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Abstract

It is well known that scattering from acoustic fields can produce forces on single particles, however they can also
induce interparticle forces due to multiple scattering events. This multi-particle force – here referred to as acoustic
binding – is comparable to other acoustic forces when the particles are of order wavelength in diameter. In principle,
this force could be used as a tunable method for directing the assembly of particles of mm-scales, but has not been
extensively explored in previous work. Here, we use a novel numerical method to compute binding interactions between
strongly scattering bodies and find that they can produce stable clusters of particles with approximately wavelength
separation. Moreover, we also observe that – depending on the level of damping – these structures can produce driven
linear, rotational, or vibrational motion. These effects are a result of the non-conservative and non-pairwise nature
of the acoustic binding force, and represent novel contactless manipulation and transport methods with a variety of
potential applications.

I. INTRODUCTION

While matter can alter the path of an external field
through scattering and absorption, the field can also in-
duce forces on matter. The resulting forces are a topic of
great interest within active and condensed matter com-
munities, as well as the field of material synthesis [1–
3]. For micron-scale objects, optical trapping has found
numerous applications in physics, biology, and medicine
[4–10]. Optical forces can be placed on single objects,
however second-order effects, known as optical binding
can introduce inter-particle forces that has the potential
to self-organize structures with wavelength-scale features
[11, 12]. These binding forces arise when scattered and
incident fields interfere to produce a new field gradient
between two or more scattering bodies.

Could optical forces be used to manipulate larger par-
ticles? The field carried momentum goes as the intensity
over the velocity of the wave p = I/c, which restricts
the size of bodies that can be manipulated by an exter-
nal field. Current optical trapping methods can levitate
particles on the order of 10 µm in size (10 ng in mass)
[13], limited by the maximum practical power density.
To manipulate larger particles we can employ a wave
with slower speed, such as sound, which produces a force
which is roughly 106 times higher for the same level of
input power. Moreover, sound waves have a longer wave-
length, so the analogous ‘acoustic binding’ effects will
also self-organize structure on larger scales.

Ultrasound has previously been demonstrated to pro-
duce forces on single particles or even between many par-

ticles [14–23]. Acoustic levitation and trapping have been
widely used to manipulate single particles on millimeter
scales [24–31]. (Commonly used 40 kHz sound waves
have a wavelength of about 8.6 mm.) Far less known is
the corresponding multiple particle force; in previous lit-
erature this has gone by several names – including acous-
tically induced mutual force [32] and acoustic interaction
force [33], but here we will refer to this force as acous-
tic binding. The acoustic binding force arises from in-
terference between the scattered field and the incident,
resulting a long range oscillatory force. As discussed be-
low, this force is distinct from the secondary Bjerknes
force, which is a short range interparticle force acting on
deformable bodies like bubbles in acoustic fields [34–36].

Unlike its optical counterpart, the acoustic binding
force has only been studied in a small number of specific
cases [19, 32, 33, 37, 38], despite the fact it represents a
potentially powerful tool for self-organizing structures on
mm-scales. Several different methods have been used to
model acoustic forces, including multipole expansion of
the acoustic scattering from weak scatterers [22, 37, 39],
finite element methods [38, 40], and a simplification of the
problem to pairwise interactions [41]. Here, we explore
the acoustic binding forces in more detail using a novel
numerical method, known as the method of fundamental
solutions (MFS) [42]. This method is both fast and ac-
curate, allowing for one to conduct molecular dynamics
simulations of small particle clusters.

For particles in the Mie scattering regime (ka >∼ 1,
where k is the wavenumber of the ultrasound field and a
is the particle radius) we find that binding forces become
comparable to trapping forces (fig. 1). Consequently,

ar
X

iv
:2

11
1.

08
47

9v
5 

 [
ph

ys
ic

s.
cl

as
s-

ph
] 

 8
 M

ar
 2

02
2



2

10 1 100 101

Size Parameter (ka)

10 6

10 5

10 4

10 3

10 2

10 1

100

101
F

(m
N

)

Gradient
Scattering
Binding (1.25 )
Binding (7.25 )
Gravity

0.5 1 2 5 10 20
Particle Diameter (mm)

a

2.0
R/

0.10

F/
F 0

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.04

0.02

0.00

0.02

0.04

0.06

0.08

Fbind a2 p2 a3 p2

b

3.4 3.6 3.8 4.0 4.2 4.4
r/

1.0

0.5

0.0

0.5

1.0

1.5

F/
F 0

Fbind a2 p2 a3 p2 c

FIG. 1. Acoustic force scaling. a) Relative strengths of vari-
ous acoustic forces as a function of size of the scattering body,
computed using MFS numerical model. For ka <∼ 1 the gra-
dient force (blue) dominates; for ka >∼ 1 the secondary forces
(red, green, orange) are of comparable magnitude. The bind-
ing force is shown for two particles at fixed separation dis-
tances of 1.25λ (green) and 7.25λ (red) while the gradient
force is for a single particle located between a pressure node
and antinode. For reference the particle volume (dashed blue)
and square of the volume (dashed orange) are included. b,c)
Two particle acoustic binding force (black), 2nd order pres-
sure field (〈p2〉) (red), and gradient of the 2nd order pressure
field integrated over particle surface (dashed gray) vs particle
separation for (b) ka = 1 and (c) ka = 10.

these forces can be used to self-assemble structure on
wavelength scales, and it should be possible to alter this
structure by changing the properties of the particles or
acoustic field. Furthermore, we observe active clusters of
particles which drift, oscillate, and/or rotate depending
on the cluster configuration (for example, see Supplemen-

tary Movies 1, 2, and 3). As a result, acoustically bound
clusters are not limited to passive self-assembly, opening
up the possibility of driven particle assembly analogous
to recently developed active matter systems [43, 44]. Pre-
vious examples of acoustically driven systems have relied
on body asymmetry [45], complex sound fields [26, 46], or
acoustohydrodynamic interactions [47–49] as the driving
mechanism. Conversely the behavior demonstrated here
is not a result of any complex particle or beam char-
acteristics, but rather the result of the nonlinearity of
acoustic binding interactions between the constituents of
this simple system.

A. Acoustic Forces

Acoustic fields can induce many types of forces on in-
dividual particles or between them. Broadly speaking,
these can be separated into scattering forces [14, 22, 32],
those due to streaming induced by acoustic waves [48,
49], and those due to the deformation of the particles
(e.g. Bjerknes forces) [15, 35, 36]. As detailed below,
for wavelength-sized (Mie) solid particles in a gaseous
medium, the scattering forces will dominate over these
other types. The scattering forces can be further di-
vided into gradient forces, radiation pressure forces, and
binding forces; each of these is directly analogous to the
equivalent optical forces [4, 7–9, 11]. For small particles
(ka� 1), the acoustic gradient force is given by [14]:

Fg = −∇Urad (1)

Urad =
4π

3
a3
[
f1

1

2
κ0〈p2in〉 − f2

3

4
ρ0〈v2in〉

]
(2)

f1 = 1− κp
κ0

(3)

f2 =
2
(
ρp
ρ0
− 1
)

2
ρp
ρ0

+ 1
(4)

where ρ represents the mass density, κ = (ρc2)−1 is
the compressibility, and c denotes the sound speed; sub-
scripts p and 0 refer to properties of the scattering parti-
cle and background medium, respectively. Angle brack-
ets denote a time average over one oscillation period

(i.e. 〈g〉 = 1
T

∫ T
0
g dt). In general, this force will tend

to pull particles into pressure maxima or minima, de-
pending on the particle properties.

In this manuscript we consider ‘sound-hard’ particles,
for which the particle density is much greater than the
background medium and the particle compressibilty is
much less than the background medium. In this ap-
proximation – which is quite good for solid particles in
a gaseous medium – f1 = f2 = 1. Conceptually, the
gradient force can be regarded as being caused by a sin-
gle scattering of the acoustic wave from the particle, and
consequently it scales like the particle volume. For larger
particles (ka >∼ 1), this force must be computed numeri-
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FIG. 2. Acoustic vs. optical binding. Force maps for acoustic binding (a-c) and optical binding (d-f) for different sizes of
particles, ka = 1 (c, f), 2 (b, e), and 4 (a, d). Both maps are created by keeping one particle (gray quarter-sphere) fixed at
the origin, which here corresponds to a location in the incident field halfway between node and antinode, and computing the
scattered fields (and hence total force) on a second particle centered at a given location on the map. The single-particle force
is subtracted from the computed total force at each location so that these maps show only the radial binding force between
two identical particles. For the acoustic maps the MFS code was implemented, see supplemental materials section E for a
discussion of the simulation of optical forces. The forces in these plots are all scaled to the corresponding acoustical/optical
reference force. The hashed yellow regions correspond to exclusion zones within which the two particles would overlap.

cally from the scattered field.

Other forces arise due to higher order scattering events.
We will separate these into the radiation pressure force,
which acts on a single particle, and the acoustic binding
force, which acts on clusters of two or more particles.
For small particles (ka � 1), both of these effects scale
like the square of the particle volume (fig. 1), and as a
result are only comparable in magnitude to the gradient
force when the particle is of order wavelength in size.
The radiation pressure force pushes the particle in the
propagation direction of the acoustic wave; this is often
ignored because it cancels in counter-propagating beams
(e.g. as used in a conventional acoustic levitation setup).

The acoustic binding force arises due to the interfer-
ence of the external field and the field scattered from a
neighboring particle. Because interference modifies the
total field intensity in the vicinity of the particle, nearby
particles feel an additional force due to this modulation.
For small particles, this can be approximated as the gra-
dient of the total field (fig. 1b), but this approximation
breaks down in the Mie regime (fig. 1c). The binding
force can be particularly difficult to model when parti-
cles are close together due to strong multiple scattering

events.
Other acoustic forces can arise due to acoustic stream-

ing or deformation of the particles; each of these effects
can also induce interparticle forces under the right cir-
cumstances. However, both of these effects are negligible
for wavelength sized solid particles in air.

Acoustic streaming is a non-zero mean flow induced
by an acoustic field [48], which subsequently induces a
drag force on any particles embedded in this flow [48–50].
One can estimate a critical particle radius below which
streaming dominates over other second order acoustic ef-
fects [51]:

ac =

√
4νΨ

3ωΦ
(5)

This threshold depends on the kinematic viscosity of the
fluid (ν), the sound frequency (ω), acoustophoretic con-
trast factor (Φ), and a factor that depends on the ge-
ometry of the stream generating surface (Ψ) which is of
order unity. For 40 kHz ultrasonic fields in air this crit-
ical radius is around 10µm, and so the scattering forces
dominate for the Mie sized (a ≈ mm) bodies investigated
here.
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Bjerknes forces result from deformation of ‘particles’
in the acoustic field, giving rise to a non-zero time aver-
aged pressure on the particle surface, and are generally
significant only for situations where the particle com-
pressibilty is the same or greater than the background
medium (e.g. bubbles in water) [35, 36]. For the sound-
hard approximation made here, this force is identically
zero, however for solid particles in a gaseous medium it
will be orders of magnitude smaller than scattering in-
duced forces.

Finally, we note that in this manuscript we do not
consider acoustically mediated torques which may cause
individual bodies to spin. The modelled incident field
(planar standing wave) carries no angular momentum, as
is generally the case for the fields in conventional acoustic
trapping devices [29, 32, 33, 37, 41]. Scattering between
three or more bodies can yield asymmetries in the total
sound field at the surface of these bodies, however unless
they are sound absorbing an interaction torque will not
be imparted [33, 46, 52].

For the remainder of this manuscript then we will
consider only forces generated due to sound scattering
events. The scaling of these three forces (gradient, scat-
tering, and binding) can be computed analytically for
particles in the Rayleigh regime [14, 39], but this quickly
becomes intractable for larger particles. This is especially
problematic as this is precisely the regime in which the
binding force becomes comparable to the gradient force.
Although approximate forms exist for very weakly scat-
tering or widely separated particles [41], such approxima-
tions are not valid for realistic experimental conditions.
This is especially true if one wishes to use acoustic forces
to guide the self-organization of large particle assemblies,
in which case we expect many particles to be in physical
contact.

II. NUMERICAL METHODS

We model the acoustic field using a complex oscillating
potential field, φ(r) ∝ e−iωt, which is related to first-
order velocity, pressure, and density fluctuations in the
following way [53]:

v1(r) = ∇φ(r) (6)

p1(r) = p0 + iρ0ωφ(r) (7)

ρ1(r) = ρ0

[
1 + i

ω

c2
φ(r)

]
, (8)

where ω is the sound frequency, p is the pressure, ρ is
the density, and v is the local fluid velocity. In all cases,
the physical fields are given by the real part of the com-
plex representation. This linear wave field produces zero
net force on an embedded particle if averaged over a full
cycle, however, such a formulation does not satisfy the
Navier-Stokes equation without including higher order
terms. A perturbation approximation gives rise to sec-
ond order corrections – p2, ρ2, and v2 – which can be

formulated in terms of the first order terms. These sec-
ond order terms invoke a nonzero net force when averaged
over a cycle of the wave [14]:

〈F〉 = −
∫
da [〈p2〉n̂+ ρ0〈(n̂ · v1)v1〉] (9)

〈p2〉 =
1

4

[
κ0|p21| − ρ0|v21 |

]
, (10)

where the integral in the force calculation is taken over
the surface of each particle, and φ represents the total po-
tential field, including both external and scattering con-
tributions. Here we have assumed that p1 � p0, in which
case higher order terms (p3, etc.) are negligible [53]. In
this work we are interested in the case of solid particles
in a gaseous medium. Using the sound-hard approxima-
tion, this is equivalent to v1 · n̂ = 0, removing the second
term in eqn. (9). (See Supplemental Materials section D
for a discussion of the validity of this approximation.)

We solve for the total first order field, φ, including
an external driving input and multiple scattering effects
from more than one particle, using the method of fun-
damental solutions [42]. In this model, the scattered
field outside the particles is computed from a lattice of
virtual scatterers placed inside each particle. We solve
for the amplitude of these virtual scatterers by enforcing
the sound-hard boundary condition on another lattice of
evaluation points located on the surface of each parti-
cle. In practice, this is done by casting the problem as a
linear matrix equation and solved using standard numer-
ical techniques. The number of points in each lattice af-
fects model accuracy at the cost of computation time; the
larger the scattering body, the greater number of source
and evaluation points are required to fully resolve the lo-
cal field oscillations on the surface of that body. Since the
method of fundamental solutions is a surface-based scat-
tering approach, it requires less computational resources
than volume-based scattering approaches such as FDTD,
DDA, and FEM [40, 48, 54, 55]. Once the total field has
been solved, it is numerically integrated over the surface
of each particle using a Gaussian quadrature rule [56] to
obtain a per-particle force. More details on the numeri-
cal method, and an analysis of its accuracy, are provided
in Supplemental Materials section B.

III. RESULTS

A. Acoustic Force Scaling

The relative strength of binding, scattering, and gra-
dient forces can be computed for particles of arbitrary
size using MFS (fig. 1). In particular, we note that gra-
dient forces dominate for ka � 1, while the other forces
become comparable in magnitude only for ka >∼ 1. Al-
though the optical binding force between a pair of parti-
cles is ∼1 order of magnitude weaker than the scattering
force (and has approximately the same scaling with size),
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FIG. 3. a, b) First five stable separation distances for two particles side-by-side (a) and for a hexagonal cluster of seven
particles (b). The size of the encompassing blue marker at each distance encodes the strength of the relative spring constant
associated with that equilibrium location. The effective spring constants are de-dimensionalized according to the acoustic
wavelength and corresponding reference force for a given particle size. Bottom: Acoustic binding force between two (c) and
seven (d) particles of size parameter ka =1 (black), 2 (red), and 6 (green), shown as vertical lines of the corresponding color
on a, b. For the studies involving seven particles, the cluster was arranged in a regular hexagonal pattern and the force was
computed on the right-most particle in the cluster.

this is mitigated by two factors: 1) for clusters of many
particles the binding forces will be additive, while the
scattering force is not, and 2) the scattering forces can
be cancelled with appropriate field design.

In the results that follow, particles are suspended
in a pair of counter-propagating acoustic plane waves
travelling in the ±z-direction. This is consistent with
the design of common acoustic levitation experiments
[26, 28, 32], apart from the fact that we do not assume
the beam is strongly focused in the transverse direction.
The interference between these beams confines the par-
ticles to a single plane in z, but allows them to move
freely within this plane without experiencing gradient or
scattering forces. Unless otherwise specified, particles are
simulated at a pressure node of the incident field, which
has field amplitude of 200 Pa and frequency 40 kHz.

We find it useful to introduce here a reference force, to
which one can scale all other relevant effects. Here, we
use the force experienced by a perfectly absorbing sphere
within an external acoustic field, F0:

F0 =
p21

2ρ0c20
πa2, (11)

where p1 is the amplitude of the oscillating external pres-
sure field.

B. Pairwise Interactions

We first consider the force between pairs of particles
in our acoustic standing wave (fig. 2). In general, we
observe an oscillating force – with a period given by the
sound wavelength – which falls off like 1/r and is pri-
marily in the radial direction. This arises because the
main contribution to the acoustic binding force is a gra-
dient force in the combined incoming field and the field
scattered from the neighboring particle, whose amplitude
falls off like 1/r. (Although the binding force can in part
be explained as a ‘gradient force’, we do not treat it as
part of the gradient force because it is only present for
multiple particles.) Note that the force is generally quite
weak if the particles are exactly on the pressure node
(z = 0); this is because the incoming field has no am-
plitude here. In practice, gravity will displace particles
from the anti-node, in which case this transverse force
will be stronger.

For larger particles (ka >∼ 2), the scattering becomes
more intense along the z-axis, and so the binding force
does as well. Interestingly, the qualitative features of the
acoustic binding force are quite similar to optical bind-
ing (fig. 2d-f). This is explained by the fact that both
are second order radiation scattering forces which arise
for the same general reasons; the differences can be at-
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tributed to the fact that optical radiation is vector while
acoustic fields are scalar. We note also that the optical
forces shown in fig. 2 are for a relative refractive index
of 1.5 – approximately equivalent to glass particles in air
– while the acoustic forces are computed for an infinite
impedance contrast.

The features of either acoustic or optical binding have
many characteristics which make them interesting can-
didates for self- or directed-assembly of particle clusters.
First, we note that the oscillatory nature of the force
means that the particles have multiple stable separations
whose distance can be tuned by changing the field wave-
length. We characterize this with an effective spring con-
stant, keff = −∂Fr/∂r, at each of the stable particle sep-
arations (fig. 3). For closely spaced particles, there are
additional near-field effects which are strongly dependent
on size parameter, ka. Indeed, the binding force can
be either attractive or repulsive for contacting spheres
(fig. 3c), and as a result this is tunable via sound fre-
quency. Although not considered here, we also note that
a sound wave composed of several different frequencies
could superimpose the interference patterns and produce
an even more complicated – and tunable – interparticle
force.

A pair of particles in a viscous fluid is effectively a
damped harmonic oscillator, and so can be character-
ized by a dimensionless quality factor, Q. If we as-
sume a Stokes drag law for the particles, we can com-
pute the quality factor as a function of particle size
and density (see Supplemental Materials section C). For
experimental parameters relevant for solid particles in
a gaseous medium, this quality factor scales like Q ∼
6 (ka)7/2

(
ρp

1kg/m3

)1/2
for ka <∼ 3, and has a somewhat

more complicated structure for ka >∼ 3. (Note that this
scaling assumes the incoming wave pressure is increased
relative to the gravitational force so that F0 = 4.25mg.)
As a result, we expect oscillations of particle pairs (or
many particle clusters) to be under-damped for realistic
experimental parameters, in contrast to optically bound
systems which – assuming wavelength sized particles and
visible optical fields – should be in the over damped
regime unless the particles are suspended in vacuum. As
we shall see in section ‘Evolution of Many Particle Clus-
ters’, this has significant implications for the formation
of acoustic clusters with many particles. We also note
that a dependence of cluster stability on damping level
has previously been predicted for optically bound sys-
tems [12].

C. Acoustic Binding of Many Particles

How does the acoustic binding force scale when we have
more than two particles in the field? The total force on
each particle is determined by a combination of the in-
coming and scattered fields, which manifest in a net force
through the p2 term. As p2 relies on the square of the

field values, there are three terms involved in a force cal-
culation: φ2in, φ2sc, and φinφsc. For weakly scattering par-
ticles, or for bodies interacting in the (scattered) far-field
one can neglect φ2sc as it is very small in comparison to
the other terms. In this case, the force is (approximately)
linear in φsc, in which case one would expect the force
to be nearly pairwise; indeed this simplifying assumption
has been made in some previous research [41]. However,
for strongly scattering particles which are close together
the scattered field can become quite strong (φsc ∼ φinc),
and so this approximation should break down.

Thus, in the ka >∼ 1 regime, we can no longer assume
that the stable particle separation distances for many
particle clusters will be the same as for pairs. To explore
this effect, we compute an effective spring constant for
a hexagonal cluster of 7 particles, using the radial force
on one of the outer particles (fig. 3b, d). For small par-
ticles (ka ≤ 1.8) we observe that the stable separations
shift from r ∼ 1λ to r ∼ 1.18λ. For larger particles,
we observe a more complicated shift in the the stable
positions, consistent with the observation that multiple-
scattering effects should be stronger for larger particles.
From these observations, we can conclude that a pairwise
force approximation is not appropriate for closely spaced
wavelength sized particles, and that the full N -body force
calculations must be performed for accurate results.

A pair of particles at the same z coordinate – but dis-
placed in x/y – must have the equal and opposite forces
by symmetry. For more than two particles, this is no
longer the case, especially once multiple scattering ef-
fects are included. To probe for these effects, we consider
the forces between a stable three-particle triangular clus-
ter and a fourth particle placed nearby (fig. 4a). If we
compare the net forces on the cluster and the lone par-
ticle, we find they are not equal and opposite, and this
effect becomes stronger as the lone particle gets closer
to the cluster. (fig. 4b). Conversely, if we compute the
forces by summing over pairs of particles, we find they
are equal and opposite, as expected. Although this non-
conservative force appears at first to violate Newton’s
third law, this is not the case: the net momentum is car-
ried away by the scattered acoustic field. This simple
result demonstrates that acoustic binding can produce
non-conservative driving forces, but only when the full
N -body force is considered. As we shall show in the next
section, it is also possible to produce stable clusters of
particles with a non-zero force on the entire cluster.

D. Evolution of Many Particle Clusters

The results described up to this point have been com-
puted only for fixed particle locations. To understand
how many particles freely moving in an acoustic binding
force evolve in time, we have coupled our force model
to a simple molecular dynamics simulation. To prevent
particle overlap (which would cause the MFS model to
produce non-physical results), we also include a short
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FIG. 4. Non-conservative effects in acoustically bound sys-
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cluster.

Model Parameters

Name Symbol Value

Density (Fluid) ρ0 1.225 kg/m3

Viscosity (Fluid) µ 1.81 × 10−5 kg/(m · s)
Sound Frequency f 40 kHz

Sound Amplitude pa *63.25, 200, 632.5 Pa

Sound Speed (Fluid) c0 343 m/s

Sound Speed (Particle) cp *2000, 2500, 3000 m/s

Density (Particle) ρp *1, 10, 100 kg/m3

Particle Radius a 0.002 mm

Contact Ratio α 1.025

Contact Exponent β 4

Contact Prefactor C 5

TABLE I. Parameters used in the molecular dynamics simula-
tions. Values marked with a star are used respectively within
the three sets of 100 trials performed.

range repulsive force of the form:

Fr = CF0

[
α− Rij

2a

α− 1

]β
R̂ij (12)

This force is designed to turn on slightly before the par-
ticles are in actual contact, but to do so at such a dis-
tance that it does not significantly affect the results (see
Supplemental Materials section C). We also include a

gravitational force (Fg = −9.8 m/s
2
ẑ), and a Stokes

drag (Fd = 6πµav), where we assume the background
medium is air at STP. Typical particle velocities are of
order 30 mm/s or less, and so the Reynolds number of
the flow around a particle is Re <∼ 7; as a result a Stokes
drag law is a reasonably good approximation. We do not
consider hydrodynamic coupling between the particles.
Time stepping in this model is handled using an adaptive
timestep Runge-Kutta integrator (the Dormand-Prince
method), specified to have an absolute velocity error tol-
erance of 10−6m/s. No thermal fluctuations are con-
sidered, as they should have negligible impact at these
scales.

The simulations were performed for sets of 100 trials
at various damping parameters, with initial particle loca-
tions assigned according to a Gaussian distribution with
σ = 3a (see supplementary materials section B). All sets
of trials were performed for ka = 1.466, which represents
particles of size a = 2 mm and a driving frequency of
40 kHz in air. The particle density and incident field
amplitude were both varied between trial sets in order
to achieve identical binding strengths with varying lev-
els of damping; the density and amplitude values used
can be found in Table I and correspond roughly to Aero-
gel, expanded polystyrene, and urethane foam, as well
as the driving pressures necessary to levitate bodies of
these densities. (As before, the pressure is modulated
so that F0 = 4.25mg irrespective of density.) The qual-
ity factors for pairs of particles with these properties is
Q ∼ 11, 34, 107. In these time-evolution studies we al-
low for motion in the z-direction so that the gravitational
force pulls particles to a natural levitation plane which
sits slightly below a pressure node. The simulations run
for a predetermined time (10 s) or until a terminal event
is reached, which here corresponds to acceleration of all
particles falling below a minimum threshold of |a| ≤ 10−6

m/s2.

In general, we observe that randomly placed configu-
rations of 5 particles will arrange themselves into stable
clusters, with a strong preference for near-integer wave-
length particle spacing (fig. 6). Interestingly the first
preferred interparticle separation distance within all sets
of trials converges to 1.14λ, which is slightly greater than
the value which would be expected from pairwise inter-
actions. This separation can be reproduced by instead
considering the forces on a 7-particle hexagonal clus-
ter, which has a nearly identical equilibrium separation
(fig. 3b).

Damping plays a critical role in the formation of the
clusters, as seen in fig. 5a-c. As expected, the relaxation
time is much shorter for the trials with higher damp-
ing. Although the level of damping should not change
the equilibrium configurations, weakly damped systems
have difficulty shedding their kinetic energy so they can
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FIG. 5. Acoustically bound cluster evolution. Initial (gray transparent) and final (white) states produced using simulation
data for a) highly damped, b) mid-damped, and c) low-damped systems, all beginning from the same state. The high and
mid-damped trials both resulted in the common ‘boat’ configuration, while for lower levels of damping one of the particles is
ejected from the cluster. The colormap indicates the second order pressure field on the x-y plane surrounding the particles,
and the particle tracks are colored sequentially from white to dark red to represent time progression. d) A simulation of a
quasi-stable ‘manta-ray’ configuration, showing the instantaneous states at various progressive times. Scale bar is 1cm in all
panels. See supplementary movies 1 and 2 to see ‘boat’ and ‘manta ray’ formations respectively.

settle into a stable cluster. On average, this produces
clusters with larger particle separations as the damping
is reduced, or, equivalently, the density is increased. The
low-damped trials produced virtually no compact five-
particle configurations; at least one particle was gener-
ally accelerated through a local minima without enough
damping to slow it down, and was effectively ejected away
from the rest of the particles in a cluster (e.g. fig. 5c and
supplementary movie 4). This behavior seems to become
prominent when the pairwise quality factor is Q >∼ 50,
and is consistent with results previously seen in simu-
lations of optically bound clusters [12], which in some
cases require a minimum level of damping to form stable
structures [57].

For all levels of damping, we find that most of the
clusters are not stationary, but rather have some non-
zero drift velocity when the cluster is asymmetric. Thus,
we characterize the final structures in terms of the mo-
ment of inertia and drift speed of the final state of the
simulation (fig. 7), with cluster moment of inertia given
by:

I =

Np∑

i

(xi − x̄)2 + (yi − ȳ)2 (13)

where the sum is over all particles and x̄/ȳ denote the

center of mass of the configuration in the x/y direction.
A number of cluster geometries were commonly produced
throughout the mid and high damped trials, with the
most common shape being what we term the ‘boat’ con-
figuration (fig. 5a,b). The boat – which is one of the few
observed clusters with no drift velocity – comprised 12%
of the mid-damped and 18% of the high damped final
configurations (videos of this and other structures form-
ing can be seen in the supplemental materials). We do
not observe a correlation between moment of inertia and
drift speed, suggesting that extended particle clusters are
not required to produce drifting configurations.

Additionally, the drift speed can be rescaled by a ref-
erence velocity which would be experienced by a single
particle subject to a force of F0 – this is equivalent to the
speed a perfectly sound absorbing particle would move in
a single plane wave of sound. Notably, the fastest moving
clusters all contain a pair of particles in contact, which
may effectively behave like a larger particle and so expe-
rience higher non-conservative driving forces.

In rarer cases we also observe quasi-stable clusters
which oscillate or rotate in time; an example is shown
in fig. 5d and supplementary movie 2. In this configura-
tion – which we term the ‘manta ray’ – the cluster itself
undergoes oscillations while it drifts in space. This oscil-
latory motion continues indefinitely with no perceptual
loss in amplitude, with the driving of the local oscillations
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FIG. 6. Final interparticle separations. Histograms of the fi-
nal interparticle separation distances for three sets of 100 trial
MD simulations. (a) high damping, (b) mid damping,(c) low
damping. In all cases the first preferred separation distance
is 1.14 λ, indicating the importance of multibody effects.

perfectly balanced by the system damping. The oscilla-
tory behavior of the manta ray configuration is only ob-
served only for the mid-damped case; the high-damped
case produces nearly identical configurations: these do
not oscillate but do drift at a high velocity.

IV. DISCUSSION

Acoustic binding produces complex, long range forces
which make it an intriguing candidate for directed assem-
bly of mm-scale systems. Although previous work has
considered simplified models of this force [37, 38, 41], we
find that non-pairwise and non-conservative effects sig-
nificantly modify the resulting structures and their sta-
bility. This is especially true in the size regime where
the multi-particle binding force is strongest compared
to gradient and scattering forces, ka ∼ 1 − 10. If one
wishes to use this force for on-demand assembly of com-
plex structures, this has both positive and negative at-

tributes. On one hand, the modifications of the force
due to multiple-scattering effects could be exploited to
assemble more complex structures without using a more
complex incoming field. Moreover, the non-conservative
driving forces make acoustically bound clusters analo-
gous to active-matter systems which are currently being
explored for a variety of applications [43, 44, 58]. Un-
like typical active matter systems, these driving forces
are the result of specific particle configurations, and so –
in principle – they are both switchable and tunable. It
is likely that non-spherical particles or even mixtures of
differently sized particles could enhance these effects, as
they arise due to symmetry breaking of the stable con-
figurations.

Conversely, the observation that the many-body forces
must be considered raises practical difficulties in comput-
ing the acoustic binding forces and predicting the struc-
tures they produce. This will be especially true as the
number of particles is increased, since the computational
cost of a fully coupled N -body system scales like N3. Al-
though this could be somewhat mitigated using advanced
numerical techniques (such as the fast multiple method
[59] or GPU-based simulations), it may also be possi-
ble to produce empirical models of the many-body force
which are more computationally efficient. In either case,
with further numerical optimization these models could
allow acoustic binding to be used for ‘inverse-design’ ap-
proaches where an incoming field (or combination of sev-
eral) is used to produce a desired structure on demand
[60–62].

Finally, we note that – to our knowledge – non-contact
acoustic binding effects have only been observed in a sin-
gle experiment, and the largest clusters observed had
only 3 particles [32]. There are likely two reasons for
this: 1) most acoustic levitation experiments used fo-
cused fields which do not have room for particles that are
transversely displaced by one or more wavelengths, and
2) driving forces make configurations of solid particles
(ρ ∼ 1000 kg/m3) unstable in air. Both of these limita-
tions could be overcome with appropriate experimental
design. Indeed, there is no fundamental requirement to
use focused sound fields for acoustic levitation. More-
over, the relative amount of damping can be modified
either by using a different background medium (e.g. a
liquid rather than a gas, as used in the aforementioned
experiment), or using higher frequency sound waves and
smaller particles. Such a system would have both fun-
damental and practical applications. Understanding the
self-organization of actively driven systems has attracted
considerable interest in the last decade; acoustic bind-
ing provides a tunable platform to study these effects
on easily accessible length scales. With continued re-
search, acoustic binding could ultimately provide a prac-
tical method for controlling the assembly of particle clus-
ters or even meta-materials composed of large numbers
of particles in active or passive configurations.
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FIG. 7. Cluster drift speeds and moments of inertia. Histograms of the drift speed (a) and moment of inertia (b) of some of
the common clusters found in the trial simulations. Blue correspond to mid damping, while orange figures correspond to high
damping. Data from trials involving low damping were omitted as the damping was not sufficient to lock particles into a local
minimum, i.e. configurations tended to fly apart.
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Dynamics of Acoustically Bound Particles:
Supplemental Information

A. WEAK SCATTERING THEORY

Bruus et. al.[? ] showed that for small spherical scatterers (ka� 1), the trapping force can be formulated in terms
of the gradient of an acoustic potential, which itself is defined in terms of incident field values at the location of the
particle as well as relevant particle/fluid parameters (eqn. 2). This arises in weak field scattering theory by invoking
a multipole expansion to model the scattered field. In this case one can easily express the monopole and dipole terms
of the scattered field in terms of the incident field. For sound hard bodies the acoustical contrast terms (eqns. 3–4)
are both unity, simplifying much of the underlying theory.

Frad = −~∇Urad (1)

Urad = Vp

[
1

2
f1κ0〈p2in〉 −

3

4
f2ρ0〈v2in〉

]
(2)

f1 = 1− κp
κ0

(3)

f2 =
2(
ρp
ρ0
− 1)

2
ρp
ρ0

+ 1
(4)

where subscripts p and 0 denote particle and medium properties respectively.

We compare our MFS model to this small particle formulation in order to validate our model. Aside from this
we also compare our model to a solution given by a truncated harmonic expansion (which is exact for the case of a
single particle in an axially symmetric incident field). To compare the three models a particle is held fixed in between
a node and an antinode of the external pressure wave (planar standing wave, amplitude 200Pa, frequency 40kHz),
and we compute the forces according to each model as the size of the particle is varied. We see that for ka � 1 all
solutions agree, whereas for larger sized particles the weak scattering theory described by Bruus will overestimate the
radiation force, while the force from the MFS model exactly matches the exact solution (fig. 1).

FIG. 1. Percent error between acoustic trapping force computed from small particle theory and either our MFS code (dashed
orange), or an exact solution (solid blue). Note how all three models give the same result as particle size approaches the
Rayleigh limit.
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The exact solution can be expressed as a truncated harmonic expansion:

φsc =

∞∑

n=0

√
2n+ 1

4π
Cnh

(1)
n (kr)Pn(cosθ) (5)

In the above h
(1)
n is the spherical Hankel function of the first kind, and Pn is the nth Legendre Polynomial. The

weights Cn are chosen in order to solve the boundary condition on the surface of the sphere. For the sound hard case
that boundary condition is ∂r(φin + φsc) = 0 on the surface of the sphere.

B. NUMERICAL METHODS AND MODEL ACCURACY

We model the scattered sound field from a sound-hard spherical body using the Method of Fundamental Solutions
[? ]. In this method N image sources are placed outside the region of interest, in this case on a concentric lattice inside
the spherical body, and the scattered field is given by a weighted superposition of fundamental solutions (Greene’s
functions) emanating from these image sources:

φsc =

N∑

j

wjGj(R, t) (6)

Gj(R, t) =
eikR

R
eiωt (7)

where k is the angular wavenumber, ω is the angular frequency, and R = |r−rj | is the distance from the jth source point
to the field location r. The weights are chosen by enforcing the sound-hard boundary condition (∂r(φin+φsc) = 0) at
a second lattice of evaluation points (rj′) on the surface of the sphere through casting the problem as a set of linear
equations:

N∑

j

N∑

j′

∂rwjG(Rj,j′ , t) = −∂rφinc1 (rbdyj′ ) (8)

Rj,j′ = |rbdyj′ − rscaj | (9)

Note that the number of source and evaluation points must be the same so that the system is exactly solvable.
Various lattice types for the source and evaluation points were tested using this model, including a fibonacci lattice,
and lattices involving points subdivided onto a cube or an icosahedron and projected onto a unit sphere. Ultimately
we found that using the icosahedral projection lattice for both the source and evaluation points gave the best results
due to its high degree of symmetry. To integrate forces over the surface of the particle, we employ the Gauss-Legendre
quadrature method [? ]:

∫ 1

−1
f(x)dx ≈

q∑

i

wif(xi) (10)

This method involves summing weighted values of the integrand over the surface of the sphere at various nodal points
(xi), in this case points spaced evenly at different (also evenly spaced) polar angles of the sphere. The interval at
each polar location is rescaled so it fits on the interval -1 to 1, and the weights (wi) depend on the location of each
node, as well as the legendre polynomial associated with each location on the interval from -1 to 1:

wi =
2

(1− x2i )[P ′n(xi)]2
(11)

To determine the accuracy of our model, we again used the same simple scenario described in the section A, this
time varying the number and of source points, and the number of quadrature points (upon which the Legendre-Gauss
quadrature rule is applied). As number of source and evaluation points affects computation time, we are interested in
the minimum number of points within each lattice necessary to obtain a satisfactory force computation. To answer
this question we compare the force computed using MFS to the exact solution according to the Harmonic expansion
described above. Note that the exact number of quadrature points is given by 2q2 where q is the quadrature number
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FIG. 2. Discrepancy between MFS computed force and that from the Harmonic expansion. The heatmap represents the number
of decimal points of error. This was done for a single particle of size ka = 1 located between the node and antinode of the
external field.
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FIG. 3. Quality factor vs particle size for acoustic binding between a pair of particles within a planar standing wave incident
pressure field of amplitude p1 = 200 Pa and frequency ω = 2π×40 kHz. The particles are fixed on the plane halfway between a
node and an antinode and the separation distance is varied between the two particles in order to find the locations of equilibrium.
Effective spring constants are then taken as the slope of the binding force at these locations. This plot was created using the
spring constants associated with the first separation distance for the various particle densities simulated in our time-evolution
studies.

given in fig. 2.

Python code to compute these forces, as well as notebooks used to compute errors and other quantities can be
found in a Github Repository for the project [? ].

C. QUALITY FACTOR

Since we have a measure of an effective spring constant (keff ) associated with various equilibrium locations of
particles of different sizes and these bodies experience viscous linear damping, we can define the quality factor
associated with these damped oscillatory systems.

Q =

√
mkeff

6πµa
(12)
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In the small particle limit the acoustic binding force (and hence associated effective spring constant) scales as the
particle volume squared, using this fact together with (eqn. 12) one concludes that the quality factor scales as ka7/2

in the Rayleigh limit (fig. 3).

D. SOUND HARD APPROXIMATION

The sound hard boundary condition describes a scenario where no bulk transmission of sound occurs in the scattering
body. We chose this approximation as most experimental work focuses on solid bodies levitating in air, for which
there is a high density and compressibility contrast between the particles and medium. Making this approximation
also simplifies the MFS solution, as we can ignore the sound field inside the particles. Relaxing this approximation –
and allowing for sound to penetrate the scattering particles – is possible using MFS, but requires a more complicated
model which also includes an extra set of virtual scatterers.

Just how sound penetrable a body is depends on the relative measures of the density and sound speeds within a
scattering body and the host medium. For normal incidence of a planar standing wave on an infinite 2D interface,
the reflection coefficient is given by [? ]:

R =
m− n
m+ n

(13)

m =
ρl
ρu

(14)

n =
cu
cl

(15)

where subscripts u and l denote the media above and below the refracting interface respectively. We note that for
solid bodies in a gaseous medium the speed of sound and density of the scattering body will both always be much
greater than those of the gas, so that m > 1 and n < 1. Even for a very light solid material – such as expanded
polystyrene (EPS) – the reflection coefficient is R ∼ 1. The density and speed of sound in air are ρair = 1.225 kg/m3

and cair = 343m/s. The density of EPS varies, but for estimation purposed we will assume ρEPS = 10 kg/m3. The
speed of sound in EPS is dependent on the porosity, and ranges from 2000 - 3000 m/s as the porosity is decreased [?
]. Thus we expect a reflection coefficient of R ∼ 0.96, implying that the sound hard approximation is appropriate in
this case.

E. OPTICAL BINDING CALCULATIONS

Optical binding forces are computed using the Discrete Dipole Approximation (DDA) [? ? ]. To implement DDA,
each particle is subdivided into many individual pieces, each with a size of ∼ λ/10 which is then treated like a
polarizable point source. (In practice, spherical particles are divided an exact integer number of times, so that the
size of each chunk is as close to λ/10 as possible.) The multiple scattering problem in the presence of an incoming field
can then be expressed as a matrix equation, similar to MFS. This matrix can be solved using a variety of methods
[? ]. In our case, we use a hybrid solution where the internal scattering in a single particles is solved using an
explicitly inverted internal scattering matrix, and scattering between particles is handled using an iterative approach.
In practice 3 iterations are used for ka = 1 – effectively considering up to four scattering events – and 4 iterations
are used for ka = 2− 4. In all cases the convergence of the solution is 10−2 or better (measured as the relative root
mean squared change in the dipole strength per iteration).

Forces are computed per dipole using standard techniques [? ] and summed to compute per-particle forces. We
have compared the results of this solution to existing DDA simulations [? ] and found nearly identical results.


