the

mechanical resonator is given approximately by:

v
max

⇠ !
c

x0

p

n̄
c

, (2.10)

where n̄
c

=
⌦

ĉ†ĉ
↵

is the mean phonon number of the mechanical mode. As

we will show in §2.2.4, for the system to be quantum mechanically coherent

over a single period, we will require n̄
c

. Q, where Q is the mechanical

quality factor. For realistic devices, Q . 106, !
c

. 10 GHz and x0 . 1 pm,

and so:

v
max

. 10 m/s⌧ c. (2.11)

2. We can consider only a single optical mode. Even if we only excite a single

optical mode, the equivalent momentum term (p̂+�̂)2 in the full Hamiltonian

(eqn. 2.1) contains terms that mix the longitudinal optical modes. The

lowest order cross terms will be of the form: ĉ(†)â
(†)
k

â
(†)
k±1, where the (†)

indicates these may be either creation or annihilation operators. These

terms only conserve energy if the mechanical frequency is comparable to the

spacing between optical modes:

!
c

⇠ �!
a

=
⇡c

L
. (2.12)

If these terms do not conserve energy, they will not contribute significantly

to the time evolution of the system (this is the commonly used rotating

9
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wave approximation). In a relatively long optical cavity with L = 100

mm, the mode spacing is �! ⇠ 10 GHz, which is comparable to the highest

frequency one could expect to reach in an optomechanical resonator. Despite

this, increasing the frequency, !
c

, and cavity length, L, both decrease the

optomechanical coupling, g, making it very di�cult to achieve su�ciently

strong photon-phonon coupling in these systems. For exactly this reason,

we will generally be concerned with much lower frequency systems (kHz

- MHz), and hence !
c

⌧ �!
a

. In this case we can ignore �̂, even when

multiple modes are occupied.

The condition that the mechanical frequency must be much smaller than

the mode splitting is equivalent to requiring that the mechanical period is

much longer than the round trip time of a photon in the cavity. Thus we

see that considering only a single mode implicitly treats the optical field in

the adiabatic limit.

3. The mechanical motion is small compared to the cavity length. The maxi-

mum displacement will be given by:

x
max

⇠ x0

p

n̄
c

. (2.13)

The shortest possible optical cavity has length �/2, where � is the wave-

length of relevant mode of the optical cavity; � ⇠ 1 µm for practical cavities.

Thus we find:

x
max

. 1 nm⌧
�

2
⇠ 500nm. (2.14)

4. The Casimir force is negligible. For a real 3-D optical cavity, some number of

transverse optical modes will be supported in addition to the fundamental.

This should multiply the Casimir energy by some constant, N
m

, correspond-

ing to the e↵ective number of modes⇤. If we then expand the total Casimir

⇤ It may seem odd that the form of the Casimir energy used here has a di↵erent dependence

10
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energy, the first three terms correspond to a constant energy, a constant

force and an e↵ective spring constant, k
casimir

, respectively:

E
casimir

= �
N

m

~c⇡

24L



1�
x̂

L
|{z}

constant force

+ 2

✓

x̂

L

◆2

| {z }

e↵ective spring

+ · · ·

�

(2.15)

k
casimir

= �
N

m

~c⇡

6L3
(2.16)

= 1.6⇥ 10�6

✓

N
m

100

◆ ✓

1µm

L

◆3

N m�1. (2.17)

From calculations of the modes of di↵raction limited optical cavities (§6), we

expect that a cavity that is the minimum size required for supporting a large

optical finesse (F ⇠ 106) should support on the order of 10–100 transverse

modes. The constant force term changes the equilibrium position of the

resonator, but has no other e↵ect. The x̂2 term changes the e↵ective spring

constant of the mechanical resonator, but the magnitude is negligibly small

for systems where the cavity length is of order centimeters. For wavelength-

sized cavities (e.g. gradient force systems), this term is orders of magnitude

small than the mechanical spring constant of realistic systems, although it

should be observable in a specially designed system (with, for example, over-

sized mirrors). Higher order terms will have a considerably smaller e↵ect,

and should be negligible in realistic systems. In this case, the e↵ect of the

Casimir energy is to modify the e↵ective frequency and equilibrium position

of the mechanical resonator, but this does not change the system dynamics

than the normal three dimensional result: Ecasimir = �A

~c⇡2

720L3 [26]. However, we note that
the number of modes supported decreases with the separation; from the properties of the light
di↵raction, we should expect: Nm / L

�2. Substituting this into the 1-D form of the Casimir
energy recovers the expected dependence. For a high finesse optomechanical system, it is advan-
tageous to minimize the size/mass of the system as much as possible, so the resonator mirrors
are expected to have the minimum size needed for achieving the required optical quality. In this
case the number of modes becomes: Nm ! N

0

(1 + x̂/L)2, where N

0

is the number of modes at
the equilibrium length of the cavity. Assuming we are in the regime where x̂⌧ L, we can take
Nm to be nearly constant.

11
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in any meaningful way.

There is one more assumption that we have ignored: that the mirrors are

perfectly reflecting. Removing this assumption requires one to add terms corre-

sponding to coupling to modes outside the cavity – in many cases these terms give

rise to interesting physics. There are several well established formalisms for deal-

ing with this coupling (e.g. §2.2.4 or §2.3.1), but they do not require modification

of the base system Hamiltonian so long as the coupling is weak, in the so-called

“good-cavity limit.” (This means that the damping rate for both the mechanical

and optical degrees of freedom is much less than the respective frequencies; when

this is not the case the system can no longer be truly considered a resonator.)

2.1.2 Generalization to Related Systems

Although the Hamiltonian (eqn. 2.9) was derived for a simple cavity with one

moving end mirror, it is also used for all types of optomechanical systems. In

general, the coupling constant g is given by the energy detuning of the optical

mode in response to the mechanical motion of the system, which is assumed to

be linear:

g = �
d!

a

dx

r

~
2m!

c

, (2.18)

where the derivative is taken at the equilibrium point of the mechanical mode.

The method used to calculate the detuning depends on the type of system

in question. In gradient-force systems, the optical mode frequency is typically

computed at a range of di↵erent mechanical displacements via numerical finite-

di↵erence time-domain (FDTD) simulations [27].

Alternatively, for a membrane-in-the-middle optomechanical system, the de-

tuning can be calculated by considering the interference of a 1-D dielectric mem-

brane in an optical cavity [15], which could be done, for example, with a thin film

interference matrix method (as described by [28], for example). If the reflectiv-

ity of the membrane alone is of order R ⇠

1
2

and it is placed at an anti-node of
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the cavity mode, the shift is roughly equivalent to moving the entire end mirror.

Conversely, placing the membrane at a node of the cavity produces no shift to

first order. In this case the leading optomechanical interaction term is quadratic

in x̂, producing entirely di↵erent system dynamics. This is potentially useful for

a di↵erent class of experiments, e.g. directly measuring phonon quantization.

2.2 The Superposition Experiment

There are a number of proposals for the creation of massive quantum super-

positions or so-called “Schrödinger’s cat” states using optomechanical systems

[2–4]. We now examine in detail this class of experiments, in particular the one

described in Marshall et al. [4]. This section is adapted from The New Journal

of Physics 10, 095020, “Creating and verifying a quantum superposition in a

micro-optomechanical system,” by D. Kleckner et al. [29]. Copyright c
�2008 by

Deutsche Physikalische Gesellschaft & Institute of Physics.

The heart of this experiment is a Michelson interferometer with high finesse

optical cavities in each of its arms (fig. 2.2). In one arm the traditional end

mirror is replaced with a tiny mirror on a micromechanical cantilever. Under

the right conditions, the radiation pressure of a single photon in this arm of the

experiment will be strong enough to excite the cantilever into a distinguishable

quantum state. A single photon incident on the 50-50 beam splitter will form an

optical superposition of being in either of the two arms; the coupling between the

photon and the cantilever will then entangle their states, putting the cantilever

into a superposition of vibrational states. If the photon leaves the interferometer

with the cantilever in a distinguishable state, an outside observer could in prin-

ciple determine which arm the photon took, and so the interference visibility is

destroyed. After a full mechanical period of the cantilever, however, it returns

to its original position: if the photon leaves the interferometer at this time, the
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Beam
Splitter

λ/4
Waveplate

Polarizing
Beam Splitter

Input
Pulse

Tiny Mirror/
Cantilever

Stationary
Cavity

Single Photon
Detectors (2)

Data
Analysis

A

B

Figure 2.2: A diagram of the experimental setup for measuring a macroscopic
quantum superposition. An input pulse is split between the two arms of a Michel-
son interferometer, labeled A and B, both of which contain high finesse cavities.
One end of the cavity in arm A is a tiny mirror on a micromechanical cantilever,
whose motion is a↵ected by the radiation pressure of light in the cavity. Each
output port of the interferometer is monitored by a single photon detector, and
results are analyzed by a computer to calculate the interference visibility.
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interference visibility should return provided the cantilever was able to remain in

a quantum superposition in the intermediate period. Alternatively, if the state

of the cantilever collapses during this period due to environmentally induced de-

coherence, measurement by an outside observer or perhaps an exotic mechanism

(e.g. [30–32]), the visibility will not return. In this sense the interference revival

constitutes evidence that the cantilever was able to exist in a quantum super-

position, and a measurement of its magnitude constitutes a measurement of the

quantum decoherence in this time interval. In a real experiment, however, one

must be careful about drawing conclusions from the visibility dynamics; as we

shall see, similar results can be obtained from a fully classical argument.

2.2.1 Quantum Mechanical Description

To calculate the quantum evolution of this experiment, we begin with the

basic Hamiltonian for an optomechanical system, eqn. 2.9, to which we add a

term corresponding to the stationary optical cavity, labeled B:

H = ~!
a

h

â†â + b̂†b̂
i

+ ~!
c

⇥

ĉ†ĉ� â†â
�

ĉ + ĉ†
�⇤

, (2.19)

where b̂(†) are the the photon annihilation (creation) operators for the stationary

optical cavity, which we will assume is resonant with the optical cavity that in-

cludes the micromechanical element (!
b

= !
a

). As before, â(†) and !
a

refer to the

optical degree of freedom of the optomechanical system, and ĉ(†), !
c

and m refer

to the mechanical motion. For convenience, we have also defined a dimensionless

optomechanical coupling constant :

 =
g

!
c

(2.20)

=
2x0N

�
, (2.21)

where N = ⇡c/!
c

L is the number of cavity round trips per mechanical period and

� = 2⇡c/!
a

is the wavelength of the optical cavity resonance.
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From the Hamiltonian we can derive the unitary evolution operator [2]:

U(t) = exp
h

� i!
a

t
⇣

â†â + b̂†b̂
⌘

� i
�

â†â
�2

(!
c

t� sin!
c

t)
i

⇥ (2.22)

exp
h

â†â
⇥�

1� e�i!ct

�

ĉ† �
�

1� ei!ct

�

ĉ
⇤

i

exp
h

� i!
c

ĉ†ĉt
i

.

If we consider a cantilever initially in a coherent state with complex amplitude

�, the total initial state is given by | (0)i = 1
p

2
(| 0, 1i

na,nb
+ | 1, 0i

na,nb
) ⌦ | �i

c

.

Under the action of the unitary operator, eqn. 2.22, this unentangled state evolves

to:

| (t)i =
1
p

2
e�i!at

⇣

| 0, 1i ⌦ | �e�i!ct

i+ (2.23)

ei

2(!ct�sin(!ct))+iIm[�(1�e

�i!ct)]
| 1, 0i ⌦ |(1� e�i!ct) + �e�i!ct

i

⌘

=
1
p

2
e�i!at

⇣

| 0, 1i ⌦ |�0(t)i+ (2.24)

ei

2(!ct�sin(!ct))�iIm[�0(t)�1(t)⇤]
| 1, 0i ⌦ |�1(t)i

⌘

.

Because the cantilever is only displaced if the photon is in arm A, the state

of the photon and the state of the cantilever become entangled. The cantilever

then enters a superposition of two di↵erent coherent states, with time dependent

amplitude �0(t) when no photon is present in arm A and �1(t) if there is a photon.

After half a mechanical period, the spatial distance between the two cantilever

states |�0i and |�1i is given by �x = 2x0, and the two cantilever states have

the minimum overlap, |h�0 |�1i| = e�22
. After a full mechanical period, |�0i

and |�1i are identical again, and so the photon and cantilever are disentangled.

For a proper demonstration of a superposition, we require the overlap between the

states to be relatively small during part of the experiment, implying  & 1/
p

2.

This is equivalent to stipulating that a measurement of the cantilever state alone

is su�cient to determine which path a photon took with reasonable fidelity. As

will be discussed in §3.1, obtaining a su�ciently large value of  is the a significant

experimental challenge.
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Figure 2.3: Left: The visibility v(t) as a function of time for di↵erent values of
the opto-mechanical coupling constant, . Right: The Von Neumann entropy S(t)
versus the visibility, v(t).

In practice, the actual quantity measured is the interferometric visibility as

seen by the two single photon detectors. This visibility is given by twice the

absolute value of the o↵-diagonal elements of the reduced photon density matrix:

v(t) = e�
2[1�cos(!ct)]. (2.25)

As expected, it exhibits a periodic behavior characterized by a suppression of

the interference visibility after half a mechanical period and a revival of perfect

visibility after a full period (fig. 2.3) provided there is no decoherence in the

state of the cantilever. The visibility can be mapped directly to the entanglement

between the photon and the cantilever. For a pure bipartite state, we can express

the entanglement as the von Neumann entropy of the photon S(t) in terms of the

visibility v(t) (fig. 2.3):

S(t) = �Trph (⇢ph log2 ⇢ph) (2.26)

= 1 +
v(t)

2
log2

✓

1� v(t)

1 + v(t)

◆

�

1

2
log2

�

1� v(t)2
�

, (2.27)

where ⇢ph is the reduced density matrix for the photon. Since for a pure bipartite

system a high Von Neumann entropy of one subsystem corresponds to high en-

tanglement between the two subsystems, we conclude that when the initial state
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is pure, the visibility alone is a good measure of the non-classical behavior of the

cantilever. This is true even in the presence of an arbitrary decoherence mecha-

nism, which will destroy the o↵ diagonal elements of the density matrix and thus

produce a corresponding loss of interference visibility.

2.2.2 Finite temperatures

At finite temperatures the exact wavefunction of the cantilever is unknown, so

the state is instead described by a density matrix:

⇢
c

(0) =

P

n

e�En/kBT

|nihn |

P

n

e�En/kBT

(2.28)

=
1

⇡n̄
c

Z

d2�e�|�|
2
/n̄c

| �ih� |, (2.29)

where n̄
c

= 1/(e~!c/kBT

� 1) is the average thermal occupation number of the

cantilever’s mechanical mode, |ni are energy eigenstates and | �i are coherent

states of the cantilever. The evolution of this thermal mixture under the action

of eqn. 2.22 yields the visibility:

v(t) = e�
2(2n̄c+1)[1�cos(!ct)]. (2.30)

At finite temperatures the density matrix represents an average over coherent

states with di↵erent phases which destroys the interference visibility. Although

there is also a phase shift from the coherent state discussed earlier, in principle

this shift is known and repeatable, while the same is not true for the thermal state.

A good indicator that the visibility no longer captures the quantum behavior is

that it becomes independent of ~ if the initial temperature of the cantilever is

high [33]. This can be seen most easily by noting that in the limit k
b

T � ~!
c

,

the mean phonon number is given by n̄
c

⇡ k
b

T/~!
c

� 1/2. Thus the visibility

(eqn. 2.30) can be rewritten as:

v(t) ⇡ e
�

kbT

m!2
c
( 2N

� )
2
[1�cos(!ct)]

, (2.31)
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which is independent of ~. This is the classically expected result, which di↵ers

primarily from the quantum result in that the visibility is always one at zero

temperature because the distinguishability of the cantilever state is irrelevant. At

higher temperatures it is di�cult to determine when the cantilever was in a su-

perposition state because the loss of visibility due to classical phase scrambling

dominates over that due to distinguishability. The relationship between von Neu-

mann entropy and the visibility, eqn. 2.27, still holds, but at T > 0 the system is

in a mixed state. Thus the entropy is only an upper bound for the entanglement

of formation [34].

The net phase shift from any coherent state goes to zero after a full mechanical

period, and so full visibility should still return in a narrow window whose width

scales like n̄
�1/2
c

. This leaves open the possibility for measuring quantum collapse

mechanisms at finite temperatures if one creates the appropriate conditions to

put the cantilever into a superposition state. Provided that the opto-mechanical

coupling strength  is relatively well known (e.g., by independently measuring m,

!
c

, L, etc.) and the instantaneous quantum state of the cantilever is regarded as

some random coherent state (as should be the case for the weakly mechanically

damped systems discussed here) it can be easily determined when a superposition

must have been created.

Although eqn. 2.31 suggests that the visibility should always return in the

classical case, we note that this can only be true if both the photon and the

cantilever are behaving classically. On the other hand, if we regard only the photon

as a quantum object we should always expect full visibility loss because we can

measure the cantilever state with arbitrary precision and hence always determine

which path the photon took. Thus the return of visibility at higher temperatures

can be used to strongly imply the existence of a quantum superposition when

 & 1/
p

2, even though the superposition can not be directly measured by the
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visibility loss† at t ⇠ ⇡/!
c

.

2.2.3 The Wigner Function and the Classical Limit

Figure 2.4: The time evolution of the cantilever’s projected Wigner function for
� = 0,  = 2 and ~ = !

c

= m = 1. Regions where the Wigner function is
negative, shown in yellow and red, have no classical analogue.

To study transitions between the quantum and the classical regimes, it is

often convenient to refer to quasi-probability distributions, with which quantum

mechanics can be formulated in the common classical phase space. One such

†The presence of a loop hole in such a demonstration could be regarded as analogous to
experimental tests of Bell’s inequalities, where even though it is generally regarded that hidden
variable theories have been ruled out, an unambiguous proof has remained elusive. In our case,
the loop hole is caused by the unknown intermediate state; even though a weakly damped system
should produce something that is very nearly a coherent state at any given instant in time, there
is no way to directly show the cantilever is in this state.
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distribution was proposed in 1932 by Wigner [35] and can be obtained from the

density matrix ⇢:

W (x, p) =
1

⇡~

Z +1

�1

dyhx� y |⇢|x + yie2ipy/~. (2.32)

It is well known that in the classical limit, ~ ! 0, the Wigner function tends to a

classical probability distribution describing a microstate in phase space [36]. This

can most easily be seen in the case of a single particle moving in a potential V (x).

The time evolution of the Wigner function for this closed system is described by

the quantum Liouville equation [35, 37]:

� @

@t
+

p

m

@

@x
�

dV (x)

dx

@

@p

�

W (x, p, t) = (2.33)

1

X

k=1

~2k

(�1)k

4k(2k + 1)!

d2k+1V (x)

dx2k+1

@2k+1

@p2k+1
W (x, p, t).

For ~ ! 0, the right hand side goes to 0, as long as no derivatives diverge. In

this limit the Wigner function W (x, p, t) thus evolves according to the classical

Liouville equation. However, the quantum nature of W (x, p, t) is also contained

in its initial conditions. In fact, in the special case of a harmonic potential, all

non-classical behavior is encoded in the initial conditions of the Wigner function

only since the right hand side of eqn. 2.33 is always 0. For ~ ! 0 the initial

conditions also become classical and W (x, p, t) can be fully identified with some

classical probability density.

If, on the other hand, the Wigner function is negative then no classical in-

terpretation is possible, making it a useful tool to indicate the non-classicality of

an arbitrary state. It is thus convenient to quantify the total negativity of the

Wigner function [38]:

N =

Z +1

�1

dx

Z +1

�1

dp
n

|W (x, p)|�W (x, p)
o

(2.34)

=

Z

dx

Z

dp |W (x, p)|� 1.
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For the experiment at hand, we compute the cantilever’s Wigner function for

dimensionless x and p, with the photon projected into the superposition state

| 0, 1i+ ei✓

| 1, 0i to avoid destroying the quantum state of the cantilever to which

it is entangled. This projection is equivalent to detecting a single photon at one

output of the interferometer, where the phase term in the projection accounts

for path length di↵erences in the arms. Generally speaking, varying ✓ shifts the

interference peaks but does not modify the Wigner function in a significant way;

hereafter we will set it to 0. The resulting Wigner function of the cantilever indeed

shows that the system periodically exists in a highly non-classical state (fig. 2.4).

A calculation of the thermally averaged Wigner function shows that the non-

classical features are quickly washed out with increasing initial temperature

(fig. 2.5). However, as long as part of the Wigner function is negative, the can-

tilever is clearly in a non-classical superposition state. The negativity of the

Wigner function at half a mechanical round trip time decreases rapidly with n̄
c

and is also dependent on  (fig. 2.6). In practice, this implies that n̄
c

must be of

order 1 for  ⇡ 1, with somewhat higher values being tolerable for higher . This

analysis confirms our earlier assertion that a direct proof that the superposition

existed requires low mean phonon number. Paradoxically, if one is willing to ac-

cept that a superposition was created, a low thermal excitation is not required to

test if this superposition survives after one mechanical period of the cantilever.

2.2.4 Environmentally Induced Decoherence

In addition to “classical” phase scrambling caused by the initial thermal motion

of the cantilever as discussed above, there are other e↵ects which cause “quantum”

decoherence of the cantilever. The signature of this type of decoherence is a reduc-

tion of the amplitude of the visibility of the revival peak, whereas the signature

of thermal decoherence is a narrowing of the revival peaks. To be able to de-

tect a signature of a macroscopic superposition, the timescale on which quantum
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Figure 2.5: The thermally averaged projected Wigner function of the cantilever
at time t = ⇡ for  = 1/

p

2 and di↵erent mean thermal phonon numbers, n̄
c

.
(~ = !

c

= m = 1) The negative regions of the Wigner function, shown in yellow
and red, can be seen to quickly wash out with increasing temperature.
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Figure 2.6: Negativity of the projected cantilever state as a function of coupling
constant  for several di↵erent mean phonon numbers, n̄. The oscillations present
when n̄ = 0 are due to a phase shift in the interference terms, which are washed
out at higher temperatures.
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decoherence occurs should be larger than a single mechanical period.

Environmentally induced decoherence is due to the coupling of the system to

a finite temperature bath. Decoherence happens when the thermal bath measures

the state of the cantilever while the photon is in the cavity, introducing a phase

shift that can not be compensated for, even in principle. To find the time scale for

this mechanism we need to solve the open quantum representation of the system.

This is generally done by coupling the cantilever to an infinite bath of harmonic

oscillators and integrating out the environmental degrees of freedom. In doing

so, one obtains a time-local master equation for the density matrix of the system

incorporating the influence of the environment.

We start with the Hamiltonian:

H = H
sys

+ H
bath

+ H
int

, (2.35)

where:

H
sys

= ~!
a

h

â†â + b̂†b̂
i

+ ~!
c

⇥

ĉ†ĉ� â†â
�

ĉ + ĉ†
�⇤

(2.36)

H
bath

=
X

i

~!
i

d̂†
i

d̂
i

H
int

= (ĉ + ĉ†)
X

i

�
i

(d̂
i

+ d̂†
i

).

Here d̂†
i

(d̂
i

) are the creation (annihilation) operators of the bath modes, !
i

is the

frequency of each mode and �
i

are coupling constants. Using the Feynman-Vernon

Influence Functional Method [39] we can eliminate the bath degrees of freedom.

When the thermal energy of the bath sets the highest energy scale we can use the

Born-Markov approximation to obtain a master equation for the density matrix

of our system [40]:

⇢̇(t) =
1

i~

h

H̃
sys

, ⇢(t)
i

�

i�

~
[x, {p, ⇢(t)}]�

D

~2
[x, [x, ⇢(t)]] , (2.37)

where H̃
sys

is the system Hamiltonian in eqn. 2.19, renormalized by the inter-

action of the cantilever with the bath, � = !
c

/Q is the damping coe�cient as
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Figure 2.7: Wigner function of the system in the presence of environmentally
induced decoherence for T

b

= T
EID

/16,  = 2 and ~ = !
c

= m = 1 (eqn. 2.39).

determined from the mechanical Q factor and D = 2m�k
B

T
b

is the di↵usion coef-

ficient where T
b

is the temperature of the bath. The first term on the right hand

side of eqn. 2.37 is the unitary part of the evolution with a renormalized frequency.

The other terms are due to the interaction with the environment only and incor-

porate the dissipation and di↵usion of the cantilever. The equation is valid in

the Markovian regime, or when memory e↵ects in the bath can be neglected; this

is the appropriate regime when the coupling to the bath is weak (Q � 1) and

the thermal energy is much higher than the phonon energy (k
B

T
b

� ~!
c

). Both

conditions are easily satisfied for realistic devices.

Following Zurek [41], we note that in the macroscopic regime (to highest order

in ~�1), the master equation is dominated by the di↵usion term proportional to

D/~2. Evaluating it in the position basis, one finds the time scale:

⌧dec =
~2

D(�x)2
=

~Q

4k
B

T
b

2
, (2.38)

where �x = 2x0, as before. A calculation of the Wigner function which includes

decoherence of the o↵-diagonal elements with the above dependence shows how

the non-classicality of the state dissipates with time (fig. 2.7).

An exact open quantum system analysis of the experimental setup based on

eqn. 2.37 has been performed by Bassi et al. [42] and Bernád et al. [33]. Bassi et
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al. neglect the term proportional to p in eqn. 2.37 and solve the resulting equation

for the o↵-diagonal matrix elements of the reduced photon density matrix. Bernád

et al. use the full equation. The results for the decoherence of the revival peaks in

both papers are remarkably close to the above estimate, di↵ering only by a factor

of 2/3. The order of magnitude is thus well captured by eqn. 2.38.

For an optomechanical system the important parameter is the mechanical qual-

ity factor, Q. It is convenient to define a characteristic environmentally induced

decoherence temperature:

T
EID

=
~!

c

Q

k
b

. (2.39)

With this definition, the decoherence time (eqn. 2.38) can be written as ⌧�1
dec =

42!
c

⇣

Tb
TEID

⌘

. If we require that ⌧
dec

> 2⇡/!
c

, this results in a minimum quality

factor as a function of temperature and optomechanical coupling strength:

Q > 8⇡2n̄
c

. (2.40)

At higher temperatures the interference revival peak will be drastically reduced

in magnitude. We note that the environmentally induced decoherence rate is

dependent only on the bath temperature, T
b

, not on the e↵ective temperature of

the cantilever mode, T , which can be made di↵erent from the bath temperature

by optical cooling (see §2.3).

2.2.5 Anomalous Decoherence Mechanisms

To explain the apparent classicality of the macroscopic world, it has been sug-

gested that there may be an undiscovered quantum state collapse mechanism for

large objects, perhaps induced by gravity. Several proposals have been made for

a mechanism which would lead to such a collapse, among them reformulations

of quantum mechanics [43, 44] and the use of the intrinsic incompatibility be-

tween general relativity and quantum mechanics [30–32]. Unlike environmentally

induced decoherence, which is largely a nuisance in the realization of a massive
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superposition experiment, measurement of a mass induced collapse would be evi-

dence of new physics and is hence of considerable interest.

To give an order of magnitude estimate for proposed mass-induced state col-

lapse mechanisms, we will follow Penrose [31]. He argues that a superposition of

a massive object will result in the co-existence of two di↵erent space-time geome-

tries which cannot be reconciled, eventually causing the superposition to collapse.

To estimate the timescale of this collapse, Penrose calculates the di↵erence of free

falls (geodesics) throughout the two space-times, which turns out to correspond to

the gravitational self energy �E of the superposed system, defined the following

way:

E
i,j

= �G

ZZ

d~r1d~r2
⇢

i

(~r1)⇢j

(~r2)

|~r1 � ~r2|
(2.41)

�E = 2E1,2 � E1,1 � E2,2, (2.42)

where ⇢1 and ⇢2 are the mass distributions for the two states in question. This

energy yields a timescale for the decay of a superposition given by ⌧
G

⇡ ~/�E.

When attempting to apply this to the proposed superposition experiment, it

is unclear precisely what form the mass distributions should take. For simplicity

we will consider the mass to be evenly distributed over a number of spheres, cor-

responding to atomic nuclei, each with mass m1 and radius a. The superposition

states are separated by a distance �x and the total mass is given by m, as before.

If the atomic spacing is much larger than the e↵ective mass radius, the energy due

to the interaction between di↵erent atomic sites is negligible and the gravitational

self-energy is given by:

�E = 2Gmm1

✓

6

5a
�

1

�x

◆

(given: �x � 2a). (2.43)

If we set the sphere radius to be the approximate size of a nucleus (a = 10�15 m)

and use the parameters of an ideal optomechanical device (eqn. 3.1 with  = 1/
p

2

and m1 = 4.7 ⇥ 10�26 kg, the silicon nuclear mass), this results in a timescale of
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order milliseconds. Alternatively, one could argue that the e↵ective diameter of

the spheres should be the ground-state wavepacket size (a = x0). With the same

device parameters as before, this results in a timescale on the order of 1 second.

In order to practically measure such a collapse mechanism, we require the

timescale to be not much larger than a mechanical period so that a significant

visibility reduction is present in the first revival peak. Thus it may be possible to

measure a mass-induced collapse e↵ect with the proposed experiment, but only if

the size of the atomic nucleus gives the appropriate mass distribution scale. As we

are speculating on unknown physics, we note also that the collapse timescale given

above is only intended to be an order of magnitude estimate. To contrast with

previous large superposition experiments, the collapse timescale for interferometry

of large molecules like C60 [5] is calculated to be 1010 s (using the nuclear radius,

a = 10�15 m, and assuming comparatively larger separation). Other demonstrated

experiments have similar or larger timescales, meaning a collapse mechanism of

this type would have certainly been undetectable in all experiments to date.

2.3 Optical Cooling

Optical feedback cooling of micromechanical resonators is caused by an e↵ec-

tive damping force produced by the optomechanical interaction. It can be seen

how this produces cooling by considering the spectral density of the resonator

displacement in the presence of a virtual viscous force. We will initially assume

the ideal case where the virtual viscous force introduces no noise into the system.

Let us first consider the thermal noise spectrum of a fully classical mechanical

resonator, resulting from white noise thermal fluctuations (sometimes referred to

as the Langevin force) acting on the mechanical response of a harmonic oscillator

[45]:

S
x

(⌦) =
2�

c

k
b

T0

m

1

(⌦2
� !2

c

)2 + �2
c

!2
c

, (2.44)
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where ⌦ is the observation frequency, �
c

is the mechanical damping constant, k
b

is Boltzmann’s constant and T0 is the ambient temperature.

Now let us assume that we can increase the damping constant, �
c

, via some

external feedback without modifying the thermal input noise:

S
x,fb

(⌦) =
2�

c

k
b

T0

m

1

(⌦2
� !2

c

)2 + (1 + ⌘)2�2
c

!2
c

, (2.45)

where ⌘ is the strength of the feedback, relative to the intrinsic mechanical damp-

ing: ⌘ = 0 corresponds to no feedback, while ⌘ > 0 corresponds to feedback

damping. Eqn. 2.45 is equivalent to eqn. 2.44, with a modified temperature and

damping constant:

T
eff

=
T0

1 + ⌘
(2.46)

�
eff

= (1 + ⌘)�
c

, (2.47)

where the reduction in temperature is referred to as feedback cooling. This is

equivalent to coupling the system to two thermal baths, one at temperature T0

(with coupling constant �
c

), and another with zero temperature and coupling

constant ⌘�
c

. Although the introduction of damping without noise appears to vi-

olate the fluctuation-dissipation theorem, this need not be the case if the feedback

mechanism is driven far out of equilibrium. For example, the feedback can be pro-

vided by the radiation pressure of an intensity modulated laser, in which case the

e↵ective temperature of the laser light is well below the ambient temperature. In

any real experiment, the feedback will have some finite noise temperature, which

will in general limit the degree of optical cooling that can be achieved.

The fact that the e↵ective damping constant is increased to compensate for

the decrease in temperature means that the Langevin force, the e↵ective force

caused by thermally induced fluctuations, remains unchanged in the presence of

optical cooling. Unfortunately this means that optical cooling does not improve

the sensitivity of many experiments that can be aided by conventional cooling;
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in particular this applies to atomic force microscopy, scanning probe microscopy,

and other related continuous force measurements‡. Despite this, optical cooling

in combination with conventional cooling may be the only practical method to

access the ground state of mechanical resonators in the range of kHz to MHz,

which have equivalent temperatures of order nK to µK. As well as being an inter-

esting demonstration of the quantum nature of mechanical resonators, reaching

low quantum number states is crucial to realizing many proposed experiments to

observe quantum e↵ects in optomechanical systems (e.g. the superposition exper-

iment).

Several methods have been employed for producing the required low noise

feedback. Perhaps the most straightforward method is to read out the position of

the resonator using an optical cavity as an interferometer and then produce a force

proportional to the resonator’s velocity via an externally controllable source and

an electronic feedback loop. We will refer to this as active optical cooling and it

has been demonstrated using both radiation pressure [45, 47] and a piezoelectric

element [48] as the source of feedback force. Our own demonstration of active

optical cooling, using a prototype optomechanical system, is discussed in detail

in §5. For micro-optomechanical systems, this method is typically limited by the

noise in the readout system, the e↵ects of which will overwhelm the thermally

induced fluctuations once the gain is made high enough. If this noise could be

reduced to the quantum level, it has been shown that it is theoretically possible

to reach the “ground state” [49], which we will take to mean that the average

phonon occupation number of the mechanical resonator is much less than one.

A di↵erent type of optical feedback cooling uses the optical field inside the

cavity to produce an intrinsic damping force, which we will refer to as passive

optical cooling. This happens when a force resulting from the cavity optical field

‡ Although in practice many of these experiments actually use a feedback mechanism that
is equivalent to feedback cooling (for example, [46]). Reducing the e↵ective Q increases the
detection bandwidth and provides some practical advantages, even if the noise density is constant
or even increased by the feedback.

30



2 Theory of Optomechanical Systems

has a su�ciently delayed response to changes in the length of the cavity. In

most experiments [15, 50–59] the force comes from the radiation pressure of the

field in the optical cavity, which has a delayed response relative to the resonator

position because of the finite cavity ring down time. Another possibility is to

use thermally induced bending caused by absorption heating of the cavity field

[50, 60, 61], known as the photothermal force, which has a response time on the

order of milliseconds for micromechanical resonators [47]. The intensity of the

field inside the optical cavity, which is responsible for the force in either case,

can be made dependent on the resonator’s position by detuning the pump laser

with respect to the central cavity resonance, where the sign of the response is

dependent on the direction of detuning. If we assume the equilibrium force on the

resonator is linearly dependent on resonator position (which is generally true on

the length scales of the thermal fluctuations) and decays exponentially with some

rate �, the e↵ective restoring force at a given frequency is:

k̃
eff

(⌦) = k0

Z

1

�1

dt
�

�e��t

�

e�i⌦t = k0

"

1 +

✓

⌦

�

◆2
#

�1/2

ei�, (2.48)

� = tan�1

✓

⌦

�

◆

(2.49)

where k0 = dF

dx

for the optically induced delayed force at low frequencies. For a

resonator at frequency !, we can see that as the force decay time becomes of the

same order as or longer than a mechanical period, or � . !, the induced restoring

force becomes primarily imaginary. This means it will be dissipative, assuming the

sign of k0 is right. For � & ! there is also a significant component of the optically

induced force proportional to the position of the resonator, typically referred to

as the optical spring. This will modify the resonance frequency of the resonator,

although this e↵ect is usually of secondary importance for micromechanical sys-

tems. However, in the case that the optical spring constant becomes larger than

(and has the same sign as) the mechanical spring constant this will provide an-
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other type of optical cooling by increasing the frequency without changing the

thermally induced force; this e↵ect has been observed in gram scale mirrors sus-

pended from thin wires [53, 56]. Unfortunately this e↵ect only happens when the

detuning is opposite of that required for the more common form of optical cooling,

so the two e↵ects can only be combined with a system involving multiple pump

lasers.

Although either type of optical cooling is theoretically capable of reaching

the ground state, passive optical cooling is the most promising for reaching the

quantum limit of micro-optomechanical systems. This is primarily because the

detection and feedback is intrinsic to the cavity; the absence of an external feed-

back loop eliminates many sources of noise (even with a noiseless feedback loop,

active cooling to the ground state requires almost perfect detection e�ciency and

mode coupling to avoid unwanted shot noise). As we shall show, measurement of

the Stokes sidebands in the outgoing cavity light also provides a robust method to

determine when the ground state has been reached, which can only be indirectly

inferred in an active scheme. We now develop a quantum theory of optical cooling,

following Wilson-Rae et al. [20] and Marquardt et al. [21].

2.3.1 Aside: Input-Output Formalism for Damped Quan-

tum Systems

To consider feedback cooling in the quantum limit, we need a formalism for

dealing with damped systems. Input-output formalism, developed by C. W. Gar-

diner and M. J. Collett [62], is a convenient choice which will also allow clear

identification of the e↵ects of the di↵erent sources of noise. As before, to con-

sider an open system we must add a thermal bath and an interaction term to the

Hamiltonian. We will assume the bath is comprised of an infinite set of harmonic

oscillators and that the coupling is linear:

Ĥ = Ĥ
sys

+ Ĥ
B

+ Ĥ
int

(2.50)
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Ĥ
B

= ~
Z

1

�1

d! !b̂†(!)b̂(!) (2.51)

Ĥ
int

= i~
Z

1

�1

d! (!)
h

b̂†(!)ĉ� ĉ†b̂(!)
i

, (2.52)

where b̂(†) is the bath annihilation (creation) operator, ĉ(†) is some arbitrary oper-

ator on Ĥ
sys

and (!) is the coupling strength between the bath and the system.

The integration limits of (�1,1) are an approximation which simplifies the cal-

culation; in the limit that the system is weakly damped (Q� 1) it does not a↵ect

the results.

As before, we will assume the system is Markovian, and so take the coupling

constant to be independent of frequency:

(!) =
p

�/2⇡ (2.53)

The equation of motion for the system can be calculated by working out the

Heisenberg equations of motion for the bath operators and then tracing over the

bath modes. For an arbitrary system operator, â:

˙̂a = �
i

~

h

â, Ĥ
sys

i

�

⇥

â, ĉ†
⇤

h�

2
ĉ +

p

�b̂
in

(t)
i

+
h�

2
ĉ† +

p

�b̂†
in

(t)
i

[â, ĉ] , (2.54)

where we have defined the input noise as:

b̂
in

(t) =
1
p

2⇡

Z

1

�1

d! e�i!(t�t0)b̂0(!). (2.55)

This satisfies the following commutation relation:
h

b̂
in

(t), b̂†
in

(t0)
i

= �(t� t0). (2.56)

For the case that the system is a harmonic oscillator with ĉ = â, this takes the

simple form:

˙̂a = �i!0â�
�

2
â�

p

�b̂
in

(t) (2.57)

Finally, we note the form of b̂
in

:

Tr
h

⇢
in

b̂†
in

(t)b̂
in

(t0)
i

=
D

b̂†
in

(t)b̂
in

(t0)
E

= N̄�(t� t0) (2.58)
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Tr
h

⇢
in

b̂
in

(t)b̂†
in

(t0)
i

=
D

b̂†
in

(t)b̂
in

(t0)
E

=
�

N̄ + 1
�

�(t� t0) (2.59)

Or, in the frequency basis:

D

b̂†
in

(!)b̂
in

(!0)
E

= N̄�(! � !0) (2.60)

D

b̂
in

(!)b̂
in

(!0)†
E

=
�

N̄ + 1
�

�(! � !0), (2.61)

where we have assumed N̄ is a constant, which should be an acceptable approxi-

mation for a weakly damped system§.

2.3.2 Passive Optical Cooling in the Quantum Limit

To develop a quantum theory of feedback cooling, we begin by adding two

baths (one optical and one mechanical) to eqn. 2.9, as well as an optical driving

term which corresponds to a laser at frequency ! with arbitrary amplitude A,

which puts the optical field into a coherent state.

Ĥ =~w
a

â†â
⇥

1� g
�

ĉ + ĉ†
�⇤

+ ~w
c

ĉ†ĉ + ~Ae�i!t

�

â + â†
�

+ (2.62)

Ĥ
B,a

+ Ĥ
int,a

+ Ĥ
B,c

+ Ĥ
int,c

We now calculate the time evolution of the operators using the input-output

formalism:

˙̂a = �i!
a

â
⇥

1� g
�

ĉ + ĉ†
�⇤

� iAe�i!t

�

�
a

2
â�

p

�
a

â
in

(2.63)

˙̂c = �i!
c

ĉ + igâ†â�
�

c

2
ĉ�

p

�
c

ĉ
in

, (2.64)

where â
in

⌘ b̂
a,in

and ĉ
in

⌘ b̂
c,in

. While it would be possible to numerically sim-

ulate these equations, we can solve them analytically by assuming that the state

of the optical field di↵ers only slightly from a coherent state. Thus we make

§ In principle, N̄ should depend on frequency, i.e.: N̄(w) = 1

exp(~!/kT )�1

. If the system only
responds to a narrow bandwidth, as is usually the case, we can ignore the frequency dependence.

34



2 Theory of Optomechanical Systems

the substitution â ! e�iwt

⇣

ā + d̂
⌘

, where ā is a constant and d̂ represents the

quantum fluctuations of the system. This is a reasonable substitution provided
D

d̂†d̂
E

⌧ |ā|2. Thus the equation of motion for d̂ is:

˙̂
d = i�

⇣

ā + d̂
⌘

+ ig
⇣

ā + d̂
⌘

| {z }

⇡ā

�

ĉ† + ĉ
�

� iA�
�

2

⇣

ā + d̂
⌘

� e+iwt

p

�
a

â
in

| {z }

!

p

�ad̂in

, (2.65)

where � = ! � !
a

is the optical detuning from the cavity resonance. We will

now assume â
in

is white noise, which is nearly exact for optical frequencies given

~!
a

� k
b

T . Thus, we can make the substitution e+iwtâ
in

! d̂
in

, and d̂
in

will rep-

resent the ground state fluctuations in the optical field (this approximation is

exact if the optical field remains in a coherent state, but in practice it will be

slightly modified). Furthermore we will choose A such that the constant terms

are removed from the equation of motion, resulting in a linear equation for the

motion of d̂:

A! �

⇣

i
�

a

2
+�

⌘

ā (2.66)

˙̂
d ⇡ i�d̂ + i↵(ĉ + ĉ†)�

�
a

2
d̂�

p

�
a

d̂
in

(2.67)

↵ ⌘ āg (2.68)

Furthermore we can write the equation of motion for ĉ:

˙̂c = �i!
c

ĉ + ig
⇣

ā⇤ā + ā⇤d̂ + d̂†ā + d̂†d̂
⌘
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2+ā
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2
ĉ�

p

�
c

ĉ
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(2.69)

We will ignore the constant |ā|2 term, which corresponds only to a displacement

of the equilibrium position due to the mean optical field and does not otherwise

a↵ect the physics (the corresponding shift in eqn. 2.67 could be trivially corrected

by an adjustment in A). This results in a linear equation of motion for ĉ:

˙̂c ⇡ �i!
c

ĉ + i
⇣

↵⇤d̂ + ↵d̂†
⌘

�

�
c

2
ĉ�

p

�
c

ĉ
in

. (2.70)
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Because they are both linear, eqn. 2.67 and eqn. 2.70 can now be solved in the

frequency basis. We start by writing the equations of motion in matrix form:

Ż =

0

B
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B

B
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ĉ†
in

1

C

C

C

C

C

A

(2.71)

where we have defined the “system operator”, Z:

Z ⌘
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ĉ†
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(2.72)

and Z0 is the transpose (row form) of Z. We use the following convention for the

Fourier transform, to comply with eqn. 2.55:

˜̂a(⌦) =
1
p

2⇡

Z

1

�1

dt e+i⌦tâ(t); ˜̂a†(⌦) =
1
p

2⇡

Z

1

�1

dt e�i⌦tâ†(t) (2.73)
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We can now make the substitution Z! Z̃ and Ż! �i⌦Z̃, resulting in an equation

that can be solved by simple linear algebra:
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where we have defined the response functions of the mechanical and optical reso-

nance:

��1
a

(⌦) =
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a

2
� i (⌦+�) (2.77)
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The solution is given by:
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where we have defined ⌅:

⌅
i

(⌦) = ⌅
i

⌘ �⇤
i

(⌦)� �
i

(�⌦) (2.82)

and i refers to a or c. We can calculate the thermal spectrum of the cantilever’s

motion from the frequency spectrum of the system operators.

S
cc

(⌦) =

Z

1

�1

dt e�i⌦t

⌦

ĉ†(t)ĉ(0)
↵

(2.83)
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1
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ZZZ

1
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dt d!0 d!00 ei(!0�⌦)t˜̂c†(!0)˜̂c(!00) (2.84)

=

Z

1

�1

d!00 ˜̂c†(⌦)˜̂c(�!00), (2.85)
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where we note that the mean phonon number of the system is given by:

n̄
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Z
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�1

d⌦S
cc

(⌦). (2.86)

We can now plug in our solution in terms of the matrix elements of H.
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ẑ

0=Z(!00)

H̃
ĉ,ẑ
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where we have assumed that the optical field is coupled to a ground state bath,
D

˜̂
d†

in

˜̂
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in

E

= 0, and the mechanical motion is coupled to a thermal bath,
D

˜̂c†
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E

= n̄
th

. In the interest of notational compactness we have defined:
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Using the solutions of the operators above, we find:
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where the original of the di↵erent terms can be clearly identified from their origin

in eqn. 2.90. A plot of the integrated spectral density is shown in fig. 2.8. Despite

the apparent complexity, this result is functionally similar to eqn. 2.45 for weak

feedback. As the input pump power (↵) is increased the shot noise back action

becomes larger than the thermal input noise of the mechanical mode, limiting the

maximum degree of feedback cooling. By computing the total spectral density, it
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Figure 2.8: The e↵ects of optical cooling as a function of input pump power and
the ratio between the mechanical frequency, !

c

, and the cavity decay rate, �
a

. The
input optical field strength is given in terms of a dimensionless power, ↵ =

p

n̄
a

g
where n̄

a

is the mean number of photons in the optical cavity. The pump laser is
detuned from the cavity resonance by � = �!

c

and the initial thermal excitation
of the mechanical resonator is given by n

th

= 1000. Left: Mean phonon number,
n̄

c

. Right: Anti-Stokes/Stokes ratio.

can be seen that it is possible to achieve ground state cooling, n̄
c

. 1, only when

the cavity is in the sideband resolved regime, �
a

. !
c

.

In a similar fashion we can look at the optical output spectrum from the cavity:

â
out

= a
in

+
p

�
a

â (2.91)
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The Stokes sidebands are caused by the energy exchange between the optical field

and the mechanical resonator. When there are more photons in the anti-Stokes

band than the Stokes band, there is a net transfer of energy from the mechanical

to the optical degree of freedom. This will happen if the system is detuned so

that the anti-Stokes band is resonant with the optical cavity (� = �!
c

), resulting

in optical cooling. For opposite detuning, there is a net transfer of energy to the

mechanical mode, resulting in heating.

In the case that the system is cooled near the ground state, it becomes impos-

sible to remove more energy from the system. This will suppress the anti-Stokes

band relative to the Stokes band, resulting in a clear signal that the system is

cooled near the ground state (fig. 2.8). It can be seen that when the mean phonon

number is of order 1, the ratio of the Stokes sidebands is reduced to half of the

low field (↵ ⌧ 1) value. This is a truly quantum signature; for a classical sys-

tem reducing the amplitude of the thermal fluctuations reduces both sidebands

equally. Furthermore, it should be possible to measure the sideband amplitudes in

a real experiment using a heterodyne detection scheme. This gives passive optical

cooling a significant advantage over active optical cooling, which does not provide
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a clear method for determining when the ground state has been reached.

Although eqn. 2.90 and eqn. 2.94 are exact solutions of eqn. 2.67 and eqn. 2.70,

we must be aware that they are based on an approximation that may not be

appropriate for realistic devices. In particular, if g ⇠ !
c

and the mean photon

number, ā, is of order 1, the approximations required to linearize the system

break down. Although current devices are far from approaching this regime,

an optomechanical system appropriate for a superposition-type experiment has

exactly these requirements. In this case, the system is highly nonlinear, and a

numerical simulation is required to consider the full quantum dynamics of the

system.
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Chapter 3

Experimental Requirements

All proposals for observing quantum e↵ects in micro-optomechanical systems

have extremely challenging experimental requirements. Here we briefly review

these requirements with respect to real experimental limitations. Although we

will use the superposition experiment as a specific example, these requirements

generally apply to any experiment in which one wants to observe quantum e↵ects

in a optomechanical system.

To evaluate the practicality of the requirements, we will consider an ideal

micro-optomechanical system with one big curved mirror and one tiny mirror on

a micromechanical element:

L & 1cm

r
big

= L

5

r
tiny

= 5 µm

� = 500 nm

m = 10�12 kg

!
c

= 2⇡ ⇥ 500 Hz

x0 = 130 fm,

(3.1)

where L is the cavity length, r
big

and r
tiny

are the radii of the cavity end mirrors

and all other quantities are as previously defined. The exact length of the cavity
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is not important, although we assume it is in the far-field regime. The size of the

tiny mirror is chosen so that the di↵raction limited optical quality is su�ciently

high (see §6 for details; for this system ↵ = 2.5, giving a di↵raction limited finesse

of more than 106). As we will show, it is theoretically possible to construct a

system with these parameters from a dielectric mirror on a thin silicon cantilever.

3.1 Optical Quality

For a single photon experiment, the optomechanical interaction must be strong

enough that a single photon can create or destroy a single phonon in the mechan-

ical mode. It follows that the decay rate of the optical cavity must be less than

the optomechanical interaction constant (which is also expressed as a rate):

�
a

< |g|. (3.2)

We will most commonly use optical finesse, F , as a measure of optical cavity

quality. The finesse is the ratio of the cavity linewidth to the free spectral range

of the cavity; in the high finesse (F � 1) limit, it is 2⇡ times the mean number

of round trips a photon makes in the cavity. For a simple optical cavity with one

movable mirror, the required finesse is given by:

F >
�

2x0

, (3.3)

where x0 =
q

~
2m!c

is the ground state wavepacket size, as before, and we have

made use of the fact that the optical decay rate is given by �
a

= ⇡c/LF . Similarly

for a gradient force system:

Q
opt

=
�

a

!
a

>
!

a

x0

�

�

�

�

d!
a

dx

�

�

�

�

�1

=
�

x0

�

�

�

�

d�

dx

�

�

�

�

�1

, (3.4)

where we note that typically
�

�

d�

dx

�

�

⇠ 1 for nano-photonic cavities (for example:

[27]). Intuitively, these conditions are equivalent to the requirement that a single
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photon is able to resolve the ground state of the mechanical mode. For experiments

like optical cooling, in which the optical cavity is pumped by a coherent state with

n̄ photons, the requirement is reduced to:

F �
�

2x0

p

n̄
, (3.5)

which can be seen either from §2.3.2 or by observing that the sensitivity of an

interferometer increases like
p

n̄. Unfortunately this enhancement can only be

used for a limited class of experiments, not including the superposition experiment

as originally proposed. Due to the strict optical requirements, there is a great deal

of interest in deriving equivalent experiments capable of taking advantage of this

enhanced sensitivity. Although there has been some progress recently [63, 64],

the interpretation of these proposals as demonstrating quantum e↵ects has not

received the same degree of scrutiny.

The required finesse for our ideal system, assuming the single photon require-

ment, is F > 2⇥106. This is at the limit of what can be obtained in conventionally

sized optical cavities [65, 66], even with these cavities operating at slightly longer

wavelengths, � & 800 nm. Unfortunately, the required finesse scales like �5/2 with

all other parameters kept constant (assuming the mirror mass dominates the me-

chanical resonator, m scales like �3, as we shall show below), so the experiment

would likely need to be operated at somewhat shorter wavelengths.

A gradient force or “membrane in the middle” approach could reduce the mass

of the mechanical system by perhaps an order of magnitude, but in any case a

�3 mass scaling can not be avoided. Additionally, obtaining a su�ciently low

mechanical frequency without a large mass is problematic in these alternative

systems.

Improving any of the parameters listed in eqn. 3.1 in order to reduce the optical

requirements poses complications:

• The mechanical mass cannot be reduced below the mass of the mirror, al-

though this could be reduced by increasing the numerical aperture of the
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optical system.

• The numerical aperture of the system, ' = r
big

/L, is limited by the practi-

calities of super-polishing mirrors with relatively small radii of curvature⇤. If

improvement in mirror polishing was made beyond ' > 1/5, the penetration

depth of the mirror would start to limit the optical quality.

• The frequency of the mechanical resonator could be reduced, although at

500 Hz isolation from background vibration is already a serious concern.

Additionally it is di�cult to do this without increasing the mass (and con-

sequently x0) of the system.

A plot of equivalent optical finesse versus ground state wavepacket size is shown

for a variety of experimental devices in fig. 3.1. In general, no devices have yet

been demonstrated for which g & �
a

, although in one case the strong coupling

regime
p

n̄g & �
a

has been observed at room temperature by using a relatively

strong optical field [72].

3.1.1 DBR Mirrors

To achieve finesses on the order of 106, the loss of each mirror needs to be

at most several parts per million. Metal mirrors have losses typically in the

range of 1%, making distributed Bragg reflectors (DBR or dielectric mirrors) the

only practical option. These mirrors are composed of alternating layers of high

and low index of refraction materials; the most commonly used materials for

very high reflectivity mirrors are Ta2O5 and SiO2. If each layer is �/4n thick,

the light reflected from the material interfaces in the dielectric stack interferes

constructively, enhancing the reflectivity. For a DBR stack with N layers each of

the high and low index material, the peak reflectivity can be determined from the

⇤ In particular, the wavefront error of the mirror becomes a serious concern. See §6.3.3 for
the theory of wavefront error and §7.2.2 for measurements of real mirrors.
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(i) Si3N4 Membrane
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Figure 3.1: A comparison of optomechanical devices, showing the finesse and
size of the ground state wavepacket, x0 =

p

~/m!
c

. All points apart from (j) are
based on published results. The shaded area in the upper right corresponds to
 = 1/

p

2 for visible light (� = 600 nm). The color of each point corresponds
to the characteristic environmentally induced decoherence temperature, T

EID

=
~!

c

Q/k
b

.

(a) A dielectric with F = 2⇥ 106 deposited on a cm size mirror.
(b) Metal deposited on a conventional AFM cantilever (e.g. [60]).
(c) A thin silicon cantilever used in magnetic force resonance

microscopy[67].
(d) A focused ion beam milled DBR mirror glued to a commercial AFM

cantilever [68] (see also §4).
(e) Microtoroidal resonator [57].
(f) Resonator made of a suspended DBR bridge [69].
(g) DBR deposited on a silicon bridge resonator [51].
(h) A 2 µm silicon resonator with gold deposited on it [70].
(i) Commercial Si3N4 membrane in a high finesse optical cavity [71].
(j) Our ideal device, eqn. 3.1, with F = 2⇥ 106. This is essentially a com-

bination of the mechanical properties of (c) with the optical properties
of (a).
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thin film matrix method [28]:

R =

"

1� n
s

�

n1
n2

�2N

1 + n
s

�

n1
n2

�2N

#2

, (3.6)

where n
s

, n1 and n2 are the indices of refraction of the substrate, high index

material and low index material, respectively, and the mirror is assumed to be in

vacuum (n0 = 1). This can be reformulated in terms of a mirror transmission:

T =
4n

s

�

n1
n2

�2N

⇣

1 + n
s

�

n1
n2

�2N

⌘2 (3.7)

⇠=
4

ns

✓

n2

n1

◆2N

(for T ⌧ 1).

If an optical cavity is made of two identical mirrors, and limited only by the

transmission of these mirrors, the finesse is given by F
r

= ⇡/T , assuming T ⌧ 1.

In terms of the DBR mirror properties, this is:

F
r

⇠=
⇡ns

4

✓

n1

n2

◆2N

(3.8)

⇠ 2.10N , (3.9)

where in the last equation we have assumed n1 = 2.10 and n2 = 1.45, correspond-

ing to Ta2O5 and SiO2, and ignored the e↵ect of the substrate (or if you prefer,

n
s

⇠ 4/⇡). An ultra-high reflectivity mirror will generally have around 20 layers

of each of SiO2 and Ta2O5, giving a maximum finesse of F
R

⇠ 3⇥ 106. For even

the best real mirrors, the loss intrinsic to the mirror materials and the scattering

due to substrate roughness are on the order of parts per million, so adding more

layers to the DBR does not increase the finesse significantly beyond this point.

The total mass of a DBR mirror can be calculated from the properties of the
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dielectric layers it is made out of:

m
mirror

= ⇡N�3
⇣r

a

�

⌘2


⇢1

4n1

+
⇢2

4n2

�

(3.10)

=
N�3↵4

4⇡'2



⇢1

n1

+
⇢2

n2

�

, (3.11)

where on the second line we have used the formalism of §6 to rewrite the mirror

size in terms of the numerical aperture of the large mirror; ↵ is the ratio of mode

to mirror size, for ultra-high finesse cavities (F & 106) we require: ↵ & 2.2. The

density of SiO2 and Ta2O5 is ⇢ = 2.6 and 8.2 g m�3 respectively†. This results in

m ⇠= 10�12 kg for the parameters given in eqn. 3.1 with N = 20.

3.1.2 Cavity Alignment

Because most optomechanical systems are composed of an optical cavity with

one microscopic end, alignment is far more critical than in cavities with two con-

ventional mirrors. If we consider the location of big mirror to be fixed, the cavity

alignment has six degrees of freedom, corresponding to translation and rotation of

the tiny mirror. Assuming both mirrors are circular (or at least have radial sym-

metry), there are five non-trivial degrees of freedom; two are pictured in fig. 3.2

and another two are essentially the same but along a di↵erent axis.

First, consider transverse (perpendicular to the cavity axis) displacements of

the tiny mirror. At the location of the tiny mirror, the intensity profile of a cavity

mode should always have 180� rotational symmetry about the center of radius of

† In practice, Ta
2

O
5

may not be the ideal high index material, due to its extremely high
density and relatively moderate index. For example, TiO

2

has higher index (n ⇠ 2.5) and lower
density (⇢ = 4.2 g m�3) than Ta

2

O
5

, but it is not generally used in ultra high reflectivity mirrors
as it tends to have higher optical loss. As a compromise, a mirror could be manufactured with
the top several layers composed of Ta

2

O
5

and the rest made of TiO
2

, potentially reducing the
mass by about half. Further reduction in mass can be achieved using amorphous silicon (n ⇠ 3.5,
⇢ = 2.4 g m�3), but the optical loss is only acceptably low if the optical energy is below the
band gap, or � & 1.2µm. Although we have not attempted to fabricate systems with this type
of mirror, it may be worthwhile to do so in the future.
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center of radius of curvature

center of tiny mirror

r
eff

�

✓

�

xy

r
eff

Figure 3.2: Possible cavity misalignments, and the respective modification of the
cavity mode. Length (defocusing) errors are not shown. Top: A perfectly aligned
cavity. For clarity the tiny mirror is shown at a much larger scale than would
be the case for a real cavity. Bottom-left: Angular misalignment of the tiny
mirror, with the reduced e↵ective radius of the big mirror indicated. Bottom-
left: Translational misalignment of the tiny mirror, showing the reduced e↵ective
radius of the tiny mirror.
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curvature‡, meaning that the cavity mode can not adjust to translations of the

tiny mirror. In this case it is clear that we require:

�
xy

⌧ r
tiny

, (3.12)

where we have assumed the cavity is di↵raction limited (if it is not, there is some

extra “slop” built into the mirror, but this is undesirable from the perspective

of minimizing mirror mass). The required accuracy is on the order of a micron,

which is well within the range of conventional nano-positioning systems.

Error in the longitudinal position of the tiny mirror, or length of the cavity,

causes the light to defocus as it circulates in the cavity. Although there is no

simple way to estimate the resulting loss, it is possible to calculate with a mode

mixing approach (see §6.3.1). If we wish to reach a finesse of 106, the cavity length

error must be less than:

�
z

. 10�4z0, (3.13)

where z0 = ⇡w2
0/� is the Rayleigh range. For the system described by eqn. 3.1,

the Rayleigh range is z0 = 25 µm, requiring a length accuracy of �
z

. 2.5 nm.

This is requirement is quite strict, especially if the cavity length is several cm,

although it should be possible with careful system design; possible methods for

achieving this are discussed in §7.2.3.

Finally, the accuracy requirements for rotations of the tiny mirror can be

estimated in a similar manner to the transverse displacements above. At the

location of the big mirror, the field intensity must be symmetric about a line

normal to the surface of the tiny mirror and so:

�
✓

⌧

r
big

L
= '. (3.14)

‡ From the principles of classical optics, the mode profile on the small mirror is mirrored
about the center of radius of curvature of the large mirror on each reflection. As a result, all
cavity eigenmodes must have a intensity (|E|

2) profile that has 180� rotational symmetry at the
location of the small mirror, and hence the mode center can not move to adapt to translations
of the small mirror. Following the formalism in §6, this e↵ect can equivalently be seen as a
consequence of the di↵erent Gouy shift for even and odd modes of a long cavity.
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Due to the large size of the big mirror, this required accuracy is only on the order

of several degrees and is considerably easier to meet than the other degrees of

freedom.

3.1.3 Rare Events and the Superposition Experiment

The requirement for the optical quality above, eqn. 3.3, is related but not

identical to the requirement for putting a cantilever in a distinguishable state. As

shown in §2.2.1, putting the cantilever in a distinguishable quantum state requires

g ⇠ !
c

; using eqn. 2.20 this can be rewritten as:

N & �

2x0

, (3.15)

where N is the number of photon round trips per mechanical period. Although

this form is closely related to eqn. 3.3, we note that the number of round trips

per mechanical period is not necessarily related to the finesse.

For the superposition experiment, we are primarily concerned with the number

of photons that leave the cavity during the interference revival window. If we inject

a single photon, it can easily be shown that the probability that it leaves during

the interference revival window is:

P
rw

=
�

a

e�2⇡ �a
!c

!
c

p

2n̄ + 1
, (3.16)

where we have assumed that the width of the revival window is:

t
rw

=
�

!
c

p

2n̄ + 1
�

�1
.

In a real experiment, one would choose the cavity length, L, to obtain the

required value of the optomechanical coupling, . Accordingly, we can rewrite the

revival window probability as:

P
rw

= 
F0

F

e�2⇡
F0
F

p

2n̄ + 1
, (3.17)
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where we have defined F0 = 2x0/� to illustrate the connection between eqn. 3.3

and eqn. 3.15. For  = 1, the most photons are observed in the revival window

when F = 2⇡F0, in which case the mean time a photon spends in the cavity is

equal to the mechanical period. It is possible to operate the experiment at a

lower finesse, but in this case one will only rarely observe a photon in the revival

window. Despite this, the di�culty of achieving the required high finesse may

make this unavoidable. In this case, one needs to ensure that the count rate in

the revival window is kept above the dark count rate of the photon detectors (see

§3.4).

3.2 Quantum Coherence and Mechanical Loss

To measure quantum e↵ects, the mechanical resonator must have a quantum

coherence time comparable to the length of the desired measurement. (Or at

least, the coherence time of known mechanisms should be comparable to the

measurement time; potential decoherence mechanisms of the type discussed in

§2.2.5 would ideally be shorter than the measurement time, so that they could

be probed.) From an experimental point of view, this is most easily expressed in

terms of the mechanical quality factor, Q:

Q & n̄
th

⇠=
k

b

T
B

~!
c

, (3.18)

where T
B

is the temperature of the thermal bath to which the resonator is con-

nected. Optical cooling does not ease this constraint (see §2.3); the easiest way

to see this is that optical cooling e↵ectively reduces both Q
eff

and T
eff

by the

same amount§. In practice, cooling actually introduces back action noise, which

§ To circumvent this, you could imagine doing an experiment where you cool to the ground
state and then quickly turn o↵ the cooling during the superposition measurement period. Un-
fortunately, the decoherence is caused by new phonons coupling in from the thermal bath; the
rate at which this happens is una↵ected by optical cooling and the same decoherence rate should
be observed in this case.
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can become comparable to or larger than the thermal noise if the e↵ective gain is

too high (e.g. §2.3.2), actually reducing the coherence time.

For our ideal system, we find the ground state equivalent temperature is

~!
c

/k
b

= 25 nK. For single crystal silicon resonators at around 1 kHz, the me-

chanical quality factor is about 105 at su�ciently low pressures [67], requiring a

base temperature of T
EID

= 2.5 mK. This value could potentially be increased by

as much as two orders of magnitude using tensed Si3N4 resonators [71], although

as we shall see later, it is di�cult to reduce the frequency without increasing the

mass (T
EID

is shown for a number of optomechanical devices in fig. 3.1). Temper-

atures of less than 1 mK are experimentally achievable with a nuclear adiabatic

demagnetization stage, although the use of such a stage to cool a mechanical

resonator has yet to be attempted. Much lower temperatures are theoretically

possible, but thermally anchoring the sample to the stage will likely limit the

cooling – see §7.2.4.

If the quality factor or base frequency can be increased by an order of mag-

nitude, the required temperature increases to 25 mK, which can be realized with

a standard dilution refrigerator. E↵ective temperatures of 100 mK have already

been measured in MFRM experiments, limited by optical absorption from the

interferometric readout [67]. Absorption is likely to be less of a problem for ultra-

high finesse micro-optomechanical systems, which already require lower levels of

light and intrinsic absorption.

3.3 Background Pressure

Background gasses in the experiment cause damping (and hence information

loss) of the resonator, a↵ecting the quantum coherence of the system. Because of

the extremely high intrinsic quality factors of many optomechanical systems, this

damping can be relevant even in vacuum conditions.
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To calculate the e↵ect of this damping, we need to know the relevant flow

regime for the gas molecules. This is usually characterized with the Knudsen

number, or the ratio of mean free path of gas molecules to characteristic object

dimensions:

Kn =
`

L
char

(3.19)

` =
k

b

T
p

2⇡a2P
, (3.20)

where ` is the mean free path, a is the e↵ective molecule diameter, P is the gas

pressure, and L
char

is the characteristic length of the optomechanical system. For

a relatively poor vacuum of P = 1 mBar, the mean free path at room temperature

is ` ⇠ 100µm if we assume a ⇠ 3 Å; this mean free path is comparable to the

typical dimensions of our mechanical resonators. Because we are typically working

at much lower pressures, we will henceforth assume we are always in the free-

molecular regime, Kn � 1. This allows us to calculate damping without a full

fluid dynamics simulation.

In this regime, the pressure di↵erence between two sides of a flat object moving

at a velocity v normal to its surface is given by [73]:

�P = 4

r

2

⇡
vP

r

m
m

k
b

T
(3.21)

=
v

v
d

P

v
d

=
1

4

r

⇡k
b

T

2m
m

, (3.22)

where m
m

is the mass of a single gas molecule and v
d

is an e↵ective damping

velocity, which is the RMS (root mean squared) velocity of the gas molecules

times a geometric factor. (At room temperature, v
d

= 94 m s�1 for N2.)

We now assume our resonator is nearly planar and only consider deformation

normal to the planar surface¶. In the absence of external forces, we can repre-

¶ In practice, most optomechanical devices have a small thickness to length ratio, and so the
“thin beam” approximation we are making should be acceptably accurate.
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sent the deformation at some point along the plane r as a summation over the

vibrational modes of the resonator:

z(~r, t) =
X

j

Re
⇥

X
j

�
j

(~r)ei!jt

⇤

, (3.23)

where X
j

, !
j

and �
j

are the corresponding complex excitation amplitude, fre-

quency and dimensionless mode profile of mode j (see §A for specific geometries).

From eqn. 3.21, we find the total energy loss:

Ė(t) =
P

v
d

Z

ż2 d~r (3.24)

)

¯̇E
j

=
!2

j

X2
j

P

2v
d

Z

�2
j

d~r
| {z }

Aj

, (3.25)

where the integral is assumed to be taken over the resonator surface and A
j

is

the e↵ective surface area of mode j (typically A
j

is one fourth to one half the

actual surface area). In the second equation we have made use of the fact that the

modes are orthogonal to consider only the energy loss from a single mode. From

the total energy in a given mode we can calculate the mechanical Q factor:

E
j

=
1

2
m

j

!2
j

X2
j

(3.26)

Q
P,j

=
!

j

E
j

¯̇E
j

=
v

d

P

m
j

!
j

A
j

, (3.27)

where we have assumed we are in the good resonator limit (Q � 1). If our

resonator has a uniform thickness, t, and density, ⇢:

Q
P,j

=
v

d

P
!

j

t⇢, (3.28)

which agrees with the theoretical calculations of Li et al. [74], who also found

it to be in good agreement with numerical simulations and experimental results

in the regime Kn � 1. This also agrees with our results for resonators which

are in the free-molecular regime and with a Q lower than the intrinsic (material
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limited) value, e.g. §4.3. Note that in the regime Kn . 1, damping calculations

require a full fluid dynamics simulation, although in general the Q is expected to

be higher than found in eqn. 3.27 (we also observe this in real experiments). To

consider amount of damping for our ideal resonator, we need to choose a resonator

geometry. Consider a cantilever of 200 nm thickness, 5 µm width and 500 µm

length. From eqn. A.9, we find this resonator has the right frequency (! = 2⇡⇥500

Hz) if it is made of single crystal silicon (E = 250 GPa) and a mirror of mass

10�12 kg is placed on the tip. Cantilevers of appropriate geometries have been

fabricated for MFRM experiments [75]. From eqn. 3.27 and eqn. A.10, we find:

Q
p

⇠= 5

r

T

300K

✓

1 mbar

P

◆

. (3.29)

Assuming we wish to reach the intrinsic quality factor of Q ⇠ 105, the required

pressure at room temperature is P < 5 ⇥ 10�5 mBar, which is easily achievable

with conventional vacuum technology. Although the requirement appears more

di�cult at low temperatures, in general the ambient pressure is reduced in cryo-

genic systems. If we assume that the number of gas molecules in the system is

constant, it follows from the ideal gas law that P / T ; thus it should actually be

much easier to minimize the gas damping in cryogenic systems.

3.4 Single Photon Detectors

The superposition experiment is a single photon experiment, and hence re-

quires single photon detectors. Unfortunately, the most commonly used single

photon detectors, silicon avalanche photodiodes (APDs), are not well suited for

this type of experiment. The most important requirement is low dark-counts;

although one might naively suspect the output arms have a maximum count rate

of order !
c

/2⇡ ⇠ 500 Hz, under realistic conditions it is at least a factor of 30

lower, possibly much more.
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Due to the di�culty of creating a true single-photon state, many “single-

photon” experiments are done using a classical light state attenuated so the mean

number of photons per run, hni, is much less than 1k. In this way most exper-

imental runs either have 0 or 1 photon, and since the 0-photon state produces

no counts it is automatically excluded from the results. This leaves one with an

e↵ective 1-photon state via “post-selection.” The maximum photon rate we can

use is then limited by the 2-photon probability, which we need to be small to avoid

corrupting the results. Although in principle one could exclude these e↵ects using

photon-number resolving detectors and more sophisticated post-selection, this is

only e↵ective if the system has very low loss. Otherwise lossy 2-photon events will

appear as 1-photon events, contaminating the data. Assuming the input light is

in a coherent state, the photon number probability is Poissonian:

P (n) =
hnine�hni

n!
. (3.30)

Typically one works in the regime P (1) ⇠ 10%, in which case P (2) ⇠ 0.5%, which

is good enough for the experiments considered here.

We must also consider the fraction of photons remaining in the revival window,

as discussed in §3.1. At the peak of the first interference revival (t = 2⇡/!
c

), the

total count rate is then given by:

C
r

w =
!

c

2⇡
⇥ P (1)⇥ 

F0

F
e�2⇡

F0
F . (3.31)

For the ideal system with P (1) = 0.1, F = 2⇡F0 and  = 1, this count

rate is only 50 Hz, which is comparable to or even less than the dark count

rate in the best silicon APDs. With a somewhat more realistic finesse value

k In fact, for a superposition type experiment, it would be no help even if you could start
with a perfect single photon state on the input. This is because the input state must be in the
form of a short pulse (required for the visibility timing) and hence will always be bandwidth
mismatched from the cavity. As a result most of the photons bounce o↵ the input mirror and
only a small fraction (⇠ 1/F ) enter one of the two optical cavities. For this type of experiment
it is this small fraction that must be of order 1, not the total number of input photons.
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of F = F0 this gives a peak count rate of only 0.1 Hz, ruling out conventional

APDs completely. Fortunately several alternative single photon detectors based on

superconducting transitions have been recently developed. For our purposes, the

best type of detector is called a transition edge sensor (TES), which is essentially

a tiny bolometer capable of measuring the heating caused by single photons [76].

The dark counts in a TES are caused only by background thermal radiation at

the detector. The primary limitations of these detectors are their relatively low

maximum count rate (. 100 kHz), poor timing resolution (of order 10 µs) and

requirement that they be operated at sub-Kelvin temperatures. Fortunately, none

of these limitations a↵ect the superposition experiment, which already requires

mK temperatures, making this type of detector perfectly suited to our needs.

Although these detectors are not commercially available at present, they have

been fabricated by a number of groups.

3.5 Other Requirements

For the visibility fringes of a superposition-type experiment to remain constant,

the cavity length must be stable to within the ground state wavepacket size, x0,

which is only a fraction of a picometer for an ideal device. Creating an optical

cavity with this level of stability that can also be adjusted with micron precision in

a vacuum and cryogenic environment is a significant challenge, although it seems

to be within the reach of available technology (see also §7.2.3).

Although optical cooling does not apparently ease any of the requirements

above, it is the only practical way to put the system in a known quantum state.

As noted in §2.2.4, this may be required for an unambiguous demonstration of

quantum behavior, although this issue remains contentious. Issues of interpreta-

tion aside, optical cooling is also useful in a superposition type experiment because

it increases the width of the revival window, thus increasing the rate of experi-
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mentally relevant photon counts. For the ideal device at a temperature of 1 mK,

a photon is only expected to be detected in the revival window several times per

day, assuming the experiment is run continuously (given P (1) = 0.1, F = F0

and  = 1). Cooling this system to the ground state gives an improvement of

two orders of magnitude, or approximately a photon every minute. This would

dramatically reduce the requirements on cavity stability and run-time of the cryo-

genic system, although it does not a↵ect the dark count requirement for the single

photon detectors.
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Chapter 4

A Prototype

Micro-Optomechanical System

This chapter is partially adapted from Physical Review Letters 96, 173901,

“High Finesse Opto-Mechanical Cavity with a Movable Thirty-Micron-Size Mir-

ror,” by D. Kleckner et al. [68], copyright c
�2006 by The American Physical

Society.

We now discuss the fabrication of an optomechanical system composed of

a macroscopic spherical mirror and a microscopic plane mirror on the end of

an atomic force microscope (AFM) cantilever (fig. 4.1). Prior to the realization

of this system, the only significant radiation pressure induced optomechanical

interactions had been observed in microtoroidal resonators [13], which operate

at much higher mechanical frequencies (many MHz, as opposed to the 10 kHz

systems described here).
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Figure 4.1: SEM images of a 15 µm prototype mirror during the cutting process
(A, B) and after attachment to a cantilever (C).
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4.1 Cavity Fabrication

4.1.1 Tiny Mirror and Resonator Fabrication

To make the tiny mirrors, we begin with a multilayer SiO2/Ta2O5 DBR stack

deposited on a conductive silicon substrate. The film deposition was done com-

mercially by Advanced Thin Films, Inc., and designed to have a high enough

reflectivity to allow cavities with F & 104 (15 double SiO2/Ta2O5 layers) at a

center wavelength of 780 nm.

Using a focused ion beam (FIB), we first cut away a ring of material on the

edge of the wafer to define the mirror shape (fig. 4.1A). We use a gallium ion

current of 7 nA to cut a ring of width 3–4 µm, with the inner edge of the ring

being the desired mirror size. The cut depth is several microns greater than the

thickness of the mirror (⇠ 5µm), which makes the mirror less likely to get stuck

to the substrate after the side cutting.

We then rotate the sample 96� in order to cut out the bottom of the mirror

from the side (fig. 4.1B). The additional 6� is used to compensate for the tapered

edges of a FIB cut produced at high ion currents. The bottom cut is stopped

before it completely frees the mirror, leaving it connected by 1–2 µm of silicon.

We have successfully cut mirrors of between 15 and 30 µm diameter; larger mirrors

should be possible but the total time required to cut them at this beam current

would be on the order of 1 hour.

After cutting several mirrors in this fashion, we remove the mirror piece from

the FIB system and prepare several AFM cantilevers. We place a small drop of

low-viscosity optical epoxy near the tip of each cantilever using a several micron

thick pulled glass rod on a manipulation arm. Then, using a fresh glass tip, we

gently break a mirror free from the substrate. To avoid scratching the mirror, we

use the side of the glass rod instead of the sharp tip. It has been found useful to

use a larger (& 30 µm) glass rod for this purpose, as it is less prone to breakage.
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A snapped glass rod typically results in the mirror launching violently from the

substrate where it is unlikely to be recovered by the bewildered researchers. Once

freed, the detached mirror is carefully lifted from the substrate via electrostatic

interaction with the glass rod. It is then transferred to the cantilever and placed

on the drop of epoxy (fig. 4.1C). The cantilever is then placed in a designated

holder and gently heated to cure the epoxy.

4.1.2 Cavity Alignment System

Because one end of our optical cavity is of microscopic dimensions, mirror

alignment is extremely critical. In general, we find that placing the cavity in a

vacuum chamber, required to reduce background gas damping of the mechanical

resonator, results in non-negligible misalignment of the system. To allow align-

ment of the system in vacuum, we use three slip-stick piezo screw motors (New

Focus Picomotors) which push against the plate which holds the macroscopic end

mirror (fig. 4.2). This configuration is similar to that used in a common laboratory

optical mount, and allows us to tip and tilt the big end mirror about its center,

as well as change the length of the cavity. The other two degrees of freedom in

the cavity alignment are the tip and tilt of the cantilever, for which we use a

conventional gimbal optical mount. Although this mount can only be adjusted

manually, we find that it can be pre-aligned, outside the vacuum chamber, to an

adequate degree of precision. A diagram of the complete optical system can be

found in fig. 4.3.
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Figure 4.2: An image of the cavity-alignment vacuum insert. The macroscopic
cavity mirror and the input mode matching lens is mounted on the plate at the
far right, which is adjustable using three remotely controlled motors. The tiny
mirror/AFM cantilever is held in the gimbal optical mount in the center of the
image, located between the three motors. Because it is less critical than the other
degrees of freedom, the angle of the cantilever can be adjusted only while the
system is outside the vacuum chamber. An imaging lens, shown on the left, is
used to focus the light leaving the optical cavity.
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Figure 4.3: A diagram of the experimental setup. A 780 nm tunable diode laser
(TDL) is used for frequency scanned measurements. A 633 nm HeNe laser is used
for alignment as it is out of the peak reflectivity region of the mirrors. The light
from either laser is then passed through a spatial filter (A) and collimated using a
lens on a translation stage (B). The lens is chosen to match the cavity mode. For
the ring-down measurements a 780 nm 200 fs pulsed laser is coupled in via a fiber
(C). A periscope (D) aligns light to the cavity. The large mirror and an incoupling
lens (E) are mounted on a motorized stage allowing control of tip/tilt as well as
the overall length of the cavity inside the vacuum chamber. The cantilever/small
mirror (F) are mounted on a gimbal mount which is pre-aligned outside of the
vacuum chamber. A fraction of the light leaving the cavity is used for imaging
on a CCD, while the remainder is sent either to a photomultiplier tube (PMT) or
avalanche photodiode (APD).
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4.2 Results

4.2.1 Optical Quality

To characterize the optical cavity, we measure its spectral response using a

tunable diode laser (TDL). The transmission of a Fabry-Pérot cavity as a function

of frequency, f , and changes in cavity length, �x, is:

T /
1

1 + 4F

2

⇡

2 sin2[⇡( f

�f

+ 2�x

�

)]
(4.1)

where � is the laser wavelength, and �f = c

2L

is the free spectral range, which

is 6 GHz for our cavity. The proportionality factor is 1 for cavities with mirrors

of equal reflectivity and less than 1 otherwise. The optical finesse, F , a useful

measure of the cavity quality, is the ratio of peak width to free spectral range

for the periodic peaks of eqn. 4.1. Using the TDL we sweep the frequency by

slightly more than a free spectral range and monitor the cavity transmission on a

photomultiplier tube (PMT) (fig. 4.4). The power incident on the cavity is roughly

1 mW. In practice a series of several reoccurring peaks is observed due to higher

order modes and imperfect mode matching. The peak of the fundamental mode

can easily be identified by its higher finesse and location in the spectrum. If the

laser is scanned slowly enough, thermal vibrations of the cantilever at the primary

mechanical resonance frequency of 12.5 kHz are clearly visible (fig. 4.4B). This

is because the time it takes the TDL to scan over the peak is several mechanical

oscillations long. Scanning at a rate & 10 Hz reduces the e↵ect of the vibrations

and enables a measurement of the linewidth of the cavity optical resonance. The

maximum finesse measurable by this method is 1020 ± 50 and is limited by the

6 MHz TDL linewidth.

Cavity ring-down provides an alternative method for determining the finesse.

The mean number of round trips of a photon in a Fabry-Pérot cavity is given by

N = F

2⇡
. The corresponding exponential decay time is ⌧ = LF

⇡c

. To measure this
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Figure 4.4: Fabry-Pérot scan (peaks inset). Higher order modes are visible;
adjustment of the incoupling reveals that the cavity supports several more. A)
The Lorentzian peak has FWHM 5.9 ± 0.2 MHz, resulting in an equivalent finesse
(limited by the laser linewidth) of 1020 ± 50. B) If the laser is scanned at a lower
rate, thermal vibrations of the cantilever become visible.
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Figure 4.5: Cavity ring-down measurement. A laser pulse enters the cavity at a
time t = 0. The scattered light is bright enough to saturate the APD, resulting
in a 50 ns dead time. The light intensity is low enough after the recovery that
saturation e↵ects can be ignored. A fit of the data from 100–2000 ns demonstrates
a finesse of 2100 ± 50. The slightly faster decay at 50 ns is due to light leaking
from higher order modes.

decay we pumped the cavity with 200 fs laser pulses at 780 nm with a repetition

rate of 40 kHz. Light leaving the cavity was sent to an avalanche photodiode

(APD) capable of detecting individual photons. The APD pulses were monitored

on a multichannel scaler triggered by the laser electronics. The summed results

of 105 pulses are shown in fig. 4.5. The cavity alignment was unchanged from

the earlier measurements using the TDL. The measured finesse by this method is

2100 ± 50. The finesse could not be significantly increased beyond this point by

adjusting the alignment.

We now discuss limitations on the optical finesse set by the finite size of the

cavity mirrors. Because of di↵raction losses, the concept of eigenmodes of the
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Mirror Sizes Fundamental Finesse of Higher Order
Mode Finesse Modes (with F > 10)

6 mm, 15 µm 3.9⇥ 104 83
6 mm, 20 µm 3.5⇥ 106 3500, 24

w/ 2 µm defect 6000 39
6 mm, 30 µm 3.6⇥ 1010 1.4⇥ 107, 2.7⇥ 104, 190

w/ 2 µm defect 4.5⇥ 105 3.0⇥ 104, 240, 13
8 mm, 20 µm 1.6⇥ 109 8.0⇥ 105, 2200, 24

Table 4.1: Maximum optical finesse for finite-sized mirror cavities of the type
presented here (� = 780 nm).

cavity breaks down and is replaced by modes that decay at a constant rate. The

calculation of these modes can be reduced to a round-trip matrix problem by

expanding the optical field in the cavity in terms of the cylindrically symmetric

(m = 0) Laguerre-Gaussian modes which are the propagation eigenmodes of the

paraxial wave equation for a cavity with infinitely large mirrors. The clipping due

to each mirror is represented by a mode mixing matrix whose elements are the

mode overlap integrals calculated only over the surface of the mirror. The e↵ect of

one round trip propagation is the product of the mixing matrices for each mirror.

The eigenvalues and eigenvectors of this matrix correspond to the cavity modes

and can be used to calculate the finesse (table 4.1) of each. A more sophisticated

version of this method is discussed in §6.

Many of the obtained finesses exceed those limited by realistic mirror reflectivi-

ties [66]. Since the finesse is limited by multiple independent loss mechanisms, the

total finesse can be calculated from the limiting finesses for each loss mechanism

considered separately: 1
F

= 1
Fdi↵.

+ 1
Frefl.

+ . . . To determine the di↵ractive losses

of single point defects in the mirror, calculations were carried out with the center

2 µm of the small mirror removed. As can be seen in table 4.1, this results in a

decrease in the overall finesse as well as a reduction in the number of e�ciently

propagating modes. Conversely the number of prominent modes is not a↵ected
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Figure 4.6: An optical microscope image of two 30 µm diameter mirrors cut on
the FIB. Contamination from the FIB cutting is clearly visible near the edges of
the mirror.

by a decrease in overall reflectivity. The frequency scanned measurements show

that the number of prominent higher order modes for 20 and 30 µm mirrors is

approximately consistent with the calculations for defect-less mirrors. Despite

this, we always observed considerably lower finesse with 20 µm mirrors in com-

parison to 30 µm mirrors, which would not be expected from an overall reduction

in reflectivity (or increase in surface scattering). We thus suspect that the finesse

limitation is due to scattering o↵ of small surface contaminants concentrated near

the mirror edges, e↵ectively reducing the reflectivity.

The most likely source of contaminants is the FIB cutting procedure, and

so we developed methods to protect it during this step. We experimented with

coating the mirror surface with materials that could easily be removed later, in

particular several types of photoresist and electron beam evaporated germanium.

Apparently due to the high temperatures experienced by the material during the

cutting, we found it virtually impossible to remove the photoresist near the cut

regions. Germanium, which can be quickly removed in a heated H2O2 solution,
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proved to be a better coating material. Unfortunately, the conductive nature of

this coating means that it has to be removed before the mirror is placed on the

cantilever, as it will not stick to the glass rod used for positioning. We observed

20 µm mirrors prepared in this manner that had a finesse comparable to that

obtained previously with 30 µm mirrors, although no measurable improvement

was observed in the 30 µm mirrors.

Despite the relative success of Ge coated mirrors, we still observed contamina-

tion from the FIB cutting near the edges of the mirror after the Ge was stripped

(fig. 4.6). In addition to this, the failure of the protection method to increase the

optical quality of the larger mirrors suggests that there are other problems with

the fabrication method – considerably higher finesses should be possible with the

coatings and mirror sizes used here. We believe that the limited optical quality is

caused in some way by the FIB, due either to the high local temperatures obtained

during the ion beam exposure or by some contamination of the mirror layers that

occurs even when a protective coating is present.

4.2.2 Mechanical Quality

To measure the mechanical quality of the system, we observe the thermal

vibration spectrum of the cantilever. This is done by locking the frequency of

the TDL to the side of a cavity transmission peak with a slow (10 Hz) feedback

loop. The thermal vibrations of the cantilever, with an RMS amplitude of 1.2 Å,

are immediately visible as fluctuations in the output intensity. The finesse is

intentionally reduced to ⇠150 by slight cavity misalignment to prevent transient

vibrations from unlocking the feedback loop. By monitoring the transmission

fluctuations on a spectrum analyzer, we can determine the spectral width of the

fundamental cantilever vibrational mode, centered at 12.5 kHz (fig. 4.7). The
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Figure 4.7: The spectral density of the mechanical resonance for a range of
vacuum pressures. As the background pressure is reduced, the mechanical quality
factor increases until it saturates at (1.37 ± 0.03) ⇥105 for pressures below 10�4

mbar.

mechanical quality factor is then given by:

Q =
!0

�!FWHM

. (4.2)

As expected, Q is found to be dramatically reduced in low vacuum or atmo-

spheric conditions. As the pressure is decreased, Q increases until it becomes

intrinsically limited by cantilever material/construction (table 4.2). For our sys-

tem, this happens at pressures below 10�3 mbar and gives a mechanical quality

factor of Q ⇠ 105, with some slight variation between individual devices. At

slightly higher pressures, we observe a quality factor in good agreement with the

value predicted by gas damping in the free molecular regime (eqn. 3.21). The

intrinsically limited value is consistent with the expected value for our cantilever
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Pressure Measured Q RMS Amplitude ` Q
P

1 Atm. 79.7 ± 0.3 1.6 ± 0.2 Å 100 nm < 1
1 mbar 1479 ± 8 1.8 ± 0.3 100 µm 350

5⇥10�3 mbar (7.91 ± 0.08) ⇥104 1.6 ± 0.2 20 mm 7⇥ 104

1⇥10�4 mbar (1.37 ± 0.03) ⇥105 1.2 ± 0.2 1 m 3.5⇥ 106

Table 4.2: Measured mechanical resonance properties of the cantilever at di↵erent
pressures. The approximate mean free path of the background gas, ` (eqn. 3.19),
and gas damped mechanical quality factor, Q

P

, for the free molecular regime
(eqn. 3.21) are also shown. The e↵ective gas molecule diameter is assumed to be
d ⇠ 3 Å and the background temperature is taken as 300 K.

dimensions (450 ⇥ 50 ⇥ 2 µm) [77]. It appears therefore that the mechanical Q

of the cantilever is not significantly a↵ected by the mirror attachment process.

4.3 Prospects

The thermal vibrations of this system are visible with a signal-to-noise ratio

of greater than 105, implying that optical feedback cooling [78] of the center of

mass motion of the cantilever to sub-Kelvin equivalent temperature is possible

from room temperature. This will be demonstrated experimentally in §5.

It should also be possible to observe nonlinear e↵ects due to optomechanical

coupling with the current system by modest increases in either finesse or input

power. Alternatively, if the reflectivity of the larger mirror in our current cavity

were reduced to match the e↵ective reflectivity of the tiny mirror, nonlinear e↵ects

would become significant with input powers of order 100 µW [23].

Concerning further improvement of our system, we have shown numerically

that a finesse several orders of magnitude higher should be possible with improved

mirror fabrication techniques. In order to use the system to realize a macroscopic

superposition, it also needs to be shown that mirrors can be attached to signifi-

cantly thinner and lighter cantilevers and that high mechanical quality factors can

be maintained in such cases. If this can be achieved, the most significant barriers
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to creating a massive “Schrödinger’s cat” state, as proposed in [4], will have been

overcome.
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Chapter 5

Experimental Demonstration of

Feedback Cooling

This chapter is adapted from Nature 444, 75, “Sub-kelvin optical cooling of a

micromechanical resonator,” by D. Kleckner and D. Bouwmeester [47], copyright

c
�2006 by the Nature Publishing Group.

Micromechanical resonators, when cooled down to near their ground state, can

be used to explore quantum e↵ects such as superposition and entanglement at a

macroscopic scale [3, 4, 17]. Prior to the publication of this experiment, it had been

proposed to use electronic feedback to cool a high frequency (10 MHz) resonator

to near its ground state [79]. In other work, a low frequency resonator was cooled

from room temperature to 18 K by passive optical feedback [60]. Additionally,

active optical feedback of atomic force microscope cantilevers had been used to

modify their response characteristics [80], and cooling to approximately 2 K has

been measured [81]. In even earlier work, electric feedback was used to reduce the

Brownian motion of an electrometer to an equivalent temperature of only 3 K[82].

The work here was published simultaneously with two other articles demonstrating

feedback cooling in similar systems [50, 51]. Subsequent to this publication, optical

feedback cooling was realized in a large number of optomechanical systems (e.g.
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Figure 5.1: The experimental system. Left: A diagram of the feedback mecha-
nism: a 780 nm observation laser (Obs.) is frequency locked to the optical cavity
(shown magnified at bottom) with an integrating circuit (via the laser frequency
modulation input, f. mod), using the signal from a photomultiplier tube (PMT).
This signal is also sent through a 1.25 kHz bandpass filter at 12.5 kHz and a
derivative circuit (d/dt) to provide an intensity-modulating signal (I. mod.) for
the 980 nm feedback laser (Fb.). The feedback laser is attenuated with a variable
neutral density (ND) filter to adjust the gain of the feedback. The feedback force
is exerted on the cantilever via this laser’s radiation pressure. Right: Scanning
electron microscope image of the tip of the cantilever with attached mirror.

[15, 48, 52–59]).

We demonstrate active optical feedback cooling to 135±15 mK of a microme-

chanical resonator integrated with a high-quality optical resonator. Additionally,

we show that the scheme should be applicable at cryogenic base temperatures, al-

lowing cooling to near the ground state that is required for quantum experiments

- near 100 nK for a kHz oscillator.
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5.1 Method

Using a laser tuned to the resonance fringe of a high finesse optical cavity, it is

possible to observe very small fluctuations in the length of the cavity due to Brow-

nian motion of one or both of the end mirrors. Here we use the optomechanical

system described in §4. The motion of the tiny mirror/cantilever is monitored by

measuring the transmission of the cavity at a frequency on the side of an optical

resonance peak. To do this, we use about 1 mW from a 780 nm tunable diode

laser which is locked to the resonance fringe using the integrated signal from a

photo-multiplier tube which monitors the light transmitted through the cavity

(fig. 5.1a). The time derivative of this signal is proportional to the velocity of the

cantilever tip and is used to modulate the intensity of a second, 980 nm, diode

laser focused on the cantilever approximately 100 µm away from the tiny mirror.

The radiation pressure exerted by this feedback laser counteracts the motion of

the mirror and e↵ectively provides cooling of the fundamental mode.

The e↵ective feedback gain can be varied over several orders of magnitude by

sending the feedback laser through a variable neutral density filter. The average

power in the feedback beam when it reaches the cantilever is of the order of 1

mW at the highest gain settings and proportionally lower otherwise. The mean

modulation depth of the feedback beam varies from nearly 100% to less than 5%

as the gain is increased. The vibration spectrum of the cantilever as a function of

gain is shown in fig. 5.2. The RMS thermal amplitude of the cantilever without

feedback is 1.2 ± 0.1 Å. From this value, one can calculate that the spring constant

of the cantilever is 0.15 ± 0.01 N m�1, in agreement with the manufacturer-

specified range, and the e↵ective mass of the cantilever fundamental mode is

(2.4 ± 0.2)⇥ 10�11 kg.
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Figure 5.2: Single-sided thermal vibration spectrum of the cantilever as it is
cooled. g is the dimensionless gain factor, which is the ratio of feedback to me-
chanical damping. a) Spectrum at low to moderate gains. b) Spectrum near the
background noise level for large gains. The blue curves correspond to experimen-
tal data, and the black curves to fits of a Gaussian function plus a background.
The lowest trace cannot be reliably fitted.
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5.2 Results

To determine the e↵ective gain of the feedback loop and the temperature of the

fundamental mode, we fit a Lorentzian plus a constant background to the vibration

spectrum of the cantilever for each value of feedback gain. The temperature is

determined from the area under the Lorentzian without the background, while

the gain is determined by the width of the resonance. The linewidth provides

a good measure of gain because it is directly determined by the damping rate

whereas the cantilever amplitude may be a↵ected by other sources of noise in the

feedback loop. Cooling is observed over more than three orders of magnitude. The

lowest temperature we are able to measure is 135 ± 15 mK, or a cantilever RMS

amplitude of 0.023 ± 0.002 Å, with a gain (the ratio of feedback to mechanical

damping) of g = 2490 ± 90. The lowest trace in fig. 5.2, indicating an even lower

temperature, cannot be reliably fitted owing to the laser noise floor. Since the

optical finesse is not the current limiting factor, we operate the opto-mechanical

system at a finesse of only 200, produced by slight cavity misalignment, which

makes the system less sensitive to transient vibrations.

The amplitude of the mirror motion can be calculated in the presence of feed-

back by assuming that the Langevin force (the e↵ective thermal force that main-

tains Brownian motion) remains constant while the mechanical susceptibility of

the mirror is reduced by the dissipation due to the radiation feedback pressure. It

su�ces to consider only the fundamental mode of the mirror motion, represented

by a damped harmonic oscillator. In this approximation, the power spectrum of

the mirror’s motion in the presence of feedback is given by [45]:

S
x,fb

(⌦) =
2�0kb

T0

m

1

(⌦2
� !2)2 + (1 + g)2�2

0!
2
, (5.1)

where ⌦ is the observation frequency, �0 is the intrinsic mechanical damping

constant, m is the mass of the resonator mode, ! is the resonator frequency, k
b

is Boltzmann’s constant, T0 is the bulk temperature of the resonator and g is
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5 Experimental Demonstration of Feedback Cooling

the feedback gain constant. As discussed in §2.3, increasing the gain e↵ectively

decreases the resonator temperature and increases the damping rate by a factor

1 + g.

The optical feedback scheme, when analyzed in terms of noiseless classical light

fields, can be seen as a virtual viscous force, which, unlike a real viscous force,

creates dissipation without introducing fluctuations. As discussed below, the cool-

ing temperature as demonstrated here is limited by laser frequency fluctuations.

Ultimately, optical cooling should be limited by the balance of residual heating

and quantum noise in the observation and feedback laser signals.

For a signal-to-noise ratio of one in spectral density at the peak of the me-

chanical resonance, the temperature of the cantilever resonance would be (as can

be derived from eqn. 5.1):

T
min

⇠=

s

T0m!3S
meas

2k
b

Q
, (5.2)

where S
meas

is the equivalent position noise in the interferometer measurement

and Q = !/�0 is the mechanical quality factor. For higher values of gain, the

feedback signal is mostly noise and lower temperatures can not be conclusively

demonstrated. For our experiment, the equivalent noise level is S
meas

⇡ 10�3

ÅHz1/2. This corresponds to the expected noise due to the frequency fluctuations

of a free running tunable laser diode, which are of order 103 Hz Hz�1/2 at the

resonance frequency of 12.5 kHz [83]. With the system in vacuum at pressures

of 10�6 mbar, so as to maximize the mechanical quality factor of the cantilever,

this noise level corresponds to a minimum temperature of the order of 100 mK,

in good agreement with the experimental data.

5.2.1 Temporal Response

An alternative approach to study the cooling is to analyze the temporal re-

sponse of the system by gating the signal to the feedback laser. The characteristic
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time constant for the system to reach equilibrium after the cooling is turned on

is given by:

⌧
fb

= ��1
fb

= (1 + g)�1��1
0 . (5.3)

To observe this behavior, we monitor the cantilever over many 10 s periods during

each of which the cooling is on for 3 s. Data for cooling to 1.8 ± 0.2, 4.0 ± 0.2 and

6.4 ± 0.1 K and returning to thermal equilibrium are shown in fig. 5.3. The cooling

times are measured to be 9.0 ± 0.5, 19 ± 1 and 27 ± 1 ms, respectively. The

reheating time is found to be indistinguishable for all three gains with an average

of t0 = 1.30 ± 0.05 s. This is in agreement with the linewidth of the cantilever

measured without feedback, �0 = 680 ± 50 mHz. In accordance with theory, the

ratio of the reheating to the cooling times, ⌧0/⌧fb

, and the corresponding ratio of

the spectral linewidths from the earlier measurements, �
fb

/�0, are found to be

the same as the cooling factor, T0/Tfb

, within statistical uncertainties.

5.2.2 Radiation Pressure and the Photothermal Force

In experiments where optical feedback is used on cantilevers with non-uniform

composition, radiation pressure is typically overwhelmed by the photothermal

force, which is an e↵ective force due to thermally induced bending [60, 80]. Al-

though this is not the case for single-crystal silicon cantilevers, the addition of a

tiny mirror on the tip of our cantilever should produce a weak photothermal force.

This force can be distinguished from radiation pressure by its dependence on the

intensity modulation frequency of the feedback laser. Whereas radiation pressure

is independent of modulation frequency, the photothermal force is not, because

it has a characteristic response time, ⌧ , related to the thermal relaxation time of

the cantilever. A simple model for the frequency dependence of the photothermal

force, F
pt

(⌦), gives:

F
pt

⇠=

Z

1

0

F
pt

(0)

⌧
e�

t
⌧ e�i⌦tdt =

F
pt

(0)

1 + i⌦t
(5.4)
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Figure 5.3: Temporal response of the cantilever to cooling pulses. The tempera-
ture is determined by calculating the total vibrational amplitude of the cantilever
between 12 and 13 kHz in 1 ms bins and subtracting the background. Each data
set is the average of 1,000 samples. The three sets in the left panel correspond to
cooling to 6.4, 4.0 and 1.8 K (solid lines, top to bottom). Heating is shown (right
panel) for only one data set (1.8 K), as all three are nearly coincident. The dashed
lines are fits to exponential decays, used to determine the cooled temperature and
the cooling and reheating times. Fb. refers to the feedback system.
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Figure 5.4: Response of the cantilever to an external intensity-modulated laser.
a) The amplitude of the cantilever’s motion at the driving frequency. b) The
force on the cantilever, calculated by dividing the amplitude by the mechanical
amplification of the cantilever. In both graphs the magnitude of the contributions
(ignoring phase di↵erences) of the photothermal force and radiation pressure are
shown as red and blue lines, respectively. The slight deviation of the fit from the
data at higher frequencies is due to higher order flexural modes.

where e�i!t corresponds to the input power modulation, and e�
t
⌧ is due to the

thermal relaxation. This is consistent with the frequency dependence of the pho-

tothermal force as described in previous work [80]. To test for the presence of

photothermal force in our resonator, the feedback laser was modulated at a range

of frequencies from 100 Hz to 20 kHz and the mechanical response of the can-

tilever was measured as before (fig. 5.4). The power in the feedback laser reflected

from the cantilever was determined to have a mean of 2.7±0.5 mW and a mod-

ulation amplitude of 1.0 ± 0.2 mW, independent of the modulation frequency.

This results in a radiation pressure force of F
rad

= 2P
mod

/c = 6.7± 1.3 pN (where

P
mod

is the amplitude of the power modulation and c is the speed of light) at the

modulation frequency.

If the driving frequency is su�ciently far from the cantilever resonance, the

mechanical damping constant can be ignored and the amplitude of the cantilever’s
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motion should be of the form:

A(⌦) =

�

�

�

�

�

Apt

1+i⌦t

+ A
rad

1� (⌦/!)2

�

�

�

�

�

(5.5)

where ⌦ is the driving frequency, and A
rad

and A
pt

are the magnitudes of the

motion due to the radiation pressure and photothermal force alone, at zero fre-

quency. The term in the denominator is due to mechanical amplification by the

cantilever resonance. This equation fits well to the measured response, resulting

in A
rad

= 0.470 ± 0.005 Å, A
pt

= 6.3 ± 0.2 Å and ⌧ = 30 ± 2 ms. At frequen-

cies greater than 5 kHz, radiation pressure is observed to be the dominant force

mechanism, whereas the photothermal force is relevant only at lower frequencies.

Assuming the constant force background described by A
rad

is entirely due to

radiation pressure, one can calculate the spring constant of the cantilever at the

position where the feedback laser is focused to be k = F
rad

/A
rad

= 0.14 ± 0.03 N

m�1, in agreement with the value for the spring constant obtained earlier. Near

the fundamental resonance of the cantilever, the radiation pressure is calculated

to be almost 5 times larger than the photothermal force. Additionally, the two

forces should be nearly 90� out of phase at this frequency, given that the time

constant of the photothermal force is found to be 30 ± 2 ms. Thus we conclude

the radiation pressure is responsible for virtually all of the demonstrated feedback

cooling.

When optical cooling is active, the cantilever’s motion is strongly damped,

making it undesirable for many types of measurements. In some cases this problem

can be overcome with a stroboscopic cooling scheme, where measurements are

only made in the periods when the cooling is o↵. In addition to being of direct

importance for the aforementioned massive superposition experiment, this scheme

has already been theoretically shown to be useful for high sensitivity measurements

of position and weak impulse forces [84]. Because the cooling is faster than the

heating by a factor (1 + g), a low temperature can be maintained even when the
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cooling is o↵ the majority of the time. However, maintaining low temperatures

requires that the measurement window be short; if it is, for example, one oscillation

period long, the temperature of the oscillator will have increased by�T ⇠ 2⇡T0/Q

by the end of each measurement window, meaning that cooling past this point

results in marginal improvement.

5.3 Feasibility of Cooling for Quantum Experi-

ments

We now evaluate the potential for reaching even lower temperatures for the

purpose of studying quantum e↵ects in similar systems. For simplicity, we will

consider the ideal optomechanical system discussed in §3. A system optimized for

a superposition-type experiment is on the edge of the side-band resolved regime,

and so either active or passive optical cooling should be theoretically capable of

reaching low phonon numbers. (In practice, the choice of optimal cooling scheme

will depend on the precise system parameters.)

If the optical finesse is of order F = 106, the mechanical frequency is ! =

2⇡ ⇥ 500 Hz and the mechanical quality factor is Q = 105, the readout beam for

an active cooling scheme requires a readout power on the order of 1 aW, or less

than 104 photons per second, to reduce shot noise to the appropriate level for

ground state cooling. (Similar power levels should be required for passive optical

cooling.) Assuming the thermal conductivity of the cantilever is reduced to the

one-dimensional quantum limit, the cantilever’s thermal resistivity will be on the

order of 1 K aW�1 at 1 mK base temperature [85]. Although this means that

only a very small fraction of the input power can be absorbed by the cantilever,

this is not entirely unreasonable for such a high quality optical system. The

feedback pressure could be provided by a piezo actuator on the cantilever base

or a feedback laser at a much longer wavelength; in either case the absorption
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by the cantilever can be made negligible. Furthermore, it is unclear exactly how

heating of the bulk resonator a↵ects the temperature of the fundamental mode,

as the thermal dynamics of mechanical resonators is nearly unexplored in this

temperature regime.

If one is interested in only demonstrating ground state cooling, as opposed

to using it as part of a larger experiment, it would be advantageous to use an

optomechanical system with a mechanical frequency of order MHz so that it is

well into the sideband resolved regime. This would allow one to work at slightly

higher base temperatures, as the characteristic environmentally induced decoher-

ence temperature, eqn. 2.39, is proportional to the mechanical frequency. Addi-

tionally, working well into the sideband resolved regime would make it easier to

separate and identify the Stokes sidebands, which, as noted in §2.3.2, can be used

as an unambiguous indication that ground state cooling has been achieved. The

disadvantage of this approach is that a larger pump power will be required to

o↵set the reduced optomechanical coupling constant, potentially making heating

from optical absorption more of a concern.
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Chapter 6

Di↵raction Limited Optical

Cavities

This chapter is adapted from the manuscript “Di↵raction Limited High Fi-

nesse Optical Cavities,” by D. Kleckner, W. Irvine, S. Oemrawsingh and D.

Bouwmeester, currently under review by Physical Review A.

The coupling strength of an optomechanical system is maximized when the

mass of the mechanical resonator is as small as possible and the optical finesse is

as high as possible. As a result, a detailed understanding of di↵raction induced

cavity loss is required to optimize the system, especially if single photon-single

phonon coupling is desired.

We present a new method for calculating the mode structure and losses of

di↵raction limited high finesse cavities, based on representing the optical mode

as a superposition of the optical modes of a cavity with infinitely sized mirrors.

This method is a significant improvement over the canonical di↵raction kernel

approach [86, 87], which is not suited to accurate simulations of very low loss cav-

ities. A rudimentary calculation of this type was used previously by the authors

in the context of an optomechanical system [68] and a related method was devel-

oped independently by Klaassen et al. to characterize cavities with chaotic mode
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Figure 6.1: Top: A diagram of the cavity configuration. Bottom: An example
of the e↵ect on mode profile for several types of mirror imperfection. The profile
of the fundamental mode is shown on mirror B for a cavity configuration given by
eqn. 6.8 with ⇣

b

!1 and the dashed lines indicate the mirror edges. In general,
the shape of the fundamental mode is found to deviate from a Gaussian in a way
that minimizes loss. (a) A heavily di↵raction limited cavity with ↵ = 1.75. (b)
A region of radius r

b

/2 is removed from the center of mirror B (with ↵ = 3).
(c) Wavefront error is added to mirror B (↵ = 3, ⌫

r

= 3 and � = 10�2�; see
eqn. 6.12).
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structures [88]. Using this method, it is possible to calculate the e↵ects of a wide

number of imperfections, such as finite mirror size, defocusing, wavefront error or

even removal of sections of the mirror (fig. 6.1), and to consider the advantages

of di↵erent cavity geometries.

6.1 Calculation Method

Making use of Dirac notation, we begin by expressing the optical field, | i,

as a superposition of the modes of a cavity with infinitely sized mirrors, | 
s

i, or

| i =
P

s

C
s

| 
s

i. We are interested in the eigenmodes of the optical cavity, given

by:

�
i

| 
i

i = M | 
i

i , (6.1)

where M is the “mode-mixing operator,” which gives the e↵ect on | i of a round

trip in the cavity. For a cavity with perfectly reflecting infinite size mirrors,

this matrix would be diagonal. The eigenvalues of the system, �
i

, give the field

amplitude change per round trip of the corresponding eigenmode, | 
i

i.

The problem is now reduced to choosing an convenient set of basis states and

calculating the elements of the mixing operator in this basis. Although in principle

we need not do so, working in the paraxial approximation greatly simplifies the

calculation. This also allows us to characterize many cavity geometries via a small

number of easily computed quantities. For optical cavities with radial symmetry,

a convenient set of basis states is provided by the Laguerre-Gaussian modes:

 ±

n,m

(⇢,�, ⇣) = N⇢|m|L|m|

n

⇥

2⇢2
⇤

e�⇢
2
±i✓(⇢,⇣)+im� (6.2)

✓(⇢, ⇣) = �⇣⇢2 + (2n+|m|+1) tan�1⇣ (6.3)

where ⇢ = r/w(⇣) and ⇣ = z/z0 are dimensionless radial and axial position coor-

dinates, w(⇣) = w0

p

1 + ⇣2 is the mode radius, z0 = kw2
0/2 is the Rayleigh range,
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n is the radial mode number, m is the helicity (|m|  n) and L
|m|

n

is a generalized

Laguerre polynomial. The ± indicates the direction of propagation and N
n,m

=
q

2|m|+1
n!

⇡(n+|m|)!
is the normalization constant that ensures

RR

⇢ d⇢ d� | (⇣)|2 = 1.

The longitudinal phase shift of the traveling electromagnetic field, exp[±ikz], has

been omitted and will be treated separately. The paraxial approximation should

be valid as long as the waist of the cavity mode is larger than a wavelength.

We label the two end mirrors of the cavity A and B, each of which has a

corresponding radius r
a/b

, radius of curvature R
a/b

and location along the axis of

symmetry z
a/b

, which is defined relative to the mode waist (fig. 6.1). We then split

the mode-mixing matrix in to two pieces, one for each end mirror. The elements

of these matrices are given by mode overlap integrals taken over the finite extent

of the mirrors:

A
s,t

=

Z

⇢a

0

Z 2⇡

0

⇢ d⇢ d�  +
s

 �⇤
t

e�2ik�a(⇢,�)

�

�

�

�

⇣= za
z0

(6.4)

B
s,t

=

Z

⇢b

0

Z 2⇡

0

⇢ d⇢ d�  �
s

 +⇤
t

e+2ik�b(⇢,�)

�

�

�

�

⇣=
zb
z0

(6.5)

M = exp [2ikL] A⇥ B, (6.6)

where s and t refer to one of the basis states and the upper bound to the integration

over ⇢ is given by ⇢
a/b

= r
a/b

/w(⇣
a/b

). The �
a/b

term represents the deviation of

each end mirror from planar – the deviation of a mirror with radius of curvature

R is given by �(r) ⇠= r

2

2R

. In the equation for the round trip mixing matrix, M,

we have added the overall length induced phase shift which we omitted in the

definition of the basis states.

From eqn. 6.2, it can be shown that the radius of curvature of the mode

wavefront is given by R
 

(⇣) = z0 (⇣ + ⇣�1). If this curvature is matched to the

curvature of the mirror there will be no overall radial phase shift in the mixing

integral; we will refer to this case as a cavity which is “in focus.” Note that for a

radially symmetric cavity, the � integral is trivial, reducing to a Kronecker delta
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6 Di↵raction Limited Optical Cavities

in m. This means helicity is preserved in these cavities, and modes with di↵erent

values of m can be calculated independently.

In principle, the mixing matrix M acts on an infinite-dimensional mode space

and its eigenmodes are exact solutions. Using a finite set of modes produces

a perturbative solution; in this case the accuracy is dramatically improved if the

basis states match the true fundamental modes of the cavity as closely as possible.

When using the Laguerre-Gaussian modes, the basis states are determined by the

(arbitrary) location of the z = 0 plane relative to the mirrors and size of the mode

waist, w0, where any set of values will create an infinite set of orthogonal modes.

As a rule of thumb, a su�ciently accurate choice can be made by choosing the

basis which maximizes |M0,0|. For simple geometries, the choice of basis states is

readily apparent, but for more complicated cases it is often more convenient to

optimize them numerically.

The power loss per round trip of each mode is given by �
i

= 1� |�
i

|

2. Although

a mode is only in resonance when �
i

is real and positive, the phase shift can be

corrected by a small o↵set to k, which will have negligible impact on the mode

provided kL� 1. In this sense the complex phase of �
i

gives the relative detuning

of the di↵erent modes, which may be useful in analyzing the modes of real optical

cavities.

Since we are interested in the good cavity limit, we will take the optical finesse

to be F
i

⇠= 2⇡/�
i

. We ignore any losses due to the imperfect bulk reflectivity of

the mirror, which would simply multiply all the elements of M by a constant. The

resulting reduction in finesse is given by:

1

F
i

=
1

F
M,i

+
1

F
R

=
1

F
M,i

+
1�R

⇡
, (6.7)

where F
M,i

is the finesse calculated by a mode-mixing calculation with perfect

mirrors, F
R

= ⇡/(1 � R) is the finesse limited by the bulk reflectivity alone and

R is the bulk reflectivity, assumed to be identical for the two mirrors.

Typically, simulating modes up to n = 15 is accurate to a few percent. In
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6 Di↵raction Limited Optical Cavities

practice, we compute the integrals up to n = 30 numerically using Romberg’s

method with a 1025 point array of double precision floating point values. This is

good enough to accurately simulate cavities up to F . 1010, limited by the floating

point precision. Note that this limit is considerably better than the experimental

limit for real cavities imposed by mirror reflectivity, which is of order F . 106 in

the visible to near infrared regime [66].

6.2 Cavity Length

We now demonstrate the utility of this method by using it on a variety of

cavity geometries relevant to real experiments. First, to determine the e↵ect of

cavity length, we consider an “in focus” system where we fix one mirror at the

mode waist:

r
a

= ⇢
a

w0 z
a

= 0 R
a

= 1

r
b

= ⇢
b

w(⇣
b

) z
b

= L = ⇣
b

z0 R
b

= R
 

(⇣
b

)
(6.8)

Setting ⇢
a

= ⇢
b

= ↵ implicitly chooses the waist size, w0, which maximizes

|M0,0|, and so corresponds to the optimal basis state choice for the calculation.

For such a cavity, the mixing matrices are identical apart from the Gouy phase,

(2n+|m|+1) tan�1⇣
b

. This is expected; in this formalism, the Gouy phase com-

pletely describes the di↵erence between the near field (z ⌧ z0) and far field regime

(z � z0).

The plot of the finesse of the first several modes as a function of dimensionless

length, ⇣
b

, is shown in fig. 6.2 for ↵ =2.5, along with the finesse that would

be expected for a unmodified Laguerre Gaussian mode (calculated from the self-

overlap of single modes). Whenever a mode becomes resonant with a higher

order mode (i.e. � has the same complex phase for both modes), we find a strong

enhancement of the finesse. This e↵ect is analogous to a mode anti-crossing in

a coupled oscillator system; it is only when the two modes are in resonance that
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Figure 6.2: Top: The finesse of the first several zero helicity modes as a function
of cavity length. The dotted lines show the finesse expected for a simple Laguerre
Gaussian mode, which does not depend on the cavity length. The cavity geometry
is given by eqn. 6.8 with ↵ = 2.5. The top axis shows the location of inter-mode
resonances as given by j = ⇡/ tan ⇣

b

. Bottom Left: The thick lines show the
finesse as a function of ↵ for a cavity with ⇣

b

!1. The dotted, thin and dashed
lines correspond to finite length cavities with L = 105� and r

b

/L = 0.03, 0.1 and
0.3, respectively. Bottom Right: The finesse of a defocused infinite length cavity
as a function of the dimensionless defocusing parameter ✏.
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significant mixing is possible, which will generally increase the finesse of the lower

order mode. Conversely, if two modes are just out of resonance the mode-mixing

process is frustrated, in some cases reducing the finesse slightly below what would

be expected for a simple Laguerre Gaussian mode. For this cavity geometry, a

resonance occurs whenever j ⇥ tan�1 ⇣
b

= ⇡, where j is an integer or rational

fraction. For very long cavities (L � z0), j ! 2 and the finesse saturates at

a dramatically increased value. Similarly for very short cavities, (L ⌧ z0), the

Gouy shift goes to 0 and all the modes become nearly resonant, again increasing

the finesse.

6.3 Long Cavities

The cavities used in optomechanical systems are generally composed of one

small flat mirror located at the center of radius of curvature of a much larger

concave mirror. This cavity, assuming it is in focus, is of the same form as eqn. 6.8,

but in the limit L� z0 and hence R
b

! L. In this case ↵ is given by:

↵ =

r

⇡r
a

r
b

�L
, (6.9)

which can be determined from eqn. 6.2. The finesse as a function of ↵ for a cavity

in the L� z0 limit is shown in fig. 6.2.

6.3.1 Defocusing/Length Errors

For a real cavity, it is di�cult to ensure that the smaller end mirror is exactly

at the center of radius of curvature of the larger end mirror, in which case the mode

wavefronts will not be perfectly matched to the end mirrors. We can calculate the

e↵ect of this defocusing by fixing R
b

while adding a small o↵set to ⇣
b

:

✏ = �⇣
b

=
R

b

� L

z0

, (6.10)
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which results in a quadratic phase shift in ⇢ for the overlap integrals of B. The

finesse as a function of ↵ and ✏ is shown in fig. 6.2. We find that high finesse

cavities are extremely sensitive to length errors; for realistic cavity geometries z0

is 10 � 103 µm, requiring the cavity length to be adjusted with an accuracy of

1�100 nm to obtain F > 106. In practice, the loss depends only on the magnitude

of ✏ and not on the sign.

6.3.2 Dielectric Mirror Penetration Depth

Because the ultra-high reflectivity dielectric mirrors used in low loss cavities

have a penetration depth of order wavelength, this suggests these cavities might

experience loss due to an e↵ective defocusing. Although it would be di�cult to

calculate this e↵ect in the formalism presented here, we can estimate the order of

magnitude of this e↵ect by calculating the angle-dependent phase shift of this type

of mirror. The lowest loss mirrors are generally composed of alternating layers

of Ta2O5 (n = 2.1) and SiO2 (n = 1.45), with each layer �/4n thick. Consider

a dielectric mirror composed of 20 layers of each material; a cavity made from

these mirrors would have a reflectivity limited finesse of slightly over 106. The

phase shift of the reflected light, �✓ as a function of angle of incidence, ', can be

calculated using the thin film matrix method [28], and to fourth order is given by:

�✓ ⇠= �0.794 '2 +

(

0.736 '4 (s polarization)

�0.355 '4 (p polarization)
(6.11)

Apart from an overall phase shift, to order '2 the penetration depth only

causes an e↵ective change of the z position of the mirror, which can be trivially

compensated for. The '4 term provides an uncorrectable phase shift, but the

maximum practical numerical aperture (r
b

/L) for a high quality optical cavity

corresponds to ' . 1
10

. Thus the magnitude of this phase shift is less than 10�4

at the edge of the mirror. We note that in the analysis of defocusing above,
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the parameter ✏ corresponds to the phase shift at the characteristic radius of the

fundamental mode (⇢ = 1). By comparison, we conclude that any e↵ect from

penetration depth should be negligible for realistic cavities (F . 106, rb
L

. 1
10

).

6.3.3 Roughness and Wavefront Error

We now consider the e↵ects of mirror surface imperfections. Micro-roughness,

which here we will take to mean roughness on scales much smaller than the

mode, can be treated as an overall reduction in the mirror reflectivity. If the

surface roughness has an RMS amplitude �, the scattering loss is given by �
R

=

1�e�(4⇡�/�)2 [89]. The best commercially available mirrors are super-polished to a

micro-roughness of better than 1 Å(on transverse scales between microns and mil-

limeters), allowing finesses of 106 to be realized in the visible regime [66]. On the

other hand, these mirrors may have long scale surface height imperfections, known

as “wavefront error”, ranging in amplitude from of order 10 nm for conventional

optics to 1 Å for use in the extreme UV.

For a micro-optomechanical system, the wavefront error of the conventionally

sized mirror, B, is the most relevant. The mirror on the optomechanical system,

A, is typically fabricated on a semiconductor substrate, which is su�ciently flat

over scales of tens of microns. We simulate wavefront error by adding random

fluctuations to the �
b

, in a cavity where we again assume L � z0. To examine

the e↵ect of scale, we generate normally distributed random noise with a Gaussian

transverse scaling function given by:

Ã
kr = exp

"

�8

✓

1�
k

r

r
b

⇡⌫
r

◆2
#

, (6.12)

where k
r

is the wave vector of a roughness transverse frequency component, ⌫
r

is the mean roughness frequency relative to the mirror diameter and the factor

8 in the exponent gives the relative width of the noise in k-space – a smaller

value gives randomness with a large variation in scale, while a larger value gives
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a result which does not possess the desired randomness. The resulting profile is

normalized to the desired RMS amplitude, �. Some example computed wavefront

maps are shown in fig. 6.3.

With roughness on only one mirror, the optimal basis states are no longer

given by ⇢
a

= ⇢
b

. However, for L � z0, ⇢a

⇢
b

= ↵2, where as before ↵ is given

by eqn. 6.9 and the individual values can be numerically optimized to maximize

|M0,0|. Because random roughness breaks cylindrical symmetry it is necessary to

do the overlap integral in two dimensions and calculate mixing between di↵ering

values of m. This greatly increases the computational complexity of the calcu-

lation, and so we only simulate modes for which n, m < 20. We also note that

long scale roughness may slightly defocus the cavity; presumably in practice an

experimenter would adjust the cavity length to maximize finesse. We account for

this by numerically maximizing the finesse as a function of the position of mirror

A, which can be done without recalculating B.

Results of calculations as a function of ⌫
r

, ↵ and � are shown in fig. 6.3.

When the roughness scale is comparable to the mode size the finesse approaches

a value consistent with micro-roughness; this is because the mode mixing couples

the fundamental to much higher order modes, which are not supported by the

cavity. As ↵ is increased or ⌫
r

is decreased, the e↵ect of wavefront distortion

is dramatically reduced. In this limit the wavefront error only induces mixing

in the lower order modes, which are all relatively low loss. For this reason, the

e↵ects of wavefront error are largely irrelevant in cavities with two conventionally

sized mirrors (where typically ↵ � 1). Unfortunately having a large mode size

on one end of the cavity is essential to allow the smallest possible mirror on

the other, posing a challenge for achieving high finesse with conventional micro-

optomechanical systems.
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Figure 6.3: Simulated cavity finesse for the fundamental mode for rough mirrors
as a function of relative roughness frequency. The large fluctuations in F are due
to the random nature of the roughness profile. The expected results for micro-
roughness of the same RMS amplitude are shown as dotted lines. Example rough-
ness profiles are shown at right. As the roughness scale becomes su�ciently small
(large ⌫

r

), the roughness converges on the value expected for micro-roughness.
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6.4 Short Cavities

As noted previously, a finesse enhancement is also observed for very short cav-

ities, L ⌧ z0, making them an attractive candidate for optomechanical systems.

For simplicity we will consider a symmetric cavity, given by:

r
a/b

= r z
a/b

= ±L/2 R
a/b

= ±⌘ r

2

�

(6.13)

Because of the complicated interaction between mode waist w0 and wavefront

curvature in the near-field regime, there is no clear definition of an “in focus”

cavity. As a result, we characterize the mirror curvature with the dimensionless

parameter ⌘ = R�

r

2 . If we fix the z = 0 plane at the center of the cavity, the ratio of

mirror to mode size (as determined from the definition of the Laguerre Gaussian

modes) is given by:

r
a/b

w(z
a/b

)
= ⇢

a/b

=
r
p

�L

s

4⇡Lz0

L2 + 4z2
0

. (6.14)

The optimal basis state is then determined by numerically optimizing |M0,0| as

a function of z0. (Unlike in the long cavity case, increasing z0, or equivalently

decreasing w0, reduces the size of the mode size on both mirrors but increases the

wavefront mismatch; the resulting |M0,0| overlap integral is complex enough that

the optimum does not possess a closed form solution to the best of our knowledge.)

For this cavity geometry, we find that the fundamental mode shape deviates more

from a simple Gaussian than was previously the case, requiring calculation of

modes up to n = 100 to get accurate results. This deviation is the result of many

higher order modes being nearly in resonance simultaneously – this is only possible

when the cavity is in the near field regime.

The results (fig. 6.4) show that even a small amount of curvature on the mirrors

can dramatically increase the finesse in comparison to flat mirrors. In practice,

the required radius of curvature for this e↵ect is of order 1 mm for L ⇠ � ⇠ 1µm,
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Figure 6.4: Left: The finesse of the fundamental mode for a short cavity with
symmetric mirrors. The solid lines are the results for paraxial approximations
calculations including up to n = 100. The fluctuations at small radii are an
artifact due to the finite number of modes in the calculation. The results of
FDTD simulations for flat mirrors are also shown. Right: A diagram of the
short cavity mirror arrangement, also showing the FDTD simulated volume.
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far smaller than is obtainable by conventional optical polishing. Despite this, the

intrinsic stress in ion-beam deposited dielectric mirrors is high enough to produce

this degree of curvature if the mirrors are free standing [90].

6.4.1 Comparison to FDTD Simulations

For cavities with L ⇠ � it is possible to do a full FDTD simulation of the

electromagnetic field, owing to the small simulation volume. To do this we use

the commercial software package Lumerical FDTD⇤. The mirrors are represented

by perfectly conducting discs of infinitesimal thickness. The simulation volume

is indicated in fig. 6.4, and we use a uniform simulation mesh with a spacing of

25 nm. Due to mesh size limitations, it is only possible to simulate flat mirrors

accurately. The simulated cavity is excited with a short pulse centered at the ex-

pected fundamental frequency and the resulting response of the electric field is fit

to a superposition of several exponentially decaying sine waves which correspond

to the di↵erent transverse modes. The results for the highest finesse modes in

cavities of length � and �/2 and mirror radii of 3-10 � are plotted in fig. 6.4 along

with results from mode-mixing calculations. The results of the simulations agree

with our previous results to within 5-10%, which is remarkable considering that

the mode-mixing calculations are done in the paraxial approximation and w0 ⇠ �.

Most of the di↵erence is likely attributable to edge e↵ects, which can cause large

angle scattering that is not properly accounted for in a calculation based on the

paraxial approximation.

⇤From Lumerical Solutions, Inc.
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Chapter 7

Building a Better

Optomechanical System

Although our prototype system (§4 and §5) was useful for demonstrating the

basics of an optomechanical system, it falls significantly short of the criteria for

demonstrating true quantum phenomena. The biggest shortcoming is the opto-

mechanical coupling strength: for our prototype system we find that the approx-

imate single-photon to single-phonon coupling rate is g/�
a

. 10�4, and other

demonstrated optomechanical systems are in a similar regime. This is due not

only to the relatively low finesse, but also to the small size of the ground state

wavepacket, x0, which is determined by the mass and frequency of the microme-

chanical element. From our analysis in §3, we see that there is room for three

orders of magnitude improvement in the finesse and another order of magnitude

in the ground state wavepacket size. The method used to make the prototype

micro-optomechanical resonator is apparently limited by the e↵ect of the FIB on

the tiny mirror, and commercial AFM cantilevers do not exist with su�ciently low

mass and frequency. Both issues can be addressed by developing a new fabrication

process using standard semiconductor fabrication procedures. In §7.1 we discuss

a new process we have developed for making micro-optomechanical systems in
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the UCSB cleanroom, fabricating both the mirrors and the mechanical resonators

with a monolithic process.

If we wish to operate an optomechanical cavity with significant higher finesse,

a number of other aspects of the system must be improved as well, including the

wavefront error of the macroscopic end mirror and stability of the laser system

and cavity mount. The improvements we have made to the overall system are

discussed in §7.2. We also discuss our initial progress towards building a system

that can operate at milliKelvin temperatures, as required for demonstrations of

quantum e↵ects.

7.1 Fabrication of the Micro-Optomechanical

System

In a classic optomechanical system, the micromechanical element has two ba-

sic parts: the mirror and the resonator. The simplest possible design is to make

the mechanical resonator and the mirror out of the same material. Unfortu-

nately, this requires this material to have simultaneously ideal mechanical and

optical properties. Using a dielectric mirror as the mechanical resonator results in

low mechanical quality factors; for example, a standard SiO2/Ta2O5 DBR mirror

etched into a resonator produces a Q in the range of 104 [50]. In general, mechan-

ical resonators comprised of layered materials are found to have low Q factors,

apparently owing to loss at the material interfaces. Even if this could be avoided,

the mass and frequency of any resonator made from mirror material is expected

to be high due to the thickness of high quality mirrors (⇠ 5µm); conventional

micromechanical resonators can easily be made an order of magnitude thinner,

resulting in a much larger ground state wavepacket size.

Another approach is to use a single layer of dielectric material, approximately

�/4n thick, placed in the middle of a high finesse cavity; this is the previously
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mentioned “membrane in the middle” approach. If aligned properly, the displace-

ment of the membrane shifts the cavity modes in a way analogous to moving an

end mirror, resulting in a functionally identical system. This system has been re-

alized with commercially available Si3N4 membranes, resulting in relatively high

optical quality and remarkably high mechanical Q factors, of order 106–107 at low

temperatures [71]. The main disadvantage of this approach is that the finesse of

the cavity is limited by the Si3N4 optical quality; demonstrated losses are higher

than in the best dielectric mirrors, although there is room for improvement by al-

tering the growth method. Unfortunately, the high mechanical Q is only present

in tensed membranes, making it nearly impossible to achieve the low frequency

required for e�cient single photon-phonon coupling (§3.1). From a practical per-

spective, the three optical elements in the membrane approach make the system

considerably more di�cult to align. Although this is not a significant problem in

ambient conditions, when working in a vacuum/cryogenic environment this is a

significant disadvantage.

Considering these limitations, the most promising micro-optomechanical sys-

tem for a superposition-type experiment at present is a small piece of SiO2/Ta2O5

DBR mirror attached to a very thin resonator made from a material chosen for

its low mechanical loss. As before, this will be coupled with a macroscopic curved

mirror to form the optical cavity.

In general, to make the system with standard semiconductor fabrication tech-

niques, one would start with a substrate/carrier wafer onto which the mirror and

resonator layers are deposited/grown and etched into the desired shape. The res-

onator/mirror will be then be released from the substrate by etching away the

carrier wafer underneath it. In all steps it is important to consider the interplay

of di↵erent materials and their response to the various etch processes. For our de-

vices, the highest priority is achieving high optical quality, and so we must choose

etch processes that do not harm SiO2/Ta2O5, or find a way to protect the mirror
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during these processes.

In practice, the following issues are the most challenging:

• Whatever the mirror is deposited on must have atomic level roughness. This

means either that the mirror is deposited before the mechanical material, on

a bare semiconductor wafer, or the mechanical material must have extremely

low roughness as deposited/grown (� . 1 Å).

• We must be able to define/etch the mirror and resonator separately without

damaging one another, especially the front surface of the mirror.

• We need a way to release the optomechanical system from the substrate

without damaging the mirror/resonator.

7.1.1 Silicon Nitride as a Mechanical Material

Si3N4 is an attractive choice for the mechanical material in a micro-fabricated

resonator: tensed membranes have been demonstrated with very high Q factors,

it can be easily deposited and it has well characterized etch properties that are

di↵erent from both the mirror materials and the most common substrate material,

silicon. We outline the three main process steps below:

Deposition/Etching of the Silicon Nitride

Si3N4 can be deposited by a number of methods, the most common being

PECVD (plasma enhanced chemical vapor deposition) and LPCVD (low pressure

chemical vapor deposition). Although dependent on the exact deposition param-

eters, LPCVD and PECVD usually produce films with tensile stress, which is

required for making cross or bridge type resonators with high mechanical quality

factors (compressive stress makes these types of resonators buckle, resulting in

extremely poor and di�cult to control mechanical properties). LPCVD has the

advantage of producing smoother (� ⇠ 1 Å) films, but the intrinsic stress is very
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Material TMAH BHF ICP ICP CF4

(10%, 85 C) (original) (modified) Plasma
Silicon 600 slow - ⇠ 35 -
PECVD Si3N4 0.27 33 340 ⇠ 200 160
SiO2 (IBD) 0.73 340 240 ⇠ 145 24
Ta2O5 (IBD) 0.04 < 0.01 165 ⇠ 100 32
Mirror (optical) - - 350 210 -
Resist (various) fast ⇠ 0 150 75 -

Table 7.1: Measured rates in nm/min for etchants and materials used in the
micro-fabrication process. Entries marked with a “-” were not measured, but
are not necessarily 0. Entries with a “⇠” should be regarded as approximate.
Photoresist rates should also be regarded as approximate, as they were measured
in several di↵erent resists, as relevant for each step of the process. The rates for
the TMAH are measured in our specific setup, with the water bath temperature
set at 85 C. By comparison with published results [91], we expect the sample
temperature is in the range 75–80 C. The “optical rate” refers to the physical
etch rate times the index of refraction – this rate is almost identical for Ta2O5

and SiO2 in the CHF3 ICP etch (by fortunate coincidence).

Original Recipe Improved Recipe
(“SiOEtch”)

CHF3 Flow Rate 40 cm3/min 40 cm3/min
Ambient Pressure 0.5 Pa 0.5 Pa
RF Source 900 W 900 W
RF Forward Bias 200 W 100 W

Table 7.2: The process parameters of the original and modified ICP recipes used
to etch the mirror. The reduced forward bias in the improved recipe reduces the
etch rate but eliminates trenching almost entirely.
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high, of order 1 GPa [92], making it suitable only for relatively high frequency

systems. Although the tension can be controlled by altering the film stoichiome-

try [93], it will likely a↵ect the optical quality. LPCVD also has the disadvantage

that the deposition chamber is susceptible to contamination; this means clean-

room facilities generally only permit completely unprocessed wafers to be coated

in LPCVD chambers. PECVD produces a somewhat lower quality film, with

roughness on the order of 1 nm, but with a stress on the order of 200 MPa and

with has fewer contamination concerns [94].

At present we have only used PECVD Si3N4 as a mechanical material, although

it would be relatively straightforward to switch to LPCVD films if required. In

either case, the Si3N4 can be etched in a CF4 plasma etcher, see table 7.1 for etch

rates measured on the Technics PE-IIA Plasma etcher in the UCSB cleanroom.

We use a thin photoresist layer as the etch mask, with the resonator patterns

defined either by contact or projection lithography. Although contact lithography

is acceptable for resonators with arms of width 5 µm or larger, we find it to be

unreliable for 2 µm wide resonator arms.

As discussed below, we also deposit and etch Si3N4 on the back side of the

wafer to act as the mask for the deep silicon etch. This also has the advantage of

balancing the stress of the Si3N4 on the front side of the wafer, eliminating most

of the substrate warping that is quite prominent on 100 µm wafers.

Deposition/Etching of the Mirror

Mirror deposition is done on an ion-beam deposition (IBD) system; this is the

only established method for producing ultra-high reflectivity mirrors. Deposition

is possible on conventional glass mirror substrates or semiconductor wafers; either

bare wafers or those coated with Si3N4, etc. At present we have only experimented

with conventional SiO2/Ta2O5 mirrors, although several other dielectric materials

can be easily deposited and are occasionally used for DBR mirrors. In particular,
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the Ta2O5 layers could be replaced with TiO2, which has a lower density and

higher index. This would significantly reduce the thickness and mass of the mirror,

although it may also reduce the maximum achievable finesse or react poorly to

the other process steps.

We have both deposited the mirrors ourselves (on the Veeco Nexus IBD System

in the UCSB cleanroom) and outsourced the deposition to commercial companies

(Advanced Thin Films, Inc. and Coastline Optics, Inc.). Although the capability

to deposit our own mirrors has been instrumental in developing the fabrication

process, our system produces a worse film quality than has been demonstrated

commercially; the films grown in our IBD apparently limit the finesse to F . 104

at the present time⇤. This may be due either to the wide variety of coatings and

materials used in the UCSB IBD system or non-optimal process parameters. Com-

mercial companies extensively characterize their films and restrict the exposure

of their chamber to di↵erent materials to maintain purity, producing generally

higher quality films.

To etch the mirror, we use a CHF3 plasma in a Panasonic E640 inductively

coupled plasma etcher (ICP). This etch is similar to that used for the Si3N4, but

done in a much more controlled environment. Because the etch action is primarily

chemical, and not physical, this process is far gentler than cutting with a focused

ion beam. In particular, there is no noticeable damage at the edges of etched

mirrors, and we have no problems removing the photoresist masking layers after

the etch, indicating that the mirror is never exposed to high temperatures.

With normal etching parameters (table 7.2), we found this etch to be suscep-

tible to “trenching,” where ions bouncing o↵ the sloped sidewalls at the edge of

⇤ This was tested by depositing mirrors on two superpolished substrates and making them
into a confocal Fabry-Pérot cavity. The measured finesse was slightly over 10,000 at a pump
wavelength 1064 nm. By comparison, a direct measure of mirror transmission and a thin-
film calculation of the same dielectric stack indicated it should have been at least a factor of
five higher. Because we do not expect this cavity to be limited by wavefront errors or mirror
alignment, we attribute the loss to scattering or absorption in the mirror layers, either of which
can result from impurities in the film deposition.
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an etched region are concentrated around the masked features. In our case, if

the Si3N4 layer is underneath the mirror this will cause it to be etched through

completely in a ring around the mirror (fig. 7.1). This causes the mirror to com-

pletely fall o↵ the resonator when it is released – fortunately this problem can be

resolved by altering the etch conditions. We find that reducing the forward RF

bias of the etch chamber by a factor of two eliminates this problem completely,

at the expense of a somewhat slower etch rate.

Because of the extreme depth of the etch and the relatively poor selectivity of

CHF3 plasma, a photoresist layer of at least 5 µm thickness must be used as the

mask. We use contact lithography to define the mirror pattern; the mirrors are

over 10 µm in size and so feature resolution is not an issue.

Releasing the sample

Because we would like to have optical access to both sides of the resonator,

we need to etch completely through the substrate wafer. There are a number of

methods for doing deep silicon etches, but for simplicity we chose an anisotropic

silicon wet etch. In general, anisotropic silicon etches have a much slower etch

rate for the [111] plane of silicon. As shown in fig. 7.2, this e↵ect can be used to

undercut only selected features on the surface of a wafer. To exploit this e↵ect,

we designed cross resonators whose arms are at a 45� angle relative to the sides of

the square substrate hole, as can be seen on the image of our photomask, fig. 7.3.

The same trick can be used to fabricate cantilever-type resonators. In general, we

have found cantilever resonators have a lower mechanical quality factor compared

to bridge or cross resonators, on the order of 103–104; this is expected when the

Si3N4 membranes are no longer under tension.

We used TMAH (tetramethylammonium hydroxide, (CH3)4NOH) as our an-

isotropic silicon etchant. Although KOH (potassium hydroxide) is more common,

TMAH has a better selectivity for the resonator and mirror materials [91]. It is
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Figure 7.1: A scanning electron microscope image of a ICP etched sample cleaved
through the middle of a mirror. A large amount of trenching is visible next to the
edge of the etched region.
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Figure 7.2: The geometry of an anisotropic silicon etch. Left: A diagram of some
common crystal planes. The shaded plane, [111], indicates the slow direction for
typical anisotropic silicon etches (for example, KOH or TMAH). Right: The e↵ect
of etch mask shape on undercutting for a standard [100] silicon wafer. The amount
of undercutting of a masked edge depends on the angle of the edge relative to the
crystal planes: edges parallel to [010] or [001] will undercut, generally leaving a
square pit with [111] sidewalls. The side view (below) shows the geometry of the
etched pit. The exposed [111] planes have an angle of 57.4� with respect to the
wafer surface.

110



7 Building a Better Optomechanical System

Figure 7.3: The photomask used in the original process. All device layers are on
a single mask. Finished sets of devices are 14.5 mm square, with 9 devices in the
central region. Top, left and right: the mechanical resonator (Si3N4) layers.
The crosses have diagonals of 2, 1 and 0.5 mm. The left and right sections have
di↵erent width arms; 2, 5 and 10 µm in the left section and 10, 20 and 50 µm on
the right. Center Left: the backside layer, which defines the deep etch windows.
Center Right: the mirror layer. The mirrors are 80 µm diameter. Bottom: the
edge bead removal layer.
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useful to keep the wafer etch time as short as possible to minimize damage to the

resonator layers and undercutting of the wafer at the base of the resonator†. To

this end, we use thin (100 µm) silicon wafers and do the deep etch from both sides

simultaneously. To make a back-side etch mask, we deposit Si3N4 and pattern

square holes that match the front-side pattern. To ensure the sides are matched,

we use a contact lithography system with an IR camera and light source for which

the wafer is transparent.

7.1.2 Process Order and Results

With the steps described above, it is possible to deposit the Si3N4 mechani-

cal layer either on top or beneath the mirror layer. Our original approach was

to process the mechanical layer first, based on the theory that potential mirror

damage would be minimized if it was deposited as late in the fabrication process

as possible. The detailed fabrication steps for this process are listed in §B.1. We

were able to produce working resonators in this manner, although we noticed a

significant fraction of the mirrors had small pieces of dirt or other defects on them.

We attribute this to the fact that the front surface of the mirror is exposed during

a number of processing steps and because the sample is air dried after the final

etch (a normal rapid dry with compressed N2 will definitely destroy the fragile mi-

cromechanical resonators). In some cases we also noticed that defects in the Si3N4

underneath the mirror carried through to the mirror layer when it was deposited

on top.

† Significant undercutting where the resonator connects to the substrate will reduce the Q

factor through what is known as clamping loss. Clamping loss occurs when the micromechanical
resonator’s mechanical vibration is partially transmitted into the substrate, where it becomes
a traveling wave and e↵ectively radiated away. Because the resonator is almost always much
thinner than the substrate, there is an e↵ective impedance (speed of sound) mismatch which
limits the energy loss; a large undercut section can act as an impedance matcher. Unfortunately
it is rather di�cult to estimate the magnitude of this e↵ect, but as long as the undercut region is
much smaller than the other resonator scales it most likely is not the dominant loss mechanism
[95].
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Despite this, the best devices showed finesses in the same range as our proto-

type system, F  2000, although it is somewhat unclear what the limiting factor

was (see below). Mechanical quality factors were in the range of Q ⇠ 105, as

expected for tensed Si3N4 at room temperature, and at least an order of mag-

nitude of improvement can be expected at cryogenic temperatures [15, 71]. The

fundamental mechanical frequencies of tested devices was in the range 103–104

kHz for cross lengths of between 0.5 and 2 mm, arms of width 2–50 µm, thick-

ness 300–400 nm and 80 µm diameter mirrors (the frequency of individual devices

agreed closely with calculations based on §A.2). The relatively large mirror size

was required due to the larger radius of curvature macroscopic mirrors presently

used at the operation wavelength of 1064 nm; we are currently in the process of

acquiring larger mirrors that will allow tiny mirror sizes of less than 30 µm.

We subsequently modified the fabrication process to address the complica-

tions with our original process. Most importantly, we now deposit the mirror

layer first, before any other processing steps. This has the important practical

advantage of allowing the coatings to be done by outside companies, which are

generally unwilling to put partially processed wafers in ultra-clean deposition sys-

tems. Furthermore, this also means the front surface of the mirror is facing down

on the carrier wafer, and is protected during all processing steps up until the

sample is released. Further protection can be obtained by making the first mir-

ror layer from SiO2
‡, and then stripping it in bu↵ered hydrofluoric acid (BHF)

after the release etch. Due to the extraordinarily low etch rate of Ta2O5 in BHF

(table 7.1), we expect that not even a mono-layer of material would be removed

in the one minute etch used to strip the top SiO2 layer – for this reason we are

confident the resulting surface should be clean and atomically smooth.

Finally, we note that the surface tension of water will often break thin res-

‡ The front layer is usually the high index material, in this case Ta
2

O
5

. Adding an extra low
index layer on top actually reduces the reflectivity due to the phase shift of the light reflected
from the first interface.
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Figure 7.4: Two devices made using the improved fabrication process. Both
mechanical resonators are composed of 300 nm thick Si3N4, with 80 µm mirrors
in the center. Some scratches are visible on the “top” of the mirror (facing up in
the image), which is actually the back-side of the device from the point of view of
an optical cavity. These scratches, which are not present on all samples, should
have negligible e↵ect on the cavity finesse because they are not on the active mirror
surface. Left: A cross resonator which has 500 µm length (diagonally) and 10
µm wide arms. Right: Another resonator, with 2 mm length and 2 µm wide
arms. Despite the extreme aspect ratio, these devices can be reliably fabricated
if a critical point dry is used.
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onators when they are removed from etch solutions; in fact we found that res-

onators with 2 µm wide arms were nearly always broken after the final air dry of

the original procedure. To avoid this, we transfer the samples from the TMAH

solution to BHF without ever taking them above the surface of the liquid. This is

done by placing the samples in a small Teflon bucket, which is transferred through

several large beakers of DI water to dilute the TMAH before the sample is placed

in BHF. Damage during the final drying can be avoided with a critical point dry,

which takes a solution from the liquid to gas phase by going around the critical

point – in this matter the sample can be dried without ever going through a liquid

interface. This allows us to reliably fabricate cross resonators with arms that are

2 mm long, 2 µm wide and only 300 nm thick (fig. 7.4), which puts the resonator

frequency in the 10 kHz regime with relatively high tension Si3N4 resonators. Fab-

rication of thinner resonators should be feasible; with an additional decrease in

the resonator tension it may be possible to enter the sub-kHz regime. Because

the Si3N4 is primarily a mechanical material, the reduction in optical quality that

accompanies an alteration of the stoichiometry is not a concern, although lower

tension material may also produce a lower mechanical quality factor.

The detailed steps for the improved fabrication process are listed in §B.2. This

process produced similar results to the original process, with the exception that

nearly all of the devices were clean and unbroken. We believe the finesse limitation

of F  2000 is actually caused by the macroscopic end mirror, which is specified

to have a wavefront error which is on approximately the correct scale to cause this

degree of loss (see §7.2.2). This issue should be resolvable with the use of larger

macroscopic mirrors or smaller tiny mirrors, both of which we plan on testing in

the near future. Although this may have also limited the prototype system (§4),

it seems unlikely that this was the case because similar finesse was observed with

20 and 30 µm mirrors when a Ge surface protection layer was used during the FIB

cutting (the larger mirrors should have been further from the di↵raction limited
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regime and somewhat less sensitive to wavefront error).

7.1.3 Possible Extensions

The most di�cult part of developing the Si3N4 process above was understand-

ing how one can perform the required etching steps without damaging the mirror.

Consequently, it would be relatively easy to extend the process to fabricate mirrors

with other types of mechanical resonators.

SOI Cantilevers

Perhaps the most interesting possible extension is to fabricate resonators on

a thin film SOI (silicon-on-insulator) wafer. These wafers are topped with thin,

⇠ 300 nm, layers of SiO2 and single crystal Si. SOI wafers are used to fabri-

cate the very high force sensitivity cantilevers used in MFRM experiments [67],

which should be capable of producing an optomechanical system of low mass and

frequency with a moderately high mechanical quality factor.

To explain how this could be done, we first review the basic process for making

a cantilever from an SOI wafer [75]:

1. The top thin film Si layer is etched to the desired dimensions of the can-

tilever.

2. The back side of the sample is coated with a thick layer of material which

will be used as the mask for the deep etch, usually SiO2 or Si3N4 of order

micron thickness. This layer is pattered to remove the regions where the

carrier wafer will be etched.

3. The carrier wafer is etched completely through in the unmasked areas, using

a deep dry etch or anisotropic wet etch. (If a anisotropic wet etch is used, a

protective layer of SiO2 or Si3N4 must first be placed on top of the cantilever
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layer.) The thin SiO2 layer underneath the cantilever acts as an etch stop,

protecting the thin Si layer which will become the resonator.

4. The SiO2 layer under the cantilever (and the protective layer, if present) is

removed in a short HF etch, releasing the resonators.

5. The sample is dried in a critical point dyer, to avoid breaking the extraor-

dinarily thin cantilevers.

Upon first reviewing this process, it appeared wholly incompatible with high

reflectivity mirrors due to the (incorrect) assumption that the HF release would

destroy the mirrors, which are composed entirely of oxides. With the realization

that Ta2O5 has extraordinary resistance to etching in HF, it can be seen that

the addition of mirrors is actually a rather minor modification to the process.)

Although the exposed SiO2 layers on the edges of the mirror will be slightly etched,

this e↵ect should be relatively minor if the HF etch is timed properly. In fact, all

that is required is to deposit and etch the mirrors on top of the cantilever layer

before the deep etch. Additionally, if the top surface of the mirror is composed

of SiO2, it will be removed completely, exposing a fresh Ta2O5 layer in the same

manner as the improved Si3N4 process. All the required equipment for this process

is available in the UCSB cleanroom facility, and we intend to test it in the near

future.

Optomechanical Systems Suspended Above Mirrors

Another interesting possibility is a modification of the membrane-in-the-middle

approach. If we remove the mirrors from the conventional Si3N4 process above, we

can make cross-patterned Si3N4 membranes to be used like a conventional mem-

brane optomechanical system, but with lower mass and frequency. Furthermore,

we can avoid the complications of the three-element system alignment by fabri-

cating the membrane on top of a dielectric mirror and a built in air spacing of, for
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example, �/4 or 3�/4. The system can then be thought of as a dielectric mirror

where only the first layer is moving – a thin film calculation shows that this is

nearly equivalent to moving the entire mirror. (The other end mirror remains the

same as for a normal optomechanical system.) This could be fabricated relatively

easily:

1. Begin with a dielectric mirror deposited on a transparent, superpolished

substrate, e.g. sapphire.

2. Deposit a sacrificial spacing layer on top of the mirror. The choice of material

is important; whatever is used should have an extremely high selectivity

with respect to Si3N4 in the release etch. Alumina (amorphous Al2O3) is a

convenient choice; smooth layers can be deposited in an IBD system (which

also means it could be done at the same time as the mirror deposition) and

it has a very high etch rate in BHF§.

3. Deposit the Si3N4 mechanical layer and pattern it to the desired shape.

4. Undercut the mechanical resonator by etching the sacrificial layer in the

areas exposed by the patterning of the mechanical layer.

5. Give the sample a critical point dry to avoid breaking the resonators.

Of course, this system has all of the disadvantages of a regular membrane ap-

proach, apart from the alignment complications. Placing a resonator only a frac-

tion of a micron away from a flat surface may result in severe “stiction” problems

[97]. Even if the resonator is sti↵ enough that if does not stick to the mirror, it

is quite possible the surface interaction will be dissipative (due to surface charges

or other interactions), severely reducing the mechanical quality factor.

§ Despite the fact that alumina and sapphire have the same chemical formula, the etch rates
in HF or BHF are completely di↵erent. In fact, sapphire’s etch rate is nearly 0, while alumina
etches relatively quickly [96].
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Figure 7.5: The time delay provided by the ring-down of a conventional opto-
mechanical cavity could be replaced by an external delay line, e.g. in a long optical
fiber.

Alternatively, a complete mirror on Si3N4 resonator system could also be built

on top of another mirror with an engineered spacing, eliminating the big mirror

of the cavity entirely. As discussed in §6.4, this may also allow for a significantly

smaller mirror to be used without reducing the finesse, resulting in a lower mass

opto-mechanical system. For example, a conventional optical cavity with a big

mirror with r
big

/L = 0.1 requires a mirror of radius 15 � to obtain a finesse in

the range of 106. For a short cavity system where one mirror has a radius of

curvature on the order of 103�, the mirror radius can be a factor of 2 smaller¶.

Of course, increasing the numerical aperture of the big mirror eliminates this

advantage, but di�culties with wavefront error make this di�cult to achieve in

practice. As previously noted, the di↵ering amount of stress in IBD SiO2 and

Ta2O5 can be used to induce the required curvature (⇠ 1 mm) in free standing

mirrors. The curvature can also be engineered, for example, by making some

mirror layers 3�/4n thick instead of �/4n, without a↵ecting the peak reflectivity

of the mirror.
¶ For the big mirror system, we assume ↵ = 2.2 and no wavefront error (rtiny = ↵

2

�/⇡').
For the small mirror, we consider a system with ⌫ = 30 and L = �, which gives a required radius
of 7–8 � (see fig. 6.4) for both end mirrors. Presumably, the system we are describing would
actually have one large flat mirror, and one small curved mirror. In this case, we expect the
curvature on the small mirror would need to be approximately a factor of 2 larger. The overall
loss will be slightly lower due to confining the clipping to a single mirror, although the change is
expected to be less than a factor of 2 in finesse, producing a minor di↵erence in required mirror
size.
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In addition to the stiction problems discussed above, the ringdown time of

the optical cavity will scale with its length. This means the frequency of an

optomechanical system with a short cavity needs to be extraordinarily high to

enter the sideband resolved regime or do a superposition-type experiment; for a

cavity length of 1 micron, this requires !
c

> 2⇡ ⇥ 150 MHz (given F = 106).

For such a system, the optomechanical coupling, , is expected to be only on

the order of 10�2–10�3 due to the increase in mechanical frequency, making a

superposition-type experiment as originally conceived totally impractical.

On the other hand, it may be possible to replace the delay provided by the

cavity ring-down by an external optical delay, such as a very long optical fiber

(fig. 7.5). If the mechanical frequency is in the range of 10 kHz, the delay requires

on the order of 10 km of optical fiber. (Optical fibers of su�ciently low loss

exist to make this a feasible prospect, although the system may need to operate

at telecom wavelengths of � = 1.3–1.6 µm, which will unfortunately reduce the

optomechanical coupling.) At present, it is unclear if such a system is functionally

equivalent to using the intrinsic ring-down of optical cavity in a superposition or

an optical cooling experiment. Of particular concern is the e↵ect of loss (both

in/out coupling and in the fiber) on the quantum interpretation of the system,

and whether which-way information can be completely erased by passing light

through the cavity a second time. These issues are currently under theoretical

investigation.

7.2 The Complete Optomechanical System

7.2.1 Pump Laser and Cavity Locking

Our prototype system was pumped with a 780 nm tunable diode laser system,

primarily for reasons of convenience. This laser has a linewidth of around several

MHz, which limits measurements of the finesse via laser scanning to F . 103
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(§4.2.1). Although in principle a diode laser can be stabilized so that it has a

linewidth of order 1 Hz (e.g. [98]), this requires a significantly more complicated

system. As a result we chose to switch to an inherently stable laser type, a Nd:YAG

non-planar ring-oscillator; commercial systems are available with linewidths of or-

der 1 kHz or less at a wavelength of 1064 nm. If desired, these systems can be

frequency doubled to 532 nm; this may ultimately be a more ideal wavelength for a

quantum optomechanical system. Unfortunately, working at a shorter wavelength

makes the system more susceptible to scattering and absorption losses, and so we

are presently fabricating systems designed for 1064 nm. The only major disad-

vantage of this laser is its relatively limited fast tuning range, on the order of �!

= 100 MHz, implemented by a piezoelectric element pushing on the monolithic

laser crystal/cavity. A larger tuning range, of order 10 GHz, is accessible with

temperature tuning, but this is very slow.

The extremely narrow linewidth of an ultra high finesse cavity necessitates

some sort of feedback to keep even an intrinsically stable laser locked to the

cavity. In our prototype system, we used a simple method of o↵set fringe locking,

but this had a tendency to unlock with even a moderate finesse cavity. The most

commonly used locking method for high finesse cavities is known as the Pound–

Drever–Hall (PDH) technique [99, 100]. The PDH method is usually implemented

using an optical phase modulator operating at RF frequencies (⇠ 10 MHz) to

create sidebands on the pump laser. Assuming these sidebands are separated

from the main laser signal by more than the cavity linewidth they will be reflected

from the input mirror of the cavity. These reflected sidebands interfere with the

light from the original pump frequency, which is also partially reflected from the

cavity if it is detuned. A measurement of the reflected power, demodulated and

filtered, gives the detuning of the pump laser relative to the cavity; in particular

this signal is nearly linear with detuning when close to resonance. This signal is

then used as feedback to stabilize the pump laser relative to the cavity, typically
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with a PID (proportional-integral-derivative) locking loop controlling either the

frequency tuning of the laser or the length of the cavity.

Assuming one wishes to lock the laser to the peak of the cavity resonance, this

technique has the advantage that it is null-locked. In other words, the feedback

signal is zero when the system is in the desired locking position, irrespective of

power fluctuations in the input beam (as opposed to a feedback system locked to

some constant o↵set, which is sensitive to the total input power). This makes it

immune to many types of technical noise, which is generally considered to be a

significant advantage.

Unfortunately, the PDH technique is relatively complicated to implement, and

in any case we don’t always wish to lock to the peak of the cavity resonance (for

example, in an optical cooling experiment). In the limit that the sidebands are not

separated by more than the cavity linewidth, it is more natural to think of the PDH

technique as slowly modulating the laser frequency relative to the cavity resonance.

Assuming the modulation depth is much smaller than the cavity linewidth, the

light reflected (or transmitted) through the cavity will undergo small modulations

in intensity as the light is scanned over the cavity resonance. The depth of these

modulations e↵ectively gives the derivative of the cavity response with respect to

frequency; this is in essence what the PDH technique is actually measuring.

Instead of using a RF phase modulator, we can modulate the frequency of our

laser at a frequency of order 1 kHz (less than the cavity linewidth and mechanical

resonance frequency) and at a depth that is only a fraction of the cavity linewidth.

To generate a feedback signal, we measure the light transmitted through the

cavity and feed this into a lock-in amplifier. In general, the same measurement

of cavity transmission is used for other purposes, and this technique can coexist

with them as long as the laser modulation frequency is far from the resonance of

the optomechanical system. With the lock-in amplifier, we can measure arbitrary

harmonics of the modulation signal, and so generate a feedback signal proportional
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to a higher order derivative of the cavity resonance. In practice, this usefulness

of higher order derivatives is limited by the measurement noise, which can be

significant unless the modulation depth is comparable to the cavity linewidth.

We find that we can obtain a good signal from the second derivative with a

modulation depth on the order of 10% of the cavity linewidth. The null-locking

point of the second derivative is the point of maximum position sensitivity, making

it ideal for measuring the mechanical resonance and doing active optical feedback

cooling. This signal can be used as feedback either for the laser frequency or

the cavity length using a simple integrator or PI (proportional-integral) feedback

controller (the derivative term of a full PID controller is not found to be useful for

this application). We find this works well at current cavity finesses (F ⇠ 103) and

moderate laser power, ⇠ 1 mW, and we expect it to be appropriate for cavities

with more demanding properties as well.

7.2.2 The “Big” Mirror

Although the “big” mirror of the optical cavity at first appears quite con-

ventional, the required size of the tiny mirror is inversely proportional to the

numerical aperture of the big mirror (' = r/L). In the limit L � z0, the radius

of curvature of the mirror surface is almost exactly equal to the cavity length

(R ⇠= L), and so we require superpolished mirrors whose radius of curvature is

comparable to the outside diameter.

As shown in §6.3.3, the wavefront error of this mirror must also be very small,

on the order of 10�3� or better at transverse scales comparable to the mirror size.

In practice this is not guaranteed by traditional super-polishing techniques, both

because it is very di�cult to measure wavefront errors below 10�2� and because

virtually no other applications require this level of perfectionk. The exception to

k Typically the wavefront is measured several times during the polishing process and used as
feedback. The process will of course not be optimized for errors that can’t be resolved.
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this are optics for EUV (extreme ultra-violet, � ⇠ 10 nm) lithography systems.

Although techniques for measuring and correcting wavefronts at the nanometer

and sub-nanometer level have been developed [101], they are still in the experi-

mental stage. The most commonly employed technique for improving long-scale

wavefront errors is to selectively deposit material using, for example, a masked

IBD system [102]. Generally this type of correction is applied to substrates bigger

than the cm-sized mirrors we use, but in principle it should be possible to adapt

this technique.

All of the experiments described in this thesis were done using mirrors of

7.75 mm diameter and either 25 or 50 mm radius of curvature, supplied by Ad-

vanced Thin Films, Inc. and Research Electro-Optics, Inc. Because the mirrors

are clamped on the front surface during coating, only the central 6 mm is us-

able, which we will consider to be the e↵ective size of the mirror; this results in

a numerical aperture of ' = 0.12 and 0.06 for the 25 and 50 mm radius of cur-

vature mirrors, respectively. Due to the di�culty in polishing, the 25 mm radius

of curvature mirrors were provided on a limited basis and are no longer available

for purchase. These mirrors were specified to <1 Å micro-roughness with a total

wavefront error of better than 1/20 wave (measured at 632 nm). Unfortunately we

were not provided with any wavefront maps, and we do not have the specialized

equipment required to measure them, so we are unable to characterize the scale

dependence of the wavefront error. We were never able to observe a finesse above

2000 with either set of mirrors coupled to a micro-optomechanical device, despite

the fact that the dielectric mirrors themselves should have allowed us to achieve

a much higher finesse. In the case of the 50 mm radius of curvature of mirrors,

which we coated ourselves, we were able to measure a finesse of over 104 using

two macroscopic mirrors in a confocal configuration. This suggests either that the

tiny mirror or the wavefront error of the big mirror was factor limiting the finesse.

Very recently we acquired some larger numerical aperture mirrors from Coast-
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line Optics, Inc. Using a custom modified polishing machine, they were able to

polish 0.625 inch diameter mirrors with a 50 mm radius of curvature. With an

e↵ective mirror size of 14 mm, this corresponds to a numerical aperture of 0.14.

These mirrors were superpolished and guaranteed to have a wavefront error of

better than 1/20 wave, as before, but it was indicated that lower errors should

be possible in practice. By request, we were also provided with a wavefront map

for one of the mirrors. The reference sphere used in the wavefront measurements

has a surface error of about 1/20 wave, which was found to be considerably worse

than the mirrors themselves (fig. 7.6). To circumvent this measurement limita-

tion, we asked to be provided with two surface maps of the same mirror, but

with the mirror rotated by 180� between the two maps. By subtracting these two

maps, we were mostly able to cancel out the imperfections in the reference sphere

while retaining the anti-symmetric terms of the mirror wavefront (with respect to

the mirror center). This is equivalent to using the mirror rotated by 180� as a

reference for itself. The resulting wavefront map, once the tilt and focus error are

removed, is shown in fig. 7.6.

Considering only the central 1–7 mm of the mirror surface (the center region

is clipped to exclude a defect in the center of the particular interferometer used

in the original measurement), this subtracted wavefront map has an RMS rough-

ness of 3.0 nm, with most of the error concentrated at scales comparable to the

mirror diameter. If we assume the roughness is equally distributed among the

symmetric and anti-symmetric terms, we expect the real mirror RMS roughness

to be smaller by a factor of
p

2, implying an RMS roughness of � ⇠ 2.1 nm. Un-

fortunately, we currently have no method of confirming that the symmetric and

anti-symmetric terms of the surface profile have similar magnitudes. Although

one might intuitively expect this to be the case, we note that any sort of edge

e↵ects from the polishing process would be expected to show up as completely

symmetric terms, and be undetectable in our analysis. In the future, we intend
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Figure 7.6: Wavefront map for the 0.625” mirror provided by Coastline Optics,
Inc. Each plotted wavefront map shows the central 97% of the mirror (r = 7.7
mm). Top: The raw wavefront maps, where the sample is rotated approximately
180� between them. The wavefront error is dominated by the reference sphere.
Bottom-left: The di↵erence of the raw wavefront maps. The point-like defects in
the center and semi-regular high-frequency noise are artifacts of the interferometric
imaging system. Bottom-right: The wavefront map, corrected for the tilt and
defocusing caused by the slightly di↵erent position of the mirror when it was
rotated. This tilt/defocus is determined by a least-squares fitting of the previous
map to f(x, y) = a + bx + cy + d (x2 + y2). After correction, the map is seen to
be nearly anti-symmetric, as expected (the deviation from perfect asymmetry is
caused by the mirror not being rotated by exactly 180�). The total RMS error of
the corrected map in the region 1 < r < 7 mm, indicated with dashed lines, is
found to be 3.0 nm.
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to apply characterization techniques from EUV optics to these mirrors, so as to

provide more concrete measurements of the wavefront error.

If we assume that our calculated roughness is approximately correct, we find

that the mirrors are just shy of the required surface figure for an ultra-high finesse

cavity. If the optical cavity operates at � = 1064 nm, as is the case now, the

wavefront-limited finesse should be approximately 2 ⇥ 105 if ↵ = 2.5 and we

assume the e↵ective roughness scale is the diameter of the mirror (i.e. ⌫
r

= 1, see

§6.3.3). Furthermore, this would be a factor of 4 worse if the cavity is operated at

532 nm, as would likely be more appropriate for a superposition experiment. Some

improvement may be possible by increasing the size of the tiny mirror, although

in practice this may not be desirable. For example, if the tiny mirror’s radius is

increased by a factor of 4 (going from ↵ = 2.5 to ↵ = 5), the wavefront limited

finesse is expected to increase by a factor of nearly 100. On the other hand, the

mass of the mirror is increased by a factor of 16, increasing the finesse required for

e�cient opto-mechanical coupling by a factor of 4 (assuming !
c

is held constant).

Although this seems like a net gain, the required finesse is already straining the

limit imposed by the bulk reflectivity of dielectric mirrors (F . 106), and so it

may not o↵er any real advantage. Although complicated, correcting the wavefront

of the mirror is a far more attractive option in the long run. The fact that the

relevant wavefront error is at scales of several millimeters is encouraging, as it

means it is likely possible to adapt wavefront correction techniques from EUV

optics experiments.

The mount/lens system required to test the mirrors in a real cavity is currently

being fabricated. As soon as this is finished we will characterize the big mirrors

in both a conventional and micro-optomechanical system. We note that if the

wavefront error present in our previous mirrors was truly on the order of 10 nm,

as specified, this would be enough to limit the finesse to the observed values. Thus

the new mirrors should either improve the finesse or at least eliminate wavefront
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error as a potential limiting factor until the finesse is considerably improved.

7.2.3 Cavity Alignment System

As discussed in §3.1.2, the critical degrees of freedom for cavity alignment

correspond to the translations of the tiny mirror. For the transverse translations,

the required accuracy is of order microns, over a range on the order of millimeters

(as dictated by the degree of accuracy with which the system components can be

“pre-aligned” by hand in their respective mounts). This accuracy can be achieved

with slip-stick piezo motors, such as those used in our prototype system, which

typically have a range of approximately a centimeter with a step size of 20 nm.

Because they rely on piezos, they can be made to function in cryogenic and vacuum

conditions, although careful choice of materials and coatings is required to obtain

the same magnitude of frictional force over such a wide range of temperatures.

The length of the cavity requires an accuracy of several nanometers, better

than the step size of slip-stick motors. Although a conventional piezo system seems

like a good choice, electrical noise on the high-voltage amplifier poses a practically

insurmountable problem. Even with a relatively short adjustment range of 100

µm, the total electrical noise of the piezo driver (a high-voltage amplifier) would

need to be less than 100 nV (assuming the total range of the piezo corresponds

to 100 V across the piezo element) to achieve the required cavity length stability

of 10�13 m (see §3.5). Commonly available drivers have output noise on the order

of 1 mV or higher, more than four orders of magnitude too high. Even if better

drivers could be made, the long term drift of the piezo would likely be an issue

(active feedback piezo positioning systems can correct this, but the positioning

accuracy is only of order nm).

Despite the apparent step size limitations, slip stick motors are still probably

the best choice. In general, these motors have slightly di↵erent step sizes in the

forward and backward direction, and this could be exploited to achieve sub-step
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resolution. We note that the cavity itself is an extraordinarily good interferometer,

which can easily measure nanometer changes in cavity length and be used as

feedback⇤⇤.

When a slip-stick motor is o↵, the piezo leads are generally shorted, which

should result in virtually no noise if the electrical leads are properly shielded. In

this case, long term drift should be dominated by thermal expansion. Although

this drift is readily apparent for ultra-high finesse cavities at room temperature,

it should negligible at the required cryogenic temperatures. For example, copper

has a coe�cient of thermal expansion of 6⇥10�10 K�1 at 4 K, comparable to other

common metals [103]. Assuming the general T�3 trend of the low temperature

thermal expansion continues, the extrapolated coe�cient of thermal expansion

at dilution refrigerator temperatures (10 mK) is of order 10�17 K�1. This is so

low that even changing the temperature by a factor of two produces a thermal

expansion that is many orders of magnitude below the required stability.

Although the ✓
x

-✓
y

-z style cavity alignment used for the macroscopic mirror

in the prototype system worked reasonably well, it is not particularly convenient

for the micro-fabricated systems, which usually have multiple devices on the same

sample wafer. In this case, tilting the big mirror to couple to di↵erent devices,

which are 1–2 mm apart, causes the angle of the tiny mirror to be become signif-

icantly misaligned. This can be avoided by instead putting the micro-mechanical

devices on an x-y-z translation stage, where the stage can be driven by the slip-

stick motors. We built such a system, only to discover that conventional transla-

tion stages have extremely poor torsional sti↵ness. This results in low frequency

(⇠ 100 Hz) resonances of the mechanical mount itself, which will be easily ex-

cited by ambient vibrations. In practice we found vibrations on the nanometer

scale, even with the system on a vibration isolation table and in vacuum. Adding

⇤⇤ In the long term, this ability to measure length changes is limited by the drift of the pump
laser. On the time scale of minutes, this is specified to be less than 1 MHz, which corresponds
to Å-level precision.
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acoustic isolation on the vacuum insert improved the situation, but the stability

was still orders of magnitude worse than required.

Ultimately, this required us to return to a mount Si3N4 design similar to that of

the prototype system. To allow us to couple to multiple devices without removing

the system from vacuum, we added motors to drive the tip-tilt gimbal mount of

the micro-mechanical devices. The vacuum insert is shown in fig. 7.7. Due to the

presence of acoustic isolation on the new insert, we find it to be far more stable

at low frequencies than the prototype system, for which significant low frequency

noise was observed.

7.2.4 Cryogenic Temperatures

In the long term, we also require a system capable of operating at milliKelvin

temperatures, and we have began development of a system capable of meeting this

goal at the University of Leiden. Sub-Kelvin temperatures are typically reached

using dilution refrigerators, which work by exploiting the natural separation of He3

and He4 at very low temperatures [104]. The best dilution refrigerators are capable

of reaching temperatures of slightly less than 10 mK, which is apparently an order

of magnitude too high for a superposition-type experiment. Lower temperatures

can be achieved with the addition of a nuclear adiabatic demagnetization (NAD)

stage to a dilution refrigerator [105]. A demagnetization stage consists of a large

piece of material with non-zero nuclear spin which is placed in a superconducting

magnet. When the superconducting magnet is turned on, typically producing a

field of several Tesla, the nuclear spins will become aligned (although in practice,

it may take hours or days for them to come to thermal equilibrium). If the magnet

is then slowly ramped down, the spins begin to unalign and absorb thermal energy.

This makes it possible to cool to extraordinarily low temperatures, in some cases

even nanoKelvin or picoKelvin, although in this case there is often a thermal

decoupling between the nuclear and bulk temperature.
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Figure 7.7: The improved vacuum cavity mount. A) One end of the optical cavity,
with ✓

x

-✓
y

-z alignment provided by three motors, two of which are visible. There
is also an integrated piezoelectric element in the mirror holder which allows fast
scanning of the cavity length (this can be easily removed or grounded for higher
finesse cavities, where the piezo noise should be problematic). B) The other end
of the optical cavity; this end mirror is mounted on a conventional gimbal optical
mount controlled by motors. This mount can be mounted in several places to allow
for di↵erent cavity lengths. C) Vacuum compatible New Focus Picomotors, which
control the five axes of cavity alignment. D) The optical base plate, made from
a 1.5” thick aluminum block. This is mounted to the top flange of the vacuum
chamber via compressed viton o-rings, which, combined with the weight of the
aluminum block, provide good isolation from vibrational resonances outside the
vacuum chamber.
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We are instead aiming for more moderate temperatures in the range of 100

µK, provided by a NAD stage composed of a large piece of ultra-pure copper in a

several Tesla magnet. Because the cantilever is not mounted directly on the NAD

stage††, we expect the thermal coupling to limit the range of temperatures that

can be achieved. At milliKelvin temperatures, thermal transport is dominated by

the boundary resistance, known as Kapitza resistance, due to the speed of sound

mismatch in di↵erent materials [104, 106]. We have built and tested a NAD stage,

but we have not yet attempted to couple it to an optomechanical system.

An image of our prototype cryogenic cavity mount is shown in fig. 7.8. We

couple light into the dilution refrigerator via a single mode optical fiber. The cav-

ity transmission is presently monitored on an InGaAs photodiode located behind

the optical cavity. (1064 nm photons are above the bandgap energy for Si at room

temperature, but not at cryogenic temperatures, requiring di↵erent photodetec-

tors if they are to be used inside the dilution refrigerator.) It should be possible

to instead use either transition edge sensors (§3.4) or to couple the light out of

the cavity via a fiber, if required.

In our initial design, the cavity mount was adjusted using slip-stick x-y-z trans-

lation stages for the mirror and micro-mechanical resonator. As with the room

temperature design, which was built at around the same time, this resulted in

considerable noise due to low frequency resonances in the mechanical mount. Vi-

bration isolation inside the dilution refrigerator improved the situation, but again

was not enough for experiments with an ultra-high finesse cavity. At present, there

are no commercially available screw-type slip-stick motors that could be used for a

✓
x

-✓
y

-z style mount. We are currently having custom slip-stick cryogenic position-

†† The copper piece can not be vibration isolated, while the sample/cavity mount must be to
eliminate ambient vibrations. By necessity, the superconducting magnet is immersed directly in
liquid He, outside the inner heat shield of the dilution refrigerator. If the copper piece moves
while the magnet field is even partially on, it generates eddy currents that cause significant
heating at sub-mK temperatures. This e↵ect is a serious concern for NAD stages, and requires
that the copper piece is rigidly mounted.
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Figure 7.8: A photograph of an early version of the cryogenic cavity mount.
The system is mounted to the bottom of a dilution refrigerator; the bottom of
the mixing chamber is just visible at the top of the image. A) The lens/mount
for coupling light from a single mode fiber (not shown) into the optical system.
B) The beam steering mirrors used to match light to the cavity mode. C) The
macroscopic mirror and incoupling lens. The cavity mirror is mounted on a nano-
positioning system to control the length of the cavity. D) The mount for the
micromechanical element. For testing the cavity alignment, a flat mirror can be
used in its place (as shown). The mount is on a two axis nano-positioning stage
for transverse alignment, as well as a manual goniometer for adjusting the angle.
An InGaAs photodiode (not visible) is located behind the cavity. E) Springs to
mechanically isolate the optical stage from the bottom of the dilution refriger-
ator. F) A magnetic damping system (only partially visible) to prevent large
low frequency oscillations of the vibration isolated stage. G) A superconducting
heat switch used to decouple the adiabatic nuclear demagnetization stage from
the dilution refrigerator. The demagnetization stage would normally be installed
underneath the optical stage and is coupled only to the mount for the mechanical
resonator.

133



7 Building a Better Optomechanical System

ers designed to allow us to replicate the design of the current room-temperature

system, which has been demonstrated to be far more stable.
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Chapter 8

Conclusion

When I began my research in Dirk Bouwmeester’s group, optomechanical sys-

tems were not established as a significant field of research. We have now shown

that it is possible to fabricate a high-finesse optical cavity with one tiny end mirror

on a mechanical resonator; this system, with significant improvements, could be

used to create a quantum superposition in an optomechanical device. We have also

demonstrated optical cooling of the fundamental resonator mode in this system by

over three orders of magnitude, as predicted by the extremely high signal-to-noise

level observation of the cantilever’s thermal motion. After our experiments on

this prototype system, we began to turn our attention to better understanding the

quantum nature of the proposed experiments with optomechanical systems and to

making the required improvements in the micro-optomechanical system. This led

to a new method for calculating the loss and mode structures of di↵raction limited

high finesse cavities, especially in the presence of imperfections, which is crucial

to understanding the experimental requirements for constructing such a cavity.

We also began to develop new micro-fabrication techniques to overcome the limi-

tations imposed by our prototype process. We are now producing resonators with

this method; although initial results are comparable to the prototype system, we

expect our newfound flexibility should soon produce improved devices. Combined
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with a new system capable of operating at milliKelvin temperatures, this should

allow observation of true quantum e↵ects in an optomechanical system in the near

future.

Despite the significant progress in the development of optomechanical systems

by many groups around the world, a true realization of quantum phenomena has

been elusive. The first demonstration of non-classical behavior will almost cer-

tainly be ground state optical cooling; demonstrations of cooling to within 1–2

orders of magnitude of the ground state have already been performed in several

systems [58, 59]. In a closely related NEMS experiment, it has just been re-

ported that the ground state and phonon number state superpositions of a GHz

mechanical resonator have been observed [107]. The primary barrier for ground

state optical cooling with a conventional optomechanical system is working at

base temperatures below the characteristically required decoherence temperature;

although non-trivial, this is a technical hurdle which should be soon overcome.

Barring unexpected complications, ground state optical cooling should be conclu-

sively demonstrated in the next several years.

The biggest obstacle to a superposition-type experiment is achieving the re-

quired high optical quality in an optomechanical system. This issue may be re-

solved either by limiting oneself to experiments with lower optomechanical cou-

pling requirements or by overcoming the technical hurdles for making ultra-high

finesse micro-optomechanical systems. There have been several very recent pro-

posals for quantum demonstration experiments that are possible with a lower

degree of optomechanical coupling by making use of the e↵ective enhancement

observed with a strong optical field [63, 64]. These experiments have their own

technical challenges, but they may be significantly easier to realize than the origi-

nal proposals if the finesse of optomechanical systems can not be made comparable

to the best conventional optical systems. Although all demonstrations of quantum

phenomena have a number of issues that must be addressed, all the experimental
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problems appear to be resolvable with current technology.
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Appendix A

Mechanical Properties of

Resonator Geometries

A.1 Cantilever

We will assume that the cantilever is thin and narrow compared to its length.

In this case it can be treated as thin beam, where its bending is governed by the

Euler-Bernoulli beam equation, which for a uniform beam cross-section is given

by [108]:

EI@4
x

u(x) = w(x), (A.1)

where E is the elastic modulus, w(x) is the beam loading and u(x) is the beam

displacement at a position x, and I is the second moment of the cross-sectional

area; I = bh

3

3
for a square beam of width b and thickness h. (The assumption that

the cross-section is uniform can be removed by assuming be letting I ! I(x).)
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The boundary conditions are given by:

u=0

@
x

u=0

)

clamped (A.2)

@2
x

u=0

@3
x

u=0

)

free (A.3)

@2
x

u=0

@3
x

u=F

)

loaded with force F (A.4)

The loading function for a vibrating beam is given by:

w(x, t) = �µ @2
t

u, (A.5)

where µ is the linear mass density, which we assume is constant. The modal solu-

tion can be found by separating out the time dependence and assuming harmonic

motion:

u(x, t) = �(x)ei!t

) EI@4
x

� = µ!2�

) � = A sin (⇣x) + B cos (⇣x) + C sinh (⇣x) + D cosh (⇣x) ,

where ⇣ = 4
p

!2µ/EI. With the appropriate boundary conditions, one can find

the mode frequencies and shapes.

We can simplify things by assuming the tip mass dominates, as is often the

case for a dielectric mirror at the tip of a thin cantilever, and let µ ! 0. In this

case the solution is given by:

@4
x

� = 0 (A.6)

F
tip

= m!2�ei!t (A.7)

Assuming the beam is clamped at x = 0 and has a mass at x = L, the fundamental
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solution is given by:

� =
1

2



3
⇣x

L

⌘2

�
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L

⌘3
�

(A.8)

! =

r

3EI

mL3
=

r

Ebh3

4mL3
(A.9)

A
eff

=
33

140
bL (A.10)

where we have also assumed a square cross-section. In the limit µ ! 0 there

are no higher order modes, or equivalently !
i>0 ! 1 as expected for a massless

resonator. For finite µ, there of course exists a set of higher order modes, but as

tip mass is increased, the amplitude at the tip vanishes, �
i6=0(L)! 0. This means

we can safely ignore higher order modes for optomechanical systems as long as

the mirror mass is much larger than the rest of the resonator – a useful e↵ect if we

want the system to behave like a simple harmonic oscillator. In fact, cantilevers

used in MFRM experiments often have add large amounts of mass to the tip to

suppress the amplitude of higher order modes [109].

A.2 Tensed Beam

The restoring force for the Si3N4 cross resonators discussed in §7.1.1 is pri-

marily provided by the intrinsic tension in the Si3N4, which is created in the

deposition process. Thus we will ignore the force due to the bending of the res-

onator and treat it as a tensed string. In this case the equation of motion for

small displacements is given by:

f + T @2
x

u = µ @2
t

u, (A.11)

where u ⌘ u(x, t) is the displacement, f ⌘ f(x, t) is the force at a given point

and µ ⌘ µ(x) is the linear mass density at a given location. To find the modal

solutions, we again assume harmonic motion, resulting in:

f + T @2
x

� = �µ!2�. (A.12)
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For an unloaded resonator pinned at both ends, the solution is simply:

�
j

= sin
⇣⇡x

L
(j + 1)

⌘

(A.13)

!
j

=

s

T

µ

⇡

L
(j + 1) (A.14)

A
eff

=
1

2
bL (A.15)

Alternatively, if we want to consider a resonator dominated by the mass at

the center (where the mirror is located), we can let µ! 0 and place a mass m at

x = L/2. In this case the solution is trivial:
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2
�

�

�

�

�

x
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�
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2
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(A.16)
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A
eff

=
1

3
bL (A.18)
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Detailed Micro-fabrication

Procedures

Our standard cleaning process is 3 minutes sonication in each of acetone/iso-

propanol/DI water, in that order, with a rinse in between the steps. The sample

is then blown dry with compressed N2 to avoid residue from the evaporated water.

Our standard photoresist application procedure is:

1. Give the sample a standard clean.

2. Dehydrate the sample by baking it for 5 min at 110 C.

3. Mount the sample on the vacuum chuck of a spinner and blow it with com-

pressed air while spinning to remove any dust.

4. To improve resist adhesion, pipette HMDS onto the surface of the sample.

Let it sit for 30 s and then spin it for 30 s at 3500 RPM to dry it.

5. Pipette the resist onto the sample, and spin as indicated for the resist.

6. Remove the sample from the spinner. If indicated by the process, remove

the resist edge-bead by wiping the sample along all four edges using a swab
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with EBR 100 on it.

7. Bake the sample as indicated for the resist.

B.1 Original Process

Our original (Si3N4 first) process was as follows:

1. Cleave a piece of a 100 µm thick silicon wafer (standard [100] surface plane)

to the appropriate size, 15–16 mm square, and give it a standard clean.

2. Deposit Si3N4 on both the front and back-side (typically 300-400 nm on the

front and 200-300 nm on the back) using the Plasmatherm 790 PECVD.

3. Apply a standard thickness (2 µm) layer of AZ4210 resist to the front side.

4. Using a optical contact aligner, roughly align the edge-bead removal mask

to the center of the sample and expose it for twice the indicated exposure

time for AZ4210. Develop in 4:1 AZ400K developer until the edges of the

photoresist are removed. Rinse and dry the sample.

5. Using the contact aligner again, align the front side mask to the cleaved

edges of the sample, which should be in the [110] direction if a standard

[100] wafer is used. The angle of the mask to the crystal planes should be as

accurate as possible to avoid unwanted undercutting during the anisotropic

Silicon etch. Expose and develop the photoresist as indicated.

6. Etch the front side on the Technics PE-IIA Plasma etcher (300 mTorr gas

/ 100 W RF power for all steps).

(a) O2 descum: 1 min

(b) CF4 etch: 1 min + 1 min/100 nm Si3N4
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(c) O2 descum: 1 min

Some etching may occur on the edges of the backside Si3N4, but it should

not etch through.

7. Apply AZ4210 resist to the backside, replacing the standard clean with a

sonication in DI water only (to leave the front-side layer of resist intact).

8. Roughly align and expose the edge bead removal pattern to the backside.

Develop until the edges are removed.

9. Align the backside mask to the front side features using an IR mask aligner.

Expose and develop the photoresist.

10. To protect the front side, mount the sample upside-down on a dummy wafer

with a thin layer of SantoVac vacuum grease. Etch the backside on the

Technics plasma etcher, as before.

11. Put the sample in 1165 resist stripper at 80 C for 5 min or until resist is

stripped. Give the sample a standard cleaning and check under a microscope

for stray particles, especially at the mirror locations. Re-clean if needed.

12. Deposit the mirror in the IBD, using standard process parameters.

13. Apply a layer of 7 µm thick SPR-220-7.0 resist on the front side, wiping the

edge bead away with EBR 100 before baking.

14. Align the mirror mask to the front side pattern; expose and develop resist

as indicated.

15. Measure the optical reflection spectrum of the sample in one or two places

without resist and where the Si3N4 is not etched. Keep track of the location

where each spectrum is taken (to account for Si3N4 non-uniformity). Fit the

spectra to determine the characterize the mirror and Si3N4 thicknesses.
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16. Mount the sample on a carrier wafer with SantoVac, making sure the center

is contacted with grease to the carrier wafer (the center should bulge upwards

slightly due to the intrinsic stress in the unetched IBD mirror). Etch the

mirror in the ICP, aiming to leave about 1 mirror layer.

17. Without unmounting the samples from the dummy wafer, measure the op-

tical reflection spectrum of a few samples in the same locations as before.

Fit these spectra to determine the amount of mirror remaining. Use this to

information to recalculate the ICP etch rate.

18. Return the samples to the ICP, aiming to over-etch the mirror by 20-50 nm

to account for non-uniformity.

19. Remeasure the mirror spectrum to ensure all mirror was removed and check

the Si3N4 thickness. Return to the ICP if any mirror remains. (The ICP

rate is often observed to decrease over long etches, leading to under-etching

in many cases.)

20. Unmount the samples, strip the resist in 1165 and clean them.

21. Put 175 mL of 5% TMAH in a beaker and place it in a 75 C water bath.

Give the TMAH solution at least 30 min to come to thermal equilibrium.

22. Mount the samples vertically in a Teflon basket. Etch them in the TMAH

solution for 2 hours, or until the silicon is completely etched through.

23. Gently rinse the samples in DI water, keeping them under water as much as

possible. Bake the samples, still held vertically in the Teflon basket, at 110

C for 5’ or until all water has evaporated.
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B.2 Improved Process

1. Cleave a piece of a 100 µm thick silicon wafer to 14±1 mm square and give

it a standard clean. Check for cleanliness under a microscope, and re-clean

if needed.

2. Deposit mirrors on a blank silicon wafers using the IBD. Both the top and

bottom layers of the mirror should be SiO2.

3. Apply SPR-220-7.0 resist, removing the edge bead with EBR 100.

4. Using a contact aligner, align the mirror mask layer to the edges of the

sample as best as possible. (Since future layers are all aligned to this layer,

alignment with the crystal planes is critical.) Expose and develop the resist.

5. Mount the sample on a carrier wafer with SantoVac. Etch the mirror in the

ICP, aiming to leave about 1 mirror layer.

6. Roughly determine the amount of mirror remaining, either using a color

guide or by measuring the optical spectrum in a reflectometer and fitting it.

7. Etch the mirror again in the ICP, aiming to leave about half of the SiO2

layer. Check the thickness and etch again if any of the etched areas are

have part of the bottom Ta2O5 layer remaining. (If the center-to-edge etch

anisotropy is too high, it is acceptable, but not preferable, to etch completely

through the mirror.)

8. Unmount the sample from the carrier wafer, and strip the photoresist in

1165. Give the sample a standard clean.

9. Using the Technics PE-IIA plasma etcher, do a 1 min oxygen plasma descum

(300 mTorr gas / 100 W RF power). This step removes a thin polymer left

from the mirror etch, and is absolutely essential for proper adhesion of the

PECVD Si3N4.
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10. Give the sample a standard clean and check for cleanliness under a micro-

scope.

11. Deposit Si3N4 on the front and back sides with the PECVD.

12. Apply SPR510A resist to the front side – no edge bead removal of any type

is necessary.

13. Using the GCA 6300 projection lithography system, position the sample us-

ing the alignment marks in the mirror layer. Expose the front side resonator

pattern.

14. Etch the front side Si3N4 on the Technics PE-IIA Plasma etcher (following

the directions in the original recipe).

15. Apply SPR510A resist to the back side. Replace the standard clean with a

sonication in DI water only, to leave the front side resist intact.

16. Using the IR mask aligner, align the backside mask to the features on the

front of the sample. Because the backside feature resolution is not critical,

only contact the mask to the sample very gently (to avoid sticking the sample

on the edge bead). Expose the backside pattern.

17. Mount the sample front side down on a carrier wafer using SantoVac grease.

18. Etch the back side Si3N4 on the Technics PE-IIA Plasma etcher, as before.

19. Remove the sample from the carrier wafer, strip the resist and 1165 resist

stripper. Give the sample a standard clean and check for cleanliness under

a microscope. (Note: this is the last possible cleaning step!)

20. Put 175 mL of 20% TMAH in a beaker with a reflux condenser and place

the whole thing in a 80 C water bath. Give the TMAH solution at least 30

min to come to thermal equilibrium.
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21. Mount the samples vertically in a Teflon basket with a solid bottom. Etch

them in the TMAH solution for 2 hours, or until the silicon is completely

etched through.

22. Transfer the sample basket to a large beaker of fresh DI water, being careful

to keep the samples below the water line at all times. While keeping the

samples under water, transfer them to a new Teflon basket and rinse the

original. Repeat this dilution procedure two or three times, or until the pH

of the water in the sample basket is nearly neutral.

23. Transfer the sample basket to a beaker of undiluted BHF. Etch for 1 min

with gentle agitation to ensure the BHF mixes with the water in the basket.

24. Repeat the dilution procedure as before, again checking that the pH of the

water in the basket is normal at the end.

25. Place the sample basket in a large beaker of ethanol. Transfer the samples,

under ethanol, to the sample boat of the critical point dryer pressure vessel.

26. Transfer the sample boat into the pressure vessel and quickly seal it. As soon

it is sealed, slowly let CO2 into the pressure vessel with the release valve

cracked open to let ethanol escape. Continue until the ethanol is completely

displaced by liquid CO2.

27. Close all the pressure valves and heat the vessel above the critical point

of CO2. Once the CO2 is super-critical, release the pressure slowly (over

approximately 5 minutes), and remove the sample boat. The samples should

come out dry and ready to use.
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[55] S. Gröblacher, S. Gigan, H. R. Böhm, A. Zeilinger, and M. Aspelmeyer,

Europhys. Lett. 81, 54003 (2008).

[56] T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whit-

comb, and N. Mavalvala, Physical Review Letters 99, 160801 (2007).

[57] A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg,

Nature Physics (Advance Online Publication) (2008).
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