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How superfluid vortex knots untie
Dustin Kleckner1*†, Louis H. Kau�man2 andWilliam T. M. Irvine1*
Knots and links often occur in physical systems, including
shaken strands of rope1 and DNA (ref. 2), as well as the
more subtle structure of vortices in fluids3 and magnetic
fields in plasmas4. Theories of fluid flows without dissipation
predict these tangled structures persist5, constraining the
evolution of the flow much like a knot tied in a shoelace.
This constraint gives rise to a conserved quantity known as
helicity6,7, o�ering both fundamental insights and enticing
possibilities for controlling complexflows.However, evensmall
amounts of dissipation allow knots to untie by means of ‘cut-
and-splice’ operations known as reconnections3,4,8–11. Despite
the potentially fundamental role of these reconnections in
understandinghelicity—andthestabilityofknottedfieldsmore
generally—their e�ect is known only for a handful of simple
knots12. Here we study the evolution of 322 elemental knots
and links in the Gross–Pitaevskii model for a superfluid, and
find that they universally untie.We observe that the centreline
helicity ispartiallypreservedevenas theknotsuntie, a remnant
of the perfect helicity conservation predicted for idealized
fluids. Moreover, we find that the topological pathways of
untying knots have simple descriptions in terms of minimal
two-dimensional knot diagrams, and tend to concentrate in
states which are twisted in only one direction. These results
have direct analogies to previous studies of simple knots in
several systems, including DNA recombination2 and classical
fluids3,12. This similarity in the geometric and topological
evolution suggests there are universal aspects in the behaviour
of knots in dissipative fields.

Tying a knot has long been a metaphor for creating stability, and
for good reason: untangling even a common knotted string requires
either scissors or a complicated series of moves. This persistence has
important consequences for filamentous physical structures such as
DNA, the behaviour of which is altered by knots and links9,13. An
analogous e�ect can be seen in physical fields, for example,magnetic
fields in plasmas or vortices in fluid flow; in both cases knots never
untie in idealizedmodels, giving rise to new conserved quantities6,14.
At the same time, there are numerous examples in which forcing
real (non-ideal) physical systems causes them to become knotted:
vortices in classical or superfluid turbulence15,16, magnetic fields in
the solar corona4, and defects in condensed matter phases10. This
presents a conundrum: why doesn’t everything get stuck in a tangled
web, much like headphone cords in a pocket1?

In all of these systems, ‘reconnection events’ allow fields to
untangle by cutting and splicing together nearby lines/structures
(Fig. 1a; refs 3,4,8–11). As a result, the balance of knottedness, and
its fundamental role as a constraint on the evolution of physical
systems, depends critically on understanding if and how these
mechanisms cause knots to untie.

Previous studies of the evolution of knotted fields have been
restricted to relatively simple topologies or idealized dynamics3,9,17,18.

Here, we report on a systematic study of the behaviour of all prime
topologies up to nine crossings by simulating isolated quantum
vortex knots in the Gross–Pitaevskii equation (GPE, equation (1)).
The quantum counterpart of smoke rings in air, vortices in
superfluids or superconductors are line-like phase defects in the
quantum order parameter,  (x)=p

⇢(x)ei�(x), where ⇢ and � are
the spatially varying density and phase (Fig. 1e). The GPE is a useful
model system for studying topological vortex dynamics: vortex lines
are easily identified, reconnections occur without divergences in
physical quantities, and the behaviour of simple knots was recently
shown to be comparable to viscous fluid experiments12.

In a non-dimensional form, the Gross–Pitaevskii equation is
given by19:

d 
dt

=� i
2
⇥r2 ��| |2 �1

�⇤
 (1)

where in these units the quantized circulation around a single vortex
line is given by: � = H

d` · u= 2⇡. The GPE has a characteristic
length scale, known as the ‘healing length’, ⇠ , which corresponds
to the size of the density-depleted region around each vortex core
(⇠ = 1 in our non-dimensional units if the background density is
⇢0 =1).

Producing a knotted vortex in a superfluid model requires the
computation of a space-filling complex function whose phase field
contains a knotted defect. This challenging step has restricted
previous studies to one family of knots in a specific geometry8.
By numerically integrating the flow field of a classical fluid vortex,
we produce phase fields with defects (vortices) of any topology or
geometry12 (Fig. 1e and Supplementary Movie 1), enabling us to
study the evolution of every prime knot and link with nine or fewer
crossings, n9.

To construct initial shapes for the di�erent topologies, we begin
with the ‘ideal’ form for each knot, equivalent to the shape of the
shortest knot tied in a rope of thickness r0 (Fig. 1b–d; ref. 20). These
canonical shapes are known to capture key aspects of the knot type
as well as approximating the average properties of random knots21.
For each ideal shape we consider three di�erent overall scalings
with respect to the healing length: r0/⇠ ={15, 25, 50}. To break any
symmetries of the shape and to check for robustness of our results
we also consider four randomly distorted versions of each knot with
n8 at a scale of r0 =15⇠ (see Methods for a detailed description of
the construction).

Figure 2a and Supplementary Movie 2 show the evolution
of a 6-crossing knot, K6-2, as it unties. (We label links and
knots using a generalized notation following the ‘Knot Atlas’,
http://katlas.org.) The knot can be seen to deform towards a series of
vortex reconnections that progressively simplify the knot until only
unknotted rings (unknots) remain. This behaviour has previously
been observed for a handful of simple knots and links; here we
find the same behaviour in all of the 1,458 simulated vortex knots.
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Figure 1 | Reconnection events and vortex knots. a, A schematic of a vortex reconnection event, in this case converting a trefoil knot (K3-1) to a pair of
linked rings (L2a1). b, An ‘ideal’, or minimum rope-length, trefoil knot. c, Using the centreline of an ideal knot provides a consistent, uniform geometry for
any knot or link; nearby strands are exactly spaced by the rope diameter, drope, which becomes the characteristic radius, r0, of the loops which compose the
knot. d, Example ideal configurations of topologies with di�erent minimal crossing number, n. The number of topologies excluding mirrored pairs is
indicated in square brackets. e, A 2D slice of the phase field of a superfluid order parameter with a knotted vortex line (light blue). f, Example minimal knot
diagrams; in each case the topology cannot be represented by a simpler planar diagram. The chirality of each crossing is indicated.

We further note that during the evolution of any su�ciently complex
knot, strongly distorted forms of simpler vortex knots are produced,
which all in turn exhibit similar untying dynamics to their more
ideally shaped counterparts.

We quantify the vortex dynamics by computing the
dimensionless length, vortex energy and helicity, as a function of
time (Fig. 2c–e and Supplementary Fig. 2, see Methods for details).
The vortex energy, computed from the shape of the superfluid phase
defect, measures the energy associated with the vortical flow, as
opposed to sound waves. The total combined energy (from vortices
and sound waves) is conserved in the GPE unless a dissipative term
is added; we do not include one here.

The non-dimensional ‘centreline helicity’, h—whichmeasures the
total linking, knotting and coiling in the field—is given by6,7,12,22:

h=
X
i 6=j

Lkij +
X

i

Wri (2)

where Lkij is the linking number between vortex lines i and j, and
Wri is the 3D writhe of line i, which includes contributions from
knotting as well as helical coils. Note that helicity in a classical fluid

would include a term proportional to the twist inside the core (see
Methods for a discussion of twist in the context of superfluid cores).

Three general trends can be clearly discerned from our results:
the timescale for unknotting is determined predominantly by the
overall scale of the knot, r0/⇠ , where r0 is the rope thickness of
the ideal shape used to generate the initial state (Fig. 3a–d); the
helicity is not simply dissipated, but rather converted from links
and knots into helical coils, with an e�ciency that depends on scale
(Fig. 3e–h); and the vortex lines stretch by ⇠20% as they untie,
even though the vortex energy decreases slightly. We note that the
vortex energy changes through reconnections, as some energy is
converted to sound waves (in line with previous observations of
colliding rings23). Interestingly, all of these results are apparently,
on average, independent of knot complexity: for the same scale, r0,
simple knots untie just as quickly as complicated ones, and lose the
same relative amount of helicity and vortex energy (Supplementary
Fig. 3). We furthermore note that these results are also consistent
with previous results for knots in experimental viscous fluids and
Biot–Savart simulations12,24.

Conversion of helicity from knots and links to helical coils
has previously been observed for trefoil knots and linked rings
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Figure 2 | Geometric evolution of vortex knots. a, The untying of a randomly distorted 6-crossing knot (K6-2, r0 =50⇠) to a collection of unknotted rings.
The rescaled time, t0 = t⇥� /r02, is shown for each step. The top section shows density iso-surfaces of the local order parameter (red, | |2 = 1/2) and the
transparent surfaces (teal or purple) show a constant phase iso-surface. Each volume has been centred on the vortex, which would otherwise have a net
vertical motion; only 48% of the simulation volume is shown. b, The fraction of simulations that have untied/unlinked as a function of time, computed for
the 322 simulations of ideal knots with r0 =50⇠ . The median unknotting time is indicated in red. c–e, 2D histograms of relative length, vortex energy and
helicity as a function of time for all prime topologies with n9. The dashed lines indicate average values. The helicity histogram (e) includes only the
269/322 topologies with h0 � 1. See Supplementary Fig. 2 for similar histograms for each group of simulations.
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Figure 3 | Statistics of vortex knot untying. Histograms of the rescaled untying time (a–d) and the untied versus initial helicity (e–h) for four di�erent
groups of simulations: a–c,e–g, All 322 ideal knots with n9 at a scale of r0 ={15,25,50}⇠ . d,h, Four randomly distorted versions of each n8 ideal knot
with r0 = 15⇠ and � =0.25r0 (492 simulations total). a–d, The distribution of untying times is well described by a log-normal distribution (dashed red line):
P(t0)/(1/t0)exp[�(( ln t0 �µ)2/(2� 2))], where the average unknotting time is ht0i⇡expµ={4.0,3.9,3.5,3.7} and the spread is � ={0.37,0.41,0.44,0.47}
for a–d respectively. e–h, The final helicity is approximately proportional to the initial helicity (red line). The degree to which helicity is preserved depends
on overall scale, but is apparently only slightly a�ected by randomly distorting the knots. (This slight di�erence might be explained by the knots being
e�ectively larger from the distortion.)

in classical fluids12, and can be explained through a geometric
mechanism. After each reconnection event, helices with a range
of length scales are produced on the reconnected vortices. If one
assumes a perfectly antiparallel reconnection without any spatial
cuto�, this process is expected to exactly conserve helicity12,25.
However, in the GPE, helical distortions on the scale of the

healing length are radiated away as sound waves (Supplementary
Movie 4). As a result, we observe an average helicity loss
with an approximate 1h/h0 / (r0/⇠)�0.5 trend. Remarkably, these
results suggest that as the scale becomes very large, r0 � ⇠ ,
helicity conservation should be recovered even though knots
still untie.
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If one assumes that concentrated vorticity distributions will
always expand, the observation that knots universally untie has
an intuitive description. Collections of unknotted vortex rings
may separate without stretching individual vortex lines, but a
linked or knotted structure must stretch to expand. At the same

time, if the system is undriven the vortex lines must reorient to
conserve energy as they stretch: as previously observed for simple
knots, the formation of closely spaced, antiparallel vortex pairs
reduces the energy per unit length3. As the stretching continues,
these antiparallel regions are driven closer together until they

4

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys3679
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS3679 LETTERS
ultimately reconnect; this process continues until the knots are
completely untied. We note that, in most cases, the stretching stops
abruptly after the knots finish untying (Supplementary Fig. 1), in
agreement with this interpretation. Interestingly, such a picture
also naturally produces the antiparallel reconnection geometry that
favours helicity conservation.

Although the above results demonstrate the overwhelming
tendency for vortex knots to untie, they do not elucidate the specific
topological pathways which produce this untangling. To measure
these unknotting sequences, we identify the topology, Ti, of the
vortices after each reconnection by computing their HOMFLY-
PT polynomials26,27. Owing to the high degree of symmetry of
ideal knots, reconnections are often nearly coincident in time,
preventing identification of the intermediate topology. To avoid this
complication, we consider only the decays of the randomly distorted
knots, which break this symmetry.

The first question we examine is whether the knot is simplifying
at each step. We quantify the knot complexity by means of the
crossing number, n, of each knot in a minimal two-dimensional
(2D) diagram (Fig. 1f), which is a topological invariant of the
knot. Supplementary Table 2 shows the statistics of the jumps in
the crossing number through all reconnections, revealing knots are
about an order of magnitude more likely to ‘untie’ (1n< 0) than
‘retie’ (1n>0) at each individual reconnection. On average, more
than one crossing is removed with each reconnection, underscoring
the fact that physical reconnections of vortices in 3D are not
equivalent to removing (or adding) a single crossing from a 2D
minimal knot diagram. Nonetheless, the minimal diagrams reveal
a clear trend towards topological simplification.

If each reconnection does not correspond to ‘removing’ a
single crossing from a 2D knot diagram, is it still possible to
produce an intuitive description of these events in terms of such
diagrams? This question can be answered by considering the 2D
topological writhe, w(Ti), which is obtained by summing the
handedness (±1) of each crossing in a minimal knot diagram
(obtained from ref. 28). Remarkably, we find that the vast majority
(96.1%) of reconnection events only add/remove crossings of the
same sign from 2D diagrams, that is, |1n| = |1w| (including
events with remove a single crossing). As shown in Fig. 4b,c,
reconnections which satisfy this condition are equivalent to the
relaxation of a parallel or antiparallel pair in a 2D diagram. For
the perspective of minimal diagrams, the removal of multiple
crossings occurs by a single reconnection in an antiparallel pair,
followed by the untwisting of a topologically trivial loop by type-I
Reidemeister moves29,30 (Fig. 4b). Reconnections followed by more
complicated simplifications are possible (for example, incorporating
type-II Reidemeister moves); however, such events are observed to
be rare.

Figure 5 and SupplementaryMovie 5 show the topological writhe
and crossing number of every knot with n  8, including non-
prime topologies, connected by lines indicating the frequency of
the observed unknotting pathways. (This is similar to diagrams
which have previously been constructed for mathematical knot
simplification of a di�erent type31.) In addition to illustrating
the above results, this diagram reveals the importance of the
‘maximally chiral’ topologies, for which |w| = n. The topological
writhe for any particular knot or link is bounded by the number
of crossings; maximally chiral knots and links saturate this bound,
which corresponds to every crossing having the same sign.

Despite the fact that only around a third of all n8 topologies
are maximally chiral, 82.6% of jumps end in such a state. The
dominance of this pathway has a simple interpretation: if we assume
all reconnections satisfy |1n| � |1w|, corresponding to a slope
of |1n/1w| � 1 in Fig. 5, once the vortex knot decays into a
maximally chiral topology it can leave such a state only by increasing
its crossing number. (Although the observation that |1n|� |1w|

seems self-evident when considering minimal crossing diagrams,
we are not aware of a proof of this relationship. Nonetheless, we
never observe reconnections which violate it.) Indeed, owing to
the ‘gap’ between maximally and non-maximally chiral states, the
crossing number must increase by 1n�+2 to leave the maximally
chiral branch. Moreover, even in the event that the crossing number
does increase by this amount, we observe that it still typically stays
on the maximally chiral branch. Thus, statistically, most knots are
funnelled into a maximally chiral pathway during their untying,
after which they decay only along this pathway.

Our observation of a preferred maximally chiral pathway is
a generalization of a previously known result for site-specific
recombination of DNA knots: any p= 2 torus knot/link (which
are all maximally chiral) may convert into another p = 2 torus
knot by means of reconnections only if the crossing number is
decreasing2. Our results indicate that this torus knot pathway is
one example of a more general phenomena. Intuitively, this suggests
untangling knots tend to end up in states which are twisted in only
one chiral direction.

Taken as a whole, we find that the topological behaviour of
superfluid vortex knots and links can be understood through simple
principles. All vortex knots untie, and they tend to do so e�ciently:
monotonically decreasing their crossing number until they are
a collection of unknotted vortices. This suggests that non-trivial
vortex topology in superfluids—or any fluidwith similar topological
dynamics—should arise only from external driving. Even in the
presence of driving, the observed decay pathways indicate that
vortices would probably settle into a maximally chiral topology; it
would be of great interest to probe for such states in superfluid or
classical turbulence.

The evolution and untying dynamics of the superfluid knots
we observe is strongly reminiscent of those in classical fluids
and DNA recombination2,3,12. These similarities persist despite
fundamental di�erences between these systems, especially with
regards to the small-scale details of the reconnection processes
that drive topology changes. This suggests that they might apply
even more generally, forming a universal set of mechanisms for
understanding the evolution of knots in a variety of dissipative
physical systems.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Simulation details. The time evolution of the superfluid order parameter was
computed by numerically integrating the Gross–Pitaevskii equation using a
split-step spectral method along the lines of refs 8,12. For simulations with mean
radius r0/⇠={15,25}, we use a grid size of1x=0.5⇠ , a simulation time step of
1t=0.02, and save the traced vortex paths at an interval of1T =1. For
simulations with r0 =50⇠ , we compute a coarser simulation with1x=1⇠ ,1t=0.1
and1T =4. The radial distance from the vortices at which the order parameter,
| |, recovers to half its far-field value (often referred to as the ‘core size’) is
determined by the healing length and is approximately R⇠2⇠ . A small number of
simulations of the same sized knot at di�erent resolutions (1x/⇠={0.25,0.5,1})
was used to confirm that the coarser simulations do not significantly a�ect the
computed length and helicity of the vortex as it unties (the noise in these computed
quantities does increase, but we do not observe systematic di�erences). The total
size of the periodic simulation box was L/⇠={128,192,384} for r0/⇠={15,25,50},
respectively. Occasionally, small vortex rings ejected from the untying vortices
interact with their periodic partners by traversing the boundary; in general this
happens only after the vortices have untied. To ensure that the size of the box does
not a�ect the behaviour of the knot, we have simulated the same knot in several
di�erently sized periodic volumes; we find that the behaviour of the knot is
virtually identical so long as it is spaced more than a few r0 from its periodic
partner (in practice, the most complex knots have a maximum extent of only
around half the length of edge of the simulation box).

We note that we employ a version of the GPE without dissipation, and so the
total energy is conserved. Numerically, there is some small loss (always less than 1%
and typically less than 0.2%), which is not significant for any of our results. We also
include a chemical potential of µ=�1 (in dimensionless units) in our definition of
the GPE; this is added to remove an overall phase rotation. Removing this
additional term would produce mathematically identical results, as the overall
phase is not physically significant.

Initial state construction. The phase fields for the initial states were generated by
brute force integration of a Biot–Savart-generated flow field, uBS, which is related to
the phase gradient through the relationship:

r�(x)=uBS(x) (3)

This method is described in more detail in ref. 12. An example an initial phase field
is shown in Fig. 1e and Supplementary Movie 1.

The initial density field, ⇢=| |2, was calculated using an approximate form
obtained for an infinite, straight vortex line32:

⇢(r)=
11
32 r

2 + 11
384 r

4

1+ 1
3 r 2 + 11

384 r 4
(4)

where r was taken to be the distance to the closest vortex line.
To ensure consistency between di�erent topologies, we choose the ‘ideal’ form

of each knot, equivalent to the shape of the shortest knot tied in a finite thickness
rope (Fig. 1b–d; ref. 20). These canonical shapes are known to capture aspects of
the knot type as well as approximating the average properties of random knots21,
making them a useful reference geometry for each topology. The shapes of ideal
knots for di�erent topologies were obtained from an online source
(http://katlas.math.toronto.edu/wiki/Ideal_knots), and were initially generated by
means of the SONOmethod20.

To create randomly distorted knots, we compute a random normally distributed
vector, �, for each point in a polygonal representation of the vortex knot in
question. We then smooth this vector with a Gaussian of width � =0.5r0 (measured
along the path of original vortex line), remove the component tangential to the
original knot path, and rescale the displacement vector so that h|�|2i=(0.25r0)2.
This displacement is added to the original coordinates to obtain the distorted knot.
Examples of randomly distorted knots are shown in Fig. 2a and the inset of Fig. 3d.
For the data shown in the paper, four randomly perturbed copies of each n8
knot/link (4⇥123 configurations) were considered at a scale of r0 =15⇠ . A small
number of randomly distorted knots at larger scales were considered, producing
qualitatively similar e�ects to the scaling of undistorted ideal knots.

Quantification of vortex behaviour. For each saved time step, a polygonal
representation of the vortex shape is obtained by tracing the phase defects in the
superfluid order parameter with a resolution set by the simulation grid (typically
resulting in&103 points total). In addition, a phase normal, �̂, is computed for
each point on the vortex by finding the direction of zero phase which is
perpendicular to the vortex path. All subsequent properties (vortex energy, helicity,
and length) are computed from this path.

To determine the moment which a knot finishes untying, we find the moment
at which its HOMFLY-PT polynomial is equivalent to unknots (see ‘Identification
of Vortex Topology’ below). A histogram of the unknotting times, Fig. 3a–d, is
consistent with a log-normal distribution. We find that once the time is

appropriately rescaled, the mean unknotting times for each simulation group are in
the range htunknoti⇡(3.5�4.0) r 02/� (r0 is the diameter of the ‘rope’ in which the
ideal knot is tied).

As stated in the main text, we compute the centreline helicity in the
dimensionless form:

h=
X

i 6=j

Lkij +
X

i

Wri (5)

Although this can be computed directly from the polygonal paths, this method
requires special considerations for dealing with linking across periodic boundaries.
Alternatively, we may note that a surface of constant phase defines a ‘Seifert
framing’ for each knot/link obeying h+P

i Tw�,i =0 (ref. 22), where Tw�,i is the
twist of the phase normal about the vortex path:

Tw�,i =
I

Ci

d`· �̂⇥@s�̂ (6)

where Ci refers to closed vortex path i, @s is a path-length derivative and �̂ is a unit
vector that is lies along a surface of equal phase and is perpendicular to the tangent
vector of the vortex line at that point. As the total twist can be easily numerically
integrated from the vortex path and phase normal, it provides an e�cient method
for computing centreline helicity. We have numerically confirmed that this method
provides results equal to direct computation of linking and writhe, up to numerical
precision.

The energy associated with the vortices in the superfluid (as opposed to sound
waves), Ev, is computed from the ‘path inductance’3, Eij, of the vortex centrelines:

Ev ⇠= ⇢� 2

2
X

ij

Eij (7)

Eij = 1
4⇡

|ri�rj |> ⇠
2I

Ci

I

Cj

dri ·drj��r�rj
�� +�ij 2�↵

2⇡
Li (8)

where Li is the total length of vortex loop i.
Here, ↵⇠=1.615 is a dimensionless correction factor chosen to obtain the

correct value for the energy of a vortex ring in the GPE (ref. 33). To account for the
periodic nature of the simulations, the cross inductance is included for a 3⇥3⇥3
periodic array of vortex paths (including more periodic copies improves the
accuracy of the calculation, but the di�erence is typically only a small fraction of a
per cent). Note that the total energy in the superfluid is conserved, so a reduction
in vortex energy corresponds to an increase in the energy in sound waves. The vast
majority of energy changes in the vortices are seen to occur during or immediately
after reconnection events; otherwise the computed energy is nearly constant.

Identification of vortex topology. To identify the topology of the superfluid
vortices at each time step, the polygonal vortex representation is first reduced to the
minimum possible number of points possible without changing the topology
(unknots are also removed at this stage, if they are not threaded by any other vortex
lines). Once the vortices are reduced, they are projected into an arbitrary 2D plane
and the projected crossings and their handedness are identified; the HOMFLY-PT
polynomial is created directly from this crossing list. This polynomial is compared
against an internally generated database of HOMFLY-PT polynomials for all
topologies (including chiral pairs, oriented links, and disjoint and compound
knots/links) with a minimal crossing number of n10. As mentioned in the main
text, we label topologies following the format used by the ‘Knot Atlas’,
http://katlas.org, for example, a ‘stevedore’s knot’ is K6-1, with the ‘K’ indicating it
is a knot (versus a link, ‘L’), n=6 is the minimal crossing number (Fig. 1f), and the
remainder indicates an arbitrary ordering.

The database of HOMFLY-PT polynomials for prime topologies was generated
starting from the crossing diagrams obtained from ref. 28. The equivalence
of oriented links was determined by assuming all orientational permutations with
identical HOMFLY-PT polynomials are topologically equivalent. The HOMFLY-PT
polynomial of disjoint and compound topologies was computed algebraically
from the HOMFLY-PT polynomials of their components, and added to the list.
We do not treat configurations with extra unknots to be distinct topologies, and do
not distinguish between disjoint and compound topologies. (We note that disjoint
knots are rarely observed in the decay pathways, and are furthermore di�cult
to distinguish from compound knots by means of HOMFLY-PT polynomials if
unknots are also present.) There exist several knots/links with identical HOMFLY-
PT polynomials for n�9, but we do not encounter any of these in the observed
pathways for knots starting with n8, which were used to compute decay pathways.
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