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Topological mechanical metamaterials are artificial structures whose
unusual properties are protected very much like their electronic
and optical counterparts. Here, we present an experimental and
theoretical study of an active metamaterial—composed of cou-
pled gyroscopes on a lattice—that breaks time-reversal symme-
try. The vibrational spectrum displays a sonic gap populated by
topologically protected edge modes that propagate in only one
direction and are unaffected by disorder. We present a mathe-
matical model that explains how the edge mode chirality can be
switched via controlled distortions of the underlying lattice. This
effect allows the direction of the edge current to be determined
on demand. We demonstrate this functionality in experiment and
envision applications of these edge modes to the design of one-
way acoustic waveguides.
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Avast range of mechanical structures, including bridges, co-
valent glasses, and conventional metamaterials, can be ul-

timately modeled as networks of masses connected by springs (1–
6). Recent studies have revealed that despite its apparent sim-
plicity, this minimal setup is sufficient to construct topologically
protected mechanical states (7–11) that mimic the properties of
their quantum analogs (12). This follows from the fact that,
irrespective of its classic or quantum nature, a periodic material
with a gapped spectrum of excitations can display topological
behavior as a result of the nontrivial topology of its band struc-
ture (13–21).
All such mechanical systems, however, are invariant under

time reversal because their dynamics are governed by Newton’s
second law, which, unlike the Schrödinger equation, is second
order in time. If time-reversal symmetry is broken, as in re-
cently suggested acoustic structures containing circulating flu-
ids (16), theoretical work (13) has suggested that phononic
chiral topological edge states that act as unidirectional wave-
guides resistant to scattering off impurities could be supported.
In this paper, we show that by creating a coupled system of
gyroscopes, a “gyroscopic metamaterial,” we can produce an
effective material with intrinsic time-reversal symmetry break-
ing. As a result, our gyroscopic metamaterials support topo-
logical mechanical modes analogous to quantum Hall systems,
which have robust chiral edge states (22–24). We demonstrate
these effects by building a real system of gyroscopes coupled in
a honeycomb lattice. Our experiments show long-lived, unidi-
rectional transport along the edge, even in the presence of
significant defects. Moreover, our theoretical analysis indicates
that direction of edge propagation is controlled both by the
gyroscope spin and the geometry of the underlying lattice. As a
result, deforming the lattice of gyroscopes allows one to control
the edge mode direction, offering unique opportunities for en-
gineering novel materials.
Much of the counterintuitive behavior of rapidly spinning

objects originates from their large angular momentum, which
endows the axis of spin with a resistance to change. If we fix
one end of a gyroscope and apply a force, ~F, to the opposing free
end of the spinning axis, we produce a torque of ~τ=~ℓ×~F,
where~ℓ is the axis of the gyroscope, pointing from the fixed to

the free end. In the fast spinning limit, the response of the gyro-
scope’s axis is

_~ℓ=
ℓ2

Iω

�̂
ℓ×~F

�
, [1]

where ω is the gyroscope angular frequency and I is its rotational
inertia. The behavior of a gyroscope differs from that of a simple
mass in two important ways: (i) It moves perpendicular to ap-
plied forces and (ii) its response is first order in time. The ca-
nonical example of this unusual behavior is precession: A
spinning top does not simply fall over, but rather its free end
orbits around the contact point (precesses) with a constant pe-
riod, Ωg =mgℓcm=Iω, where ℓcm is the distance from the pivot
point to center of gravity.
What happens if we replace the masses in a conventional

mechanical metamaterial with gyroscopes? A first glimpse is
provided by a normal mode analysis of honeycomb lattices
composed of mass–spring and gyroscope–spring networks.
The density of states of these two systems (Fig. 1A) shows
qualitatively similar features: Each is characterized by two
bands, a lower “acoustic” band (where neighboring sites move
in phase) and an upper “optical” band (where neighboring
sites move out of phase). The connections between these two
bands, however, show key differences: In the mass–spring
system the two bands touch at a Dirac point, whereas in the
gyroscopic system a gap opens up between the bands. Cru-
cially, this gap is not empty, but populated by nearly equally
spaced modes and the number of these edge modes scales with
the length of the edge. Examination of these gap modes re-
veals them to be confined to the edge and to be chiral: The
phases always rotate in the same direction as one moves
around the lattice (Fig. 1B). As we show below, these edge
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modes are topologically robust and can therefore serve as
unidirectional waveguides.
It is far from obvious that in a real system the phonon spec-

trum would be resistant to the presence of both disorder (lattice
imperfections, gyroscopic nonuniformity, etc.) and mixed-order
dynamics (e.g., nutation). However, an appealing feature of to-
pological states is that they are often resistant to disorder, sug-
gesting that they may be useful for acoustic applications and
observable under a wide range of experimental conditions.

To explore the relevance of these effects, we have assembled
a prototype system of 54 interacting gyroscopes on a honeycomb
lattice (Fig. 2A and Fig. S2). Our gyroscopes consist of small dc
motors spinning cylindrical masses at ∼300 Hz (with ∼ 10%
variation in motor speed); each is suspended from a top plate by
a weak spring (Fig. 2B), producing an individual precession
frequency of Ωg ∼ 1 Hz. To couple these gyroscopes in a lattice,
a small neodymium magnet is placed in each spinning mass with
its moment aligned vertically, causing the gyroscopes to repel.
For small displacements, this creates a linear effective spring-
like force between gyroscopes that is comparable in strength to
the gravitational pinning force.
The magnetically coupled system is conceptually equivalent

to the system of gyrosocopes connected by springs discussed ear-
lier; the linearized magnetic coupling differs, however, in detail
from the coupling given by springs because the equilibrium results
from the cancellation of opposing forces instead of the absence of
forces. As detailed in Supporting Information, this results in a mode
spectrum that is shifted to lower frequencies (Fig. 2C), compared
with a spring-coupled gyroscope system (Fig. 1A). However, the
topological character of the band structure is not affected and
acoustic and optical bands are still apparent with chiral edge modes
in between.
To test the mechanical response of the gyroscopic meta-

material, we excite it with periodic bursts of air through a small
nozzle and follow the resulting disturbance. We probe the
normal modes by weakly exciting a single gyroscope at a fixed
frequency for many (>100) periods and recording the resulting
motion of the network. All excitations were kept to small
amplitudes (<10% of the lattice spacing) to avoid the non-
linearities associated with coupling the gyroscopes magnetically
(Figs. S3–S5).
The effect of disorder inherent to our experiment (e.g., vari-

ation in motor speed and gyroscope pivot position) can be clearly
seen in the comparison between the structure of bulk modes as
shown in Fig. 2 D and F for the idealized (Left) and experimental
system (Right). There is little overall agreement between calcu-
lated and measured modes, though acoustic modes show ap-
proximate in-phase oscillation of adjacent gyroscopes and optical
modes show approximate out-of-phase oscillation of adjacent
gyroscopes. This is characteristic of the effects of disorder (25),
which produces the same effect in numerically evaluated modes
with comparable disorder (Fig. S6).
Despite these experimental imperfections, exciting a mode in

the gap between the acoustic and optical bands produces clean
excitations along the edge (Fig. 2E). The orientations and rela-
tive orbit sizes of these modes closely match the modes numer-
ically computed for an idealized model. A comparison between
calculated and measured edge mode frequencies is shown in Fig.
S5. The robustness of these modes against disorder is charac-
teristic of their topological character.
To demonstrate that our experimental metamaterial func-

tions as a unidirectional waveguide, we excite a single edge gy-
roscope for five periods at a frequency in the gap. As shown in
Fig. 3A and Movie S1, the resulting excitation propagates in
only one direction around the edge of the lattice. The motion
of this wave packet around the edge is persistent, circum-
navigating the boundary several times. As expected, short ex-
citations at a frequency not in the band gap do not produce a
similar robust edge excitation (Movie S2). Crucially, this in-
dicates that the chiral edge modes are topologically protected
from coupling to the bulk modes, functioning as an efficient
one-directional waveguide.
We further demonstrate the robustness of these edge modes

by intentionally introducing disorder in the lattice, for example
by removing three gyroscopes. As shown in Movie S3 and Fig.
3B, even this significant disturbance does not destroy the chiral
edge modes. An excitation on the edge is seen to move around

A

B

Fig. 1. Gyroscopic metamaterials and edge states. (A) A comparison be-
tween the density of states of a mass–spring (Top) and gyroscopic meta-
material (Bottom) on a honeycomb lattice. In both networks neighboring
masses (gyroscopes) are coupled by springs and each mass(gyroscope) feels a
restoring force toward its equilibrium position. In the gyroscope network,
the spring interaction frequency is Ωk=Ωg. The acoustic and optical bands of
the network of masses connected by springs meet at a (Dirac) point. By
contrast, in the network of gyroscopes connected by springs, there is a gap
between acoustic and optical bands that is populated by chiral edge modes.
(B) A normal mode (evaluated numerically) between the acoustic and optical
bands in a lattice of 96 gyroscopes. The shape of each orbit in the normal
mode is indicated with ellipses and the phase at a fixed time is indicated via
color. The phase of the gyroscopes along the edge is indicated below,
showing the phase velocity is unidirectional. This combined with the absence
of a corresponding mode with opposite phase velocity is the key charac-
teristic of chiral edge states.
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this disturbance—in the same direction as before—and emerge
undisturbed on the other side. Remarkably, the excitation tra-
verses the defect region without scattering backward or into the
bulk. As before, the resilience of the edge modes suggests these
edge states are topological in character.
To analyze the origin of these effects, we return to an ideal

coupled gyroscope model. For simplicity, we represent the dis-
placement of the tip of the gyroscope from equilibrium as
ψ → δx + iδy. In this form, the linearized version of Eq. 1 is
iðdψ=dtÞ= ðℓ2=IωÞF, where F→Fx + iFy is the complex repre-
sentation of the interaction force and the complex phase, i, arises
from the cross-product. Accordingly, the linearized equation of
motion for each site in the gyroscopic metamaterial is

i
dψp

dt
=Ωgψp +

1
2

X
q∈n.n.ðpÞ

h�
Ω+

ppψp +Ω+
pqψq

�

+ e2iθpq
�
Ω−

ppψp*+Ω−
pqψq*

�i
,

[2]

where p is the site label, q the neighboring sites, θpq is the spring
bond angle, and Ω±

pj =− ℓ2
Iω ð∂Fpk=∂xjk ± ∂Fp⊥=∂xj⊥Þ are determined

from gradients of the force on p, Fp, parallel and perpendicular

to the line connecting the equilibrium positions of the gyroscopes.
In the case of the interactions being provided by springs, Ω±

pq =
kℓ2=Iω=Ωk, where k is the spring constant.
Symmetries often play a fundamental role in characterizing a

system’s topological behavior; in the case of the gyroscopic ma-
terials, broken time-reversal symmetry is a natural starting point.
We note that the linearized equation of motion bears remarkable
similarity to the Schrödinger equation for the wavefunction of an
electron in a tight-binding model. Thus, by analogy, we may
analyze the breaking of temporal symmetry using the “time-
reversal” operation in quantum mechanics: t→ − t, ψ →ψp. For
gyroscopes, conjugating ψ mirrors their displacement in the y
axis; applying the complete time-reversal operation to a single
gyroscope leaves the equation of motion unchanged. Similarly,
for a network of gyroscopes Eq. 2 is invariant under this oper-
ation only if the coefficient e2iθpq is real (up to a global rotation),
and breaks the symmetry otherwise. Thus, crucially, we see that
the breaking of time-reversal symmetry depends on distribution
of bond angles in the lattice, and not simply the response of
individual gyroscopes.
The geometric origin of the time-reversal symmetry breaking

can also be seen in the case of gyroscopes connected by springs,

F

A

B C

D

E

Fig. 2. Demonstration of robustness of edge modes in experiment. (A) A picture of the experimental system as viewed from below. (B) The edge of the
experimental lattice from the side, showing the construction of the individual gyroscopes as well as the fixed magnets around the edge that provide the
lateral confinement. (C) The calculated histogram of normal mode frequencies for an array of 54 gyroscopes arranged in a honeycomb lattice (no disorder) is
shown. The frequencies range from 0.7 to 2.5 Hz. (D–F) A comparison of calculated normal modes in an ideal magnetic-gyroscope network (Left) as measured
in an experimental system (Right). For each system a mode is shown in (D) the optical band, (E) the band gap, and (F) the acoustic band. Disorder has a strong
effect on bulk mode profiles. However, the gap mode profiles correspond much more closely to the ideal modes in shape, orientation, and phase of the
gyroscope orbits.
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by considering the energy of two connected gyroscopes. In the
linearized limit, the stretching/compression of the spring is
given by Δ∝ ðrx1 − rx2Þcos θ12 + ðry1 − ry2Þsin θ12. If we mirror
each gyroscope in the y axis (ψ →ψp or ry → − ry), in general the
spring length will be unchanged only if sin θ12 = 0 (i.e., if the
mirror axis aligns with the equilibrium bond angle). However,
if cos θ12 = 0, or the mirroring axis is perpendicular to the bond,
then the spring energy, Ek ∝Δ2, is conserved by converting
stretching to compression (Fig. 4A). When considering an
entire lattice, we see that for arbitrary displacements the bond
energy will be conserved under time reversal if (and only if) we
are able to choose a global mirror axis to which all bonds are
either perpendicular or parallel. As a result, time-reversal in-
variance is only guaranteed for lattices composed of square or
rectangular building blocks.
It is instructive to note that, in the limit that gyroscopes

are coupled by weak springs, Ωk � Ωg our gyroscopic meta-
material has a well-known quantum-mechanical analog: the
Haldane model of an electronic system in a honeycomb lattice
(see Supporting Information and Figs. S7 and S8 for details)
(26). In the Haldane model, time-reversal symmetry is broken
by a staggered magnetic field. This field can be varied,
resulting in a change in the topological character of the modes

as quantified by the Chern number (12, 27, 28). Accordingly,
depending on the strength of the field and asymmetry between
the two sites in the unit cell, the Chern number of the bottom
band is C− = 0, ± 1, and C+ =−C− in the top band. A Chern
number of zero indicates a trivial topology (a normal in-
sulator), whereas a nonzero Chern number indicates a non-
trivial topology. Whenever C± ≠ 0, topological edge modes
appear in the gap between the two bands; the chirality and
direction of propagation of these modes depends on the sign
of the Chern number for lower band.
In gyroscopic metamaterials, the analog to changing the mag-

netic field is to geometrically distort the lattice. In either case, the
relevant operation produces a phase shift in the hopping between
neighboring sites; in the gyroscope system this phase shift is de-
termined by the bond angles, θpq. In the case of an undistorted
honeycomb lattice, the modes have a Chern number of C± =±1,
in agreement with the Haldane model.
In a honeycomb lattice, it is possible to distort the constituent

hexagons without changing the bond length (Fig. 4 B–D),
allowing us to change the gyroscopic phase between neighboring
sites without changing the network connectivity. As predicted by
the time-reversal analysis above, the band-gap and chiral edge
modes disappear when the bonds fall on a rectangular grid (in

A

B

Fig. 3. Unidirectional waveguide modes in experiment. (A) A single edge gyroscope is excited for five periods; subsequent images show the excitation
propagation clockwise around the edge. The bottom graph indicates the displacement of one gyroscope (indicated with a triangle) in the y direction; the
excitation is seen to persist for many cycles around the edge. (B) The same experiment as in A, but with three gyroscopes removed from the bottom edge and
replaced with fixed magnets (to keep the system in equilibrium). Owing to the topological nature of the edge modes, the excitation propagates around the
disturbance.

14498 | www.pnas.org/cgi/doi/10.1073/pnas.1507413112 Nash et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507413112/-/DCSupplemental/pnas.201507413SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507413112/-/DCSupplemental/pnas.201507413SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1507413112/-/DCSupplemental/pnas.201507413SI.pdf?targetid=nameddest=SF8
www.pnas.org/cgi/doi/10.1073/pnas.1507413112


which case e2iθpq =±1). Furthermore, the dispersion relationship
of an infinite gyroscopic lattice in this configuration has Dirac

points at the corners of the Brillouin zone (Fig. 4C); this is
topologically equivalent to the dispersion relationship of a hon-
eycomb network of springs and masses. Continuing to distort the
lattice past this point restores the band gap, but the edge modes
now have opposite chirality, as reflected in an inversion of the
bands and hence of the Chern number; C± =∓1. As a result,
excitations along the edge now move in the other direction,
opposite to the precession of individual gyroscopes. These effects
can all be seen in Movies S4 and S5. Movie S4 shows the sim-
ulated dynamics of an edge mode in a spring coupled gyroscopic
metamaterial as it is being distorted. Remarkably, this indicates
the direction of the edge waveguide can be controlled purely
through geometric distortions of the lattice, analogous to an
effect recently observed in 1D acoustic phononic crystals (29).
We have presented an experimental proof of concept and

theoretical analysis of a topologically protected unidirectional
waveguide in a real mechanical metamaterial. The origin of
our topological edge modes is due to time-reversal symmetry
breaking; our analysis indicates this arises from the combination
of the chiral nature of the gyroscopes and the geometry of the
underlying lattice. Because the direction of the edge modes can
be changed discontinuously with geometric distortions, in prin-
ciple small displacements should be capable of inverting the edge
mode direction. This mechanism may have practical applications
for creating direction-tunable materials, but it also suggests in-
teresting nonlinear effects should occur in the regime near the
mechanically induced topological phase transition.
The prototypical gyroscopic solids we have developed here are

examples of active metamaterials: Their design relies on the
presence of internal motors that keep each gyroscope in a fast
spinning state. An open challenge is to construct scalable gyro-
scopic metamaterials using nanofabrication techniques (e.g.,
microelectromechanical systems) or active molecules that con-
vert chemical energy into rotation very much like the motors
powering each gyroscope (30, 31). Such an implementation
would pave the way toward realizing materials that support, at a
microscopic scale, robust topological acoustic modes.

Note Added in Proof. In the concluding stages of the present work,
we became aware of a parallel independent effort in which a
class of topological gyroscopic metamaterials was theoretically
analyzed (32).
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Equation of Motion
If a gyroscope is spinning with a large constant angular frequency,
ω, around its principal axis, ℓ̂, then its dynamics are determined
primarily by effect that forces have on its angular momentum. If
the gyroscope axis is pivoted at one end and is subject to a force,
~F at a position~ℓ from the pivot as illustrated in Fig. 1 of the main
text, then the gyroscope feels a torque~τ= d~L

dt =~ℓ×
~F. The result-

ing motion is

Iω
_~ℓ
ℓ
=~ℓ×~F

_~ℓ=
ℓ2

Iω

�
ℓ̂×~F

�
.

[S1]

For small displacements from the vertical (̂z) axis (small tilts), the
z-component of ℓ̂ is changed only to second order. Thus, the ori-
entation of the gyroscope can be represented by a complex num-
ber, ψ = δx+ iδy.
When a gyroscope is subject to a restoring force (e.g., gravity),

F =−k0ðδx+ iδyÞ, it will precess in a circular orbit at frequency
Ω0 = k0ℓ2=Iω. For gyroscopes subject to a gravitational force, the
effective spring constant is kg =mg=ℓcm, producing a precession
frequency of Ωg =mgℓcm=Iω, where ℓcm is the distance from the
fixed end to the center of mass.

Linearized Equation of Motion
To find the linearized equation of motion, we consider first an
interaction of two gyroscopes p and q, with p being at the origin
and q a distance a from p at an angle θpq, as illustrated in Fig. S1.
The effective spring constant for the interaction is given by the

gradient of the force. In general, these gradients may be asym-
metric in the components that are parallel and perpendicular to
vector from the bond, which is defined as the line connecting
points p and q. In the case of a linear spring with constant k0, for
example, the spring constant for displacements along the bond is
k0 whereas the spring constant for displacements perpendicular
to the bond is 0.
As an illustration, we now consider the linearized equation of

motion for gyroscopes p and q interacting via this linear spring.
In this case, we need only to find the displacement parallel to the
bond (Δk) and multiply it by the spring constant k0 to find the
linearized force. We may write the unit vector from p to q as eiθpq
in complex form. The parallel component Δk can be found by first
rotating the bond to the x axis, taking the real part of ψp −ψq (illus-
trated in Fig. S1) and rotating the bond back to its original po-
sition; the resulting force in complex form is given by

Fpq = k0eiθpqRe
h
e−iθpq

�
ψp −ψq

�i
[S2]

=
k0
2

h�
ψp −ψq

�
+ e2iθpq

�
ψp*−ψq*

�i
. [S3]

For a lattice, there is a sum over the nearest neighbors of each
gyroscope and the equation of motion becomes

i
dψp

dt
=Ωgψp +

Ωk

2

Xn. n.
q

h�
ψp −ψq

�
+ e2iθpq

�
ψp*−ψq*

�i
, [S4]

where Ωk = k0ℓ2=Iω and the cross-product from Eq. S1 has re-
sulted in the imaginary coefficient on the left hand side of Eq. S4.

For a general radial interaction force, ~F =FðrÞ̂r (e.g., mag-
netically coupled gyroscopes), the equilibrium positions can
result from the cancellation of opposing forces instead of the
absence of forces. In this case, we obtain the following equation
of motion:

i
dψp

dt
=Ωgψp +

1
2

Xn. n.
q

h�
Ω+

pψp +Ω+
q ψq

�
+ e2iθpq

�
Ω−

p ψp*+Ω−
qψq*

�i
,

[S5]

where Ω±
j =−ℓ2=Iωð∂Fpk=∂xjk ± ∂Fp⊥=∂xj⊥Þ. For a radially sym-

metric potential of the form ~FðrÞ= krnr̂, this results in Ω±
p =

kℓ2=Iωðn± 1Þan−1 and Ω±
q =−Ω±

p , where a is the separation be-
tween the two lattice sites.
In our experiment, the gyroscopes are coupled through small

magnets. The force can be approximated by treating each gyro-
scope as a magnetic dipole with strength M; this produces an r−4

radial force between the gyroscopes plus an antirestoring torque
from the magnetic interaction. The total effective force gradients
are given by

∂Fpk
∂xpk

=−km
�
1−

a2

12ℓ2

�
;

∂Fpk
∂xqk

=+ km

�
1+

a2

6ℓ2

�

∂Fp⊥

∂xp⊥
=+

km
4

�
1+

a2

3ℓ2

�
;

∂Fp⊥

∂xq⊥
=−

km
4

�
1+

a2

3ℓ2

�
,

[S6]

where km = 3μ0M2=πa5 is the magnetic characteristic spring con-
stant, corresponding to a gyroscope precession frequency of
Ωm = kmℓ2=Iω, and we have converted torques between the mag-
netic dipoles to equivalent forces that depend on the ratio of
lattice spacing (a) to pendulum length (ℓ).
In a honeycomb lattice, the symmetry of the lattice allows for

the equations of motion to be simplified to

i
dψp

dt
=Ωg′ψp +

1
2

Xn.n.
q

h
Ω+

�
ψp −ψq

�
+Ω−e2iθpq

�
ψp*−ψq*

�i
, [S7]

where Ωg′ =Ωg − ð3a2=8ℓ2ÞΩm and Ω± = ½1+ a2=6ℓ2∓ð1=4+ a2=
12ℓ2Þ�Ωm. Here we see that the magnetically coupled system is
different from the spring-coupled lattice in two ways: The effec-
tive pinning frequency, Ωg is decreased, and there is an asymme-
try between the Ω+ and the Ω− terms.
The equation of motion for the magnets, Eq. S7, is nearly equiv-

alent to the simple linear spring case, excepting the slight asym-
metry between the ψ and ψp terms. (Note that for springs, the
pairwise force between the two sites is 0 at equilibrium, which
results in Ω±

p =Ωk and Ω±
q =−Ωk and recovers a simpler equation

of motion, Eq. S4.) The asymmetry of these terms has an in-
teresting effect when viewed from the perspective of time-reversal
symmetry breaking: The ψp terms couple forward and backward
propagating modes, and so when Ω− >Ω+ the symmetry breaking
terms are relatively stronger. As a result there is a wider band gap
for the magnetically coupled gyroscopes in comparison with those
coupled by linear springs.

Experimental Details
The gyroscopic metamaterial was constructed from 54 hanging
gyroscopes, as shown in Fig. S2. Each individual gyroscope
consisted of a 3D printed cylindrical rotor (radius 10.4 mm) heat
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fitted to the shaft of a small (20 mm long) brushed dc pager
motor. An N40 neodymium magnet (9-mm diameter, 4-mm thick-
ness) was embedded with its moment aligned with the z axis in
each rotor. The spinning mass of each gyroscope rotor was 6.1 g.
The dipole moment of the magnets was determined from direct
measurement of the force between attracting magnets (with dipole
moments aligned) to be M = 0.22± 0.02 Am2. Each spinning mass
was enclosed in a housing that was glued to the motor shaft and
suspended by a weak spring. When the end of the gyroscope is
displaced, the bending of the spring gives an effective pendulum
length of ℓ= 40± 2 mm.
The spacing between gyroscopes in the experimental lattice was

30.5 mm, corresponding to an effective spring constant that is
roughly equivalent to the magnitude of the effective gravitational
pinning spring, Ωm ∼Ωg.
Fixed magnets (N52, 10-mm o.d., 5.5-mm i.d., 3 mm thick) were

placed at the perimeter of the system in the position of each edge
gyroscope’s missing neighbor. These fixed magnets were ap-
proximately two-thirds the strength of the inner magnets. We
note that this detail is not crucial to the topological nature of the
system. The strength of the boundary magnets does not change
the frequencies of the gap edges (which depend on the bulk prop-
erties), and only slightly affects frequency distribution of modes
within the gap.
We obtained the experimental normal modes for the frequency

range ∼ 0.5− 2.0 Hz in frequency steps of 0.02 Hz. At each fre-
quency, the system was excited at one lattice site for 80 s before
recording began and subsequently recorded at the excitation
frequency for 100 s. We found the elliptical orbits for each gy-
roscope using the Fourier transforms of the position vs. time data.

Linearity of the Magnetically Coupled System
It has been shown experimentally that lattices of interacting
magnets can exhibit nonlinear behavior when excited at suffi-
ciently large amplitudes (33). To ensure that our experiments
were performed in a regime where linear analysis can be applied,
we tested for the presence of nonlinear effects with three ex-
periments that are summarized here and listed in detail below.
(i) We characterized the shift in the normal mode frequencies of
a pair of interacting gyroscopes as a function of the excitation
amplitude. (ii) We verified that the frequency of an edge mode
in our system of 54 interacting gyroscopes does not shift signif-
icantly as the amplitude of excitation was changed. (iii) We
measured speed of the wave packet shown in Movie S1 and
verified that the change in amplitude does not significantly affect
the average speed of the wave packet. Our measurements of the
effects of nonlinearities (detailed below) cover a range of exci-
tation amplitude beyond the maximum excitation amplitude in
the experiments of the main text.

i) Fig. S3 shows the measured normal mode frequencies of a
pair of interacting gyroscopes, each with two neighboring
boundary magnets in a honeycomb configuration (as de-
scribed in Experimental Details). Two normal mode frequen-
cies are expected: a lower frequency mode in which the
gyroscopes precess in phase (red dots in Fig. S3) and a higher
frequency mode in which the gyroscopes precess out of
phase (green dots in Fig. S3). The frequencies of both modes
were tracked as the amplitude of an excitation damped dur-
ing an interaction. The nonlinearity of the interaction is ap-
parent because the mode frequencies are not constant with
amplitude. However, at the upper limit of excitation ampli-
tude of the experiments presented in the main text (3 mm),
the deviations of the frequency are not appreciable. At this
amplitude, a frequency shift of only less than 2% was ob-
served for either of the modes. We note that the frequency
shift reaches a maximum of 5% for the antisymmetric mode
when the excitation amplitude reaches 4 mm.

ii) The frequency shift of a gap mode was measured at varying
excitation amplitudes. For each test a region of 0.06 Hz was
tested near a known peak, and each frequency was excited
for 80 s before recording and subsequently recorded for
100 s, as described previously. We determined that for changes
in excitation amplitude ranging from 1.2 to 4.0 mm, the shift in
frequency was less than 0.02 Hz. An example of the effect is
shown in Fig. S5B. The frequencies for the fourth mode number
are plotted for three amplitudes in the range indicated above.

iii) We tracked the position of the edge mode wave packet shown
in Fig. S4 and Movie S1 as the amplitude of oscillation de-
cayed. The position of the wave packet was found in each
frame using a center-of-mass method, in which each lattice
point was weighted by the squared displacement of its gyro-
scope. As shown in Fig. S4, the average speed of the wave
packet is unaffected by the gradual decay in amplitude.

Furthermore, we do not observemodemixing at the amplitudes
of the data presented in this work.

Normal Mode Analysis
For second-order mass and spring systems with n lattice sites in
two dimensions, we find the normal modes by considering the
system of equations

m€~X =−K~X , [S8]

where ~X a vector of dimension 2n containing the x and y dis-
placements of each mass in the network and K is a coupling
matrix between sites. The normal modes are found by finding the
eigenvalues, Ω2, and eigenvectors, ~ϕ, of the K matrix:

�
m−1K−Ω2I

�
~ϕ= 0. [S9]

To find the normal modes of a finite system of gyroscopes we con-
sider the linearized equations of motion, Eq. S5. As with the
spring and mass system, these equations of motion can be ex-
pressed as a matrix:

i _~Z=−K′~Z, [S10]

where ~Z again has dimension 2n; the basis states are of the form
ψp =Ae−iΩt +BpeiΩt. The normal modes are given by the eigen-
values and eigenvectors of the K ′ matrix:

ðK ′−ΩIÞ~ϕ= 0. [S11]

To accurately model the experimental system, we included the ef-
fects of the weaker boundary magnets. First, an energy minimiza-
tion was performed on a honeycomb lattice with 54 magnetically
interacting points surrounded by weaker boundary magnets as de-
scribed in Experimental Details. The energy minimization gave the
equilibrium points that were used in the finite-system normal
mode calculation. The spring constant between gyroscopes was
given by k= 3μ0M2=πr5, where r was the separation between in-
teracting gyroscopes. The mode frequencies were calculated by
assuming coupling of individual gyroscopes with all gyroscopes in
the lattice as well as with only nearest-neighbor coupling.
A comparison between the expected gap modes from the

model and the measured edge modes in the experiment is shown
in Fig. S5. The shaded regions indicate the range of possible gap
mode frequencies calculated with the measured experimental
values M = 0.22± 0.02 A m2 and ℓm = 40± 2 mm. The red shaded
region was calculated with entire lattice coupling, and the blue
region was calculated with only nearest-neighbor coupling. The
diamonds in Fig. S5 were calculated with entire lattice coupling
and model parameters M = 0.21 Am2 and ℓ= 38 mm.
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We note that disorder (numerical and experimental) can greatly
alter mode profiles. We find that experimentally observed mode
profiles are qualitatively similar to numerically calculated mode
profiles in a system with random disorder, as shown in Fig. S6.

Time Domain Simulation
We simulate a 2D gyromaterial in the time domain only for the case
of spring interactions with free boundary conditions. We numeri-
cally integrate Eq. S1 considering a spring interaction and gravity.
We consider only the x and y displacements and integrate using a
fourth order Runge–Kutta method.

Band Structure and Chern Number Calculation
We find the band structure for both the spring and magnetically
coupled systems on a honeycomb lattice using the linearized
equations of motion, and assuming the solutions

ψa =Aei
�
~k ·~x−ωt

�
+Ce−i

�
~k ·~x−ωt

�
[S12]

ψb =Bei
�
~k ·~x−ωt

�
+De−i

�
~k ·~x−ωt

�
, [S13]

where a and b refer to the two sites in each unit cell.
The resulting equations can be expressed as a 4× 4matrix that is

a function of the wave vector,~k. (For a 2D lattice the dimension of
this matrix will be 2n× 2n, where n is the number of lattice sites
per unit cell.) The four eigenvalues of this matrix give the values of
the four dispersion bands at a particular value of ~k. These dis-
persion bands correspond to the frequencies obtained from the
finite normal mode analysis. At each value of~k, each band has a
corresponding eigenvector, jujð~kÞi, which corresponds to the am-
plitudes of the clockwise and counterclockwise rotating modes on
the two lattice sites at that particular value of ~k.
The Chern number of each band is given by an integral of the

Berry curvature Fð~kÞ:

Cj =
1
2π

Z
d2kF j

�
~k
�

=
i
2π

I
AjðkÞ · dk,

[S14]

where AjðkÞ= ihujj∇kuji. In this work, Chern numbers are calcu-
lated numerically using a phase invariant formula (27):

Cjdx ∧ dy=
i
2π

Z
d2kTr

�
dPj ∧PjdPj

	
, [S15]

where Pj is the “projection matrix” defined as Pj = jujihujj, and ∧
is the wedge product.

Mapping to the Haldane Model
Our experiment is performed in the regime where Ωg ∼Ωk. How-
ever, it is interesting to note that in the weak spring limit, Ωk � Ωg,
our system reduces to the Haldane model (26). In this limit, the
equations can be simplified considerably and are amenable to
analytical treatment. In particular, the Chern number can be
determined analytically as a function of the angle in the honey-
comb lattice deformation.
In the weak spring limit, the motion of each gyroscope is ap-

proximately circular, so there is only one degree of freedom per
gyroscope. This can be seen by splitting the displacement of the
gyroscope two polarizations, ψn = e−iΩtun + eiΩtvn*, where un is the
amplitude of precession in the direction determined by gravity,
vn is the counter rotating amplitude, and Ω is the frequency of
precession for the mode. Because Ωg � Ωk, the gravitational
precession direction dominates (junj � jvnj) and all mode pre-
cession frequencies, Ω, differ only slightly from Ωg.

Substituting this form of ψ into the linearized equation of
motion and matching the coefficients of the exponentials gives

Ωun =Ωgun +
1
2
Ωk

X
m

ðun − umÞ+ 1
2
Ωk

X
m

ðvn − vmÞe2iθnm ,

[S16]

−Ωvn =Ωgvn +
1
2
Ωk

X
m

ðvn − vmÞ+ 1
2
Ωk

X
m

ðun − umÞe−2iθnm .

[S17]

Perturbation theory can be used to find an equation for the
u’s alone, which is equivalent to Haldane’s model of the
quantum Hall effect. Because jvnj � junj, Eq. S17 implies vn ≈
− Ωk

4Ωg

Pðun − umÞe−2iθnm. Substituting this in Eq. S16 gives

ωun =Ωgun +Ωk

X
m

ðun − umÞ− Ω2
k

8Ωg

X
mm′

ðun − umÞe2iθm′nm

+
Ω2

k

8Ωg

X
ml

ðum − ulÞe2iθnml ,

[S18]

where θnml = θnm − θlm is the angle between the bonds nm and
lm, and the second-to-last sum is over all pairs of neighbors m
and m′ of n, and the last sum is over all neighbors m of n and
neighbors l of m.
If one expresses the right side as −

P
mTnmum, then finding the

normal modes is the same as finding the band structure of
electrons on a lattice with hopping amplitudes Tnm between the
sites of the lattice. (The large value of Ωg implies that the po-
larization of the normal mode is circular, so it is defined just by a
single phase and magnitude. Likewise, the wave function of an
electron on a site is represented by a complex number that is also
represented by a phase and amplitude.) Owing to the complex
exponential term in Eq. S18, the bond angles lead to a phase
shift between next-nearest neighbors on the lattice, similar to the
phase shift on hopping terms from moving in a magnetic field.
For the honeycomb lattice this differs from Haldane’s model
only in that the second neighbor term has a real part.
The topological character of Haldane’s system can be quan-

tified by calculation of the Chern number, which is an integral of
the Berry curvature over the Brillouin zone of the lattice. A
nonzero Chern number indicates a topologically nontrivial state
and implies the existence of chiral edge currents. Systems with
time-reversal symmetry must have a Chern number equal to
zero, because time-reversal symmetry implies zero Berry curva-
ture. However, not all systems with broken time-reversal sym-
metry must have a nonzero Chern number. In general, two bands
separated by a finite gap will not acquire nonzero Chern number
because of infinitesimal perturbations.
However, an infinitesimal perturbation can produce a large

change in Berry curvature at Dirac points. Therefore, even the
small complex phase terms in the Haldane model and in Eq. S18
can open a gap and induce a nonzero Chern number.
To see this effect mathematically, one can expand in powers

of displacement from the Dirac point, ~k′=~k−~k0 (where ~k0 is
the wavevector of the Dirac point). Then the hopping matrix, T,
can be written in terms of Pauli matrices. For a system without
next-nearest-neighbor coupling, we find that after rotating the
wavevector, ~k′→~k″, the Hamiltonian can be written as Heff
ð~k″Þ∼ kx″σx + ky″σy. The Berry curvature of the two bands near this
point are both zero. Terms with complex phases break the de-
generacy between the two states, which can be represented by
adding a term meffσz, where meff is an effective mass. Even if meff
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is small, this changes the Berry curvature very close to the Dirac
point, so that the net curvature in the bottom band in the vicinity
of the Dirac point is

R
d2k″F− = π   sgn meff , and the band above

the Dirac point has opposite curvature.
For the honeycomb lattice there are only two sites per unit cell,

so there are two modes with each wave number. A basis can be
obtained by defining u= 1 on one of the two sites and 0 on the
other, and translating to other unit cells while multiplying by ei~k ·~x

(Fig. S7). The degeneracy points are at~k0 =±ð2π=3a, 2π=3 ffiffiffi
3

p
aÞ,

where a is the edge length of the hexagon; Fig. S7 shows the two
basis states near ~k0 = ð2π=3a, 2π=3 ffiffiffi

3
p

aÞ.
Let us focus on just the leading terms of Eq. S18 and the terms

that arise from hopping along the diagonals (next-nearest
neighbors, ul; see Fig. S8), because these are the terms that
produce a gap. The matrix for the hopping along the sides is, to
lowest order in ~k″, ð3=2Þat1ðkx″σx + ky″σyÞ, where t1 =Ωk is the
nearest-neighbor hopping amplitude. To understand the con-
tribution from the next-nearest-neighbor hopping, we set~k″= 0.
As shown in Fig. S7, the two basis wave functions now resemble
vortices circulating around the hexagons in opposite directions.
Both wave functions pick up the same phase under translation,

but they transform oppositely under rotation. Because the phase
differences are different, the energies (i.e., frequencies of the
normal modes in the gyroscope system) of the states are different;
the one whose phase shifts match the phase of the hopping better
has the lower energy (i.e., the energies are−2t2

P3
r=1cosðϕ2r − 2π=3Þ

and −2t2
P3

r=1cosðϕ2r−1 + 2π=3Þ, where t2 =Ω2
k=8Ωg and ϕr = 2θnml

for the r next-nearest neighbors).
If we include the energy splitting and the linear terms in ~k′,

we have

H
�
~k″

�
=
3
2
at1

�
±kx″σx + ky″σy

�
−t2

X6

r=1

ð−1Þrcos
�
ϕr ± ð−1Þr2π

3

�
σz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
meff=

t2
2

P
r½ð−1Þrcosϕr∓

ffiffi
3

p
sinϕr�

,

[S19]

where the top sign refers to the Dirac point we have been consid-
ering and the bottom sign is for the other one. If the phase shifts
have twofold symmetry (i.e., ϕr+3 =ϕr), we can simplify the ef-
fective mass to meff =∓ð ffiffiffi

3
p

=2Þt2
P

rsinϕr.
The total Berry curvature for each of the two Dirac points isR
d2k″ F− =∓π   sgn meff = π   sgn½Prsinϕr�. As a result, the Chern

number of the top/bottom band is given by: C± =±sgn½Prsinϕr�.
In general, distorting the honeycomb lattice produces differ-

ent phase shifts along different diagonals (Fig. S8). For a dis-
torted honeycomb lattice, there are four angles of the hexagon
equal to α and two equal to 2π − 2α. The phases are twice this;
thus, the Berry curvature near each Dirac point is

R
d2k″ F− =

π sgn½2 sinð4αÞ− 4 sinð2αÞ�. This curvature, and hence the Chern
number, switch sign when the hexagon is distorted into a rect-
angle, in agreement with the analysis in the main text.

Fig. S1. A figure illustrating the process of finding the parallel and perpendicular components of displacements to a bond of length a between points p and q.

Fig. S2. The gyroscopic metamaterial is composed of 54 gyroscopes suspended by springs and coupled by magnetic dipole interactions.
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Fig. S3. The effect of oscillation amplitude on the two normal mode frequencies in a system of two gyroscopes. The frequencies are shifted by ∼5% as the
oscillation amplitude increases to above 10% of the gyroscope separation.

Fig. S4. The position of a wave packet vs. time (Top) and the total oscillation amplitude squared as a function of time (Bottom). The time to travel around the
boundary of the metamaterial stays constant as the amplitude of oscillation decays.
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Fig. S5. A comparison between the experiment and magnetic model for gap mode frequencies. The red (blue) shaded region indicates the possible values of
gap mode frequencies for mode numbers 1–9 from calculations using measured m and ℓ values with entire lattice (nearest-neighbor) coupling. Mode numbers
1–9 are observed in the experiment with a gap extending from ∼ 1−1.7 Hz. Modes 8 and 9 show some mixing with bulk modes. The diamonds show values for
a theoretical model with M= 0.21 Am2 and ℓ= 38 mm, corresponding to Ωm = 0.86 Hz (with entire lattice coupling). For this system, Ωg = 0.98 Hz, which was
determined by measuring a single gyroscope. (Inset ) The change in frequency observed when the mode amplitude is increased from 1.2− 4.0mm (measured as
the largest displacement of a single gyroscope).

Fig. S6. Comparison between ideal numerical modes, experimental modes, and numerically calculated modes with 10% disorder. The effect of random
disorder on mode profiles is qualitatively similar to the mode profiles observed in the experimental system, which had a similar amount of disorder.
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Fig. S7. The two basis wave functions for near the Dirac point at ~k0 = ð2π=3a,−2π=3 ffiffiffi
3

p
aÞ, as a function of displacement from the Dirac point: ~k′=~k−~k0. The

bases are generated by starting with an arbitrary wave function in a unit cell (indicated with the shaded hexagon), and then repeating the wave function
periodically, with wave-vector-induced phase factors. A and B show wave functions with angular momenta of +1 and −1 around the hexagon, respectively, as
indicated with the red arrows.

Fig. S8. Phase shifts for next-nearest-neighbor hoppings. Although these phase shifts are equal for a hexagon, distorting the lattice will make the phase shifts
nonuniform. In general, adding diagonal hopping terms (dotted arrows) opens gaps at the Dirac points.
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Movie S1. Demonstration of unidirectional waveguide modes in experiment: A single edge gyroscope is excited for five periods at a gap mode frequency. This
causes clockwise propagation around the edge.

Movie S1

Movie S2. A single edge gyroscope is excited for five periods at a frequency that is not in the gap. This does not result in an excitation that propagates around
the edge.

Movie S2
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Movie S3. Demonstration of unidirectional waveguide modes in lattice with irregular boundary: A single edge gyroscope is excited for five periods at a gap
mode frequency. The resulting excitation propagates clockwise around the disturbance in the lattice due to the topological nature of the edge modes.

Movie S3

Movie S4. The direction of propagation of edge modes can be controlled by the geometry of the lattice. An excitation propagating clockwise propagates
counterclockwise when the unit cell of the lattice deforms from a hexagonal to bow-tie shape.

Movie S4
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Movie S5. A honeycomb lattice can support clockwise (left) or counterclockwise (right) propagating modes depending on the degree of deformation. When
all angles of the lattice are 90°, there is no band gap and there are no edge modes.

Movie S5
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