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Vortex and dipole solitons in complex two-dimensional nonlinear lattices
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Using computational methods, it is found that the two-dimensional nonlinear Schrödinger (NLS) equation with
a quasicrystal lattice potential admits multiple dipole and vortex solitons. The linear and the nonlinear stability of
these solitons is investigated using direct simulations of the NLS equation and its linearized equation. It is shown
that certain multiple vortex structures on quasicrystal lattices can be linearly unstable but nonlinearly stable.
These results have application to investigations of localized structures in nonlinear optics and Bose-Einstein
condensates.
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I. INTRODUCTION

Dipole and higher-phase vortex solitons and other nonlin-
early localized structures with a complex phase have attracted
considerable interest in recent years. Vortex-type solitons in
the presence of an (optically or magnetically) induced lattice
have been investigated analytically and experimentally in
Bose-Einstein condensates (BECs) [1,2] and in optical Kerr
media [3–8].

Such structures appear as special solutions of the focusing
two-dimensional cubic nonlinear Schrödinger (NLS) equation
with an external potential. The stability of these solitons
is important to applications. Rigorous stability theory of
fundamental (positive) solitons is well established [9–12].
In nonhomogeneous media it has been shown that solitons
can undergo self-focusing and drift (tunneling) instabilities
[13–16]. Unfortunately, the analytic stability theory of solitons
possessing a complex phase structure and on quasicrystal
lattices is not sufficiently well developed. Nevertheless this
issue can be studied computationally. Earlier computational
studies have shown that vortex-type solitons on a periodic
lattice can be stable within certain ranges of parameters
[17–19] and also in saturable (e.g., photorefractive) media
[20–22].

Thus far, there have been very few studies of complex-phase
solutions in the presence of quasicrystal and other complex
potentials [23], while the majority of studies consider crystal-
type (periodic) potentials. As a result of this fact, both the
numerical existence and the (computational) stability prop-
erties of multiple vortex solitons on background quasicrystal
lattices have remained relatively unexplored.

In this study, we compute soliton solutions of the focusing
cubic (2 + 1)-dimensional NLS equation with quasicrystal
(e.g., Penrose) potentials and study their stability. The gov-
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erning equation is

iuz + �u + |u|2 u − V (x,y)u = 0, (1)

where z plays the role of time (or distance) and V (x,y) models
the induced potential. We explore both linear and nonlinear
stability numerically. In optics, u(x,y,z) corresponds to the
complex-valued, slowly varying amplitude of the electric field
in the xy plane propagating in the z direction, �u ≡ uxx +
uyy corresponds to diffraction, the cubic term in u originates
from the nonlinear (Kerr) change of the refractive index, and
V (x,y) is an external optical potential that can be written as
the intensity of a sum of N phase-modulated plane waves, i.e.
(see [19]),

V (x,y) = V0

N2

∣∣∣∣∣
N−1∑
n=0

ei�kn·�x
∣∣∣∣∣
2

, (2)

where V0 > 0 is constant and corresponds to the peak
depth of the potential, i.e., V0 = maxx,y V (x,y), �x = (x,y),
and �kn is a wave vector defined by (kn

x ,k
n
y ) =

[K cos (2πn/N ),K sin (2πn/N )]. The potential given in (2)
with N = 2,3,4,6 yields periodic lattices. All other values of
N correspond to quasicrystals, which have a local symmetry
around the origin and long-range order, but, unlike periodic
crystals, are not invariant under spatial translations.

In this work, as the external potential, we consider the
quasicrystal lattice corresponding to N = 5 in Eq. (2). In par-
ticular, the quasicrystal with N = 5 is often called the Penrose
tiling [24]. Contour images of two potentials corresponding
to periodic (N = 4) and Penrose quasicrystals (N = 5) are
displayed all with V0 = 10 and K = 1 in Fig. 1. Freedman
et al. observed solitons in Penrose and other quasicrystal
lattices generated by the optical induction method [6].

Using the method of spectral renormalization, we nu-
merically find both multiple vortex and dipole solitons on
quasicrystal “Penrose” (N = 5) background lattices. The
linear and nonlinear (in)stabilities are also examined for these
localized structures by direct computations of Eq. (1) and
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FIG. 1. (Color online) Contour images of lattices: (a) periodic
(N = 4); (b) Penrose (N = 5). Both with V0 = 10 and K = 1.

its linearized equation. The initial conditions are taken to
be a vortex or dipole with 1% random complex noise. An
interesting result of the stability analysis is that the vortex
(dipole) solitons can be nonlinearly stable while being linearly
unstable (see Figs. 15 and 23).

II. SPECTRAL RENORMALIZATION

In order to compute localized solutions (i.e.,soliton solu-
tions) to nonlinear evolution equations, various techniques
have been used. For detailed information on numerical meth-
ods for solving wave equations, see [25]. Below we mention
some of these methods. Shooting, relaxation techniques, and
the self-consistency method have been around for decades,
but they are not always efficient and/or applicable for multi-
dimensional problems. A different method was introduced by
Petviashvili [26] to construct localized solutions in the two-
dimensional Korteweg–de Vries equation (usually referred
to as the Kadomtsev-Petviashvili equation). The idea behind
Petviashvili’s method is to transform the underlying governing
equation to Fourier space and determine a convergence factor
based upon the degree (homogeneity) of a single nonlinear
term. This method has been extensively used to find localized
solutions in a wide range of nonlinear systems. It can be
successfully applied to nonlinear systems only if the degree of
the nonlinearity is fixed in the associated evolution equation. In
fact, in nonlinear optics, many equations involve nonlinearities
with different homogeneities, such as cubic-quintic, or even
lack of homogeneity, as in saturable nonlinearity.

Ablowitz and Musslimani [27] proposed a generalized
numerical scheme for computing solitons in nonlinear wave
guides called spectral renormalization. The essence of the
method is to transform the governing equation into Fourier
space and find a nonlinear nonlocal integral equation coupled
to an algebraic equation. The coupling prevents the numerical
scheme from diverging. The optical mode is then obtained from
an iteration scheme, which converges rapidly. This method can
efficiently be applied to a large class of problems including
higher-order nonlinear terms with different homogeneities.

In recent years, Lakoba and Yang in [28] proposed
generalizations of Petviashvili’s iteration method to scalar
and vector Hamiltonian equations with arbitrary forms of
nonlinearity and potential functions. Later they extended
this method to eliminate from the iterations a mode that is
responsible for either the divergence or the slow convergence
of the iterations [29]. The conjugate gradient method is yet
another iterative method for solving linear systems. Lately, the

conjugate gradient method method was modified for finding
solitary waves of nonlinear evolution equations [30,31].

In this work, we use the spectral renormalization method.
To do this, we seek a soliton solution of Eq. (1) in the form
u(x,y,z) = f (x,y)e−iμz where f (x,y) is a complex-valued
function and μ is the propagation constant (frequency).
Substituting this form of solution into Eq. (1), the following
nonlinear equation for f is obtained:

�f + [μ + |f |2 − V (x,y)]f = 0. (3)

After applying the Fourier transformation to Eq. (3), in order
to avoid a possible singularity, we add a term rf̂ on both sides
of Eq. (3), where r > 0 is typically chosen as r = 20 or larger,
up to r = 100, in order to obtain convergence, depending on
the numerical values of the eigenvalue μ or the lattice depth
V0. This procedure leads us to the following equation:

f̂ (ν) = R̂[f̂ ] ≡ (r + μ)f̂ + F{[|f |2 − V (x,y)]f }
r + |ν|2 . (4)

Here F denotes the Fourier transform, and ν = (νx,νy)
are Fourier variables. We introduce a new field variable
f (x,y) = λw(x,y), where λ �= 0 is a constant to be deter-
mined at every step. The iteration method takes the form
ŵm+1 = λ−1

m R̂[λmŵm], m = 0,1,2, . . . , where λm satisfies the
associated algebraic condition∫∫ ∞

−∞
|ŵm(ν)|2dν = λ−1

m

∫∫ ∞

−∞
R̂[λmŵm]ŵ∗

m(ν)dν. (5)

Thus, the soliton is obtained from a convergent iterative
scheme. The initial starting point w0(x,y) is typically chosen
to be localized; e.g., a Gaussian. In this work, in order to
investigate the dipole and vortex structures, as initial condition,
we use multihumped Gaussians (two-humped for dipoles,
five-humped and ten-humped for vortex modes) centered at
either maxima or minima on the lattice structure. The iteration
continues until |wn+1 − wn| < 10−8 and δ = |λm+1/λm − 1|
reaches 10−8. Convergence is obtained quickly when the mode
is strongly localized in the band gap. This occurs when the
linearized spectrum is in the semi-infinite band gap. Further,
it is observed that the mode becomes more extended as μ gets
closer to the band gap edge, and convergence of such a mode
slows down significantly during the iteration process.

III. NUMERICAL INVESTIGATION OF VORTEX
AND DIPOLE SOLITONS

In this section, we show the existence of both vortex and
dipole solitons centered at the lattice minima and maxima for
a Penrose potential. Hereafter, the potential depth is set to
V0 = 10.

For the spectral renormalization, we used the following
initial conditions, centered at the lattice minima and maxima:

w0(x,y,0) = A

M−1∑
n=0

e−[(x+xn)2+(y+yn)2]+iθn , (6)

where xn and yn represent the location of vortex solitons, θn is
the phase difference, M corresponds to the number of humps,
and A is a positive integer.
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FIG. 2. (Color online) (a) Vortex profile with five humps centered
at the lattice minimum close to the lattice center, with r = 2.3918;
(b) the phase structure of the vortex; (c) the contour plot of the vortex
humps superimposed on the underlying Penrose potential (N = 5).

A. Vortex solitons on the lattice minima

Vortex solitons for the Penrose quasicrystal potential are
found numerically with the initial condition defined in Eq. (6).
Here, xn, yn, and θn are given as

xn = r cos θn, yn = r sin θn, θn = mπn

N
− π

2N
. (7)

In order to generate a five-hump vortex at the minimum of
the lattice, we used Eqs. (2) and (7) with m = 2 and M = 5.
Here, we investigated two different cases; later we show that
they have different stability properties. In both cases, the
propagation constant is taken to be μ = −2.

In the first case, the vortex humps are chosen to be located
close to the center of the lattice. In order to generate this vortex,
we took A = 3 and r = 2.3918 (numerical convergence of
the mode can be quite sensitive to the value of r). The
vortex profiles, the phase structures, and the contour plots
superimposed on the underlying Penrose potential are shown
in Fig. 2.

Vortex humps further away from the center of the lattice (the
global maximum of the lattice) were obtained by changing
the previous location of the initial condition by taking r =
5.3918. The vortex profile, phase structure, and contour plots
superimposed on the underlying Penrose potential of vortex
solitons at a lattice minimum away from the lattice center are
shown in Fig. 3.

A ten-hump vortex at a lattice minimum is also obtained;
here we took m = 1, M = 10, A = 1, and r = 5.2553. The
propagation constant is taken to be μ = −2. The vortex profile,
the phase structure, and the contour plots superimposed on the

FIG. 3. (Color online) (a) Vortex profile centered at a lattice
minimum away from the lattice center, with r = 5.3918; (b) the
phase structure of the vortex; (c) the contour plot of the vortex humps
superimposed on the underlying Penrose potential (N = 5).

FIG. 4. (Color online) (a) Vortex profile centered at the lattice
minima; (b) the phase structure of the vortex; (c) the contour plot of
the vortex humps superimposed on the underlying Penrose potential
(N = 5).

underlying Penrose potential at the lattice minimum are shown
in Fig. 4.

B. Vortex solitons on lattice maxima

Vortex solitons on lattice maxima including both five- and
ten-hump vortex solitons on a Penrose lattice are investigated.
A five-hump vortex centered at the maximum of the potential
in Fig. 5 is obtained when θn = 2πn/5. Both the five-hump and
the ten-hump vortices are found for the propagation constant
μ = 0.8 and A = 1, r = 6.2504.

The ten-hump vortex located at the lattice maximum is
shown in Fig. 6; in this case θn = πn/5.

C. Dipole soliton at lattice minima

A dipole or two-phase localized vortex is also found
for the Penrose lattice. We found a dipole centered at the
lattice minimum with propagation constant μ = −2, A = 3,
and r = 2.3918. The dipole profile, its phase structure, and
the contour plot of the dipole humps superimposed on the
underlying Penrose lattice are shown in Fig. 7.

D. Dipole soliton at the lattice maxima

A dipole centered at a lattice maximum is also found
numerically; here μ = 0.8, A = 3, and r = 6.2504. The dipole
profile, its phase structure, and the contour plot of the dipole
humps superimposed on the underlying Penrose lattice are
shown in Fig. 8.

FIG. 5. (Color online) (a) Vortex profile centered at the lattice
maximum with r = 6.2504; (b) the phase structure of the vortex; (c)
the contour plot of the vortex humps superimposed on the underlying
Penrose potential (N = 5).
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FIG. 6. (Color online) (a) Vortex profile centered at the lattice
maximum with r = 6.2504; (b) the phase structure of the vortex; (c)
the contour plot of the vortex humps superimposed on the underlying
Penrose potential (N = 5).

IV. LINEAR INSTABILITY OF VORTEX
AND DIPOLE SOLITONS

In this section the linearized evolution of vortex and dipole
solitons is investigated. Let u(x,y,z) = exp(−iμz)[f (x,y) +
δũ(x,y,z)] be a perturbed mode, where f (x,y) is the computed
vortex or dipole soliton, and δũ is a small perturbation, where
|δ| � 1. Linearizing (1) gives

i
∂ũ

∂z
+ ∂2ũ

∂x2
+ ∂2ũ

∂y2
+ [μ − V (x,y) + 2|f |2]ũ + f 2ũ∗ = 0.

(8)
We solve (8) with the Penrose potential over a sufficiently long
distance. The initial condition ũ(x,y,z = 0) is chosen as 1%
random noise in amplitude and phase. Spatial finite differences
for ũxx + ũyy and a fourth-order Runge-Kutta method in z are
employed. Figures 9–12 present the results of some of these
simulations.

We first investigate five-humped vortex solitons. Figure 9
shows that the peak amplitudes of the vortex solitons increase
rapidly with the propagation distance z. Similar unstable
dynamics is observed for the cases of ten-humped vortices
(see Figs. 10 and 11) as well as for a dipole (see Fig. 12).

We observe two recurring features in all these simulations:
(a) The blowup dynamics is a two-stage process: for a

short distance (typically z < 0.1) the peak amplitude is nearly
constant, followed by exponential growth. This makes sense, as
the initial noise contains “all” stable and unstable components.
Eventually, the most unstable component prevails.

(b) The instability growth rate is larger for solitons centered
at lattice maxima. This suggests that, in general, the most

FIG. 7. (Color online) (a) A dipole profile centered at the lattice
minimum of a Penrose potential with r = 2.3918; (b) the phase
structure of the dipole; (c) the contour plot of the dipole humps
superimposed on the underlying Penrose potential (N = 5).

FIG. 8. (Color online) (a) A dipole profile centered at the lattice
maximum with r = 6.2504; (b) the phase structure of dipole solitons;
(c) the contour plot of dipole solitons superimposed on the underlying
Penrose potential (N = 5).

unstable eigenvalue has a greater magnitude for solitons
centered at lattice maxima compared with solitons centered
at the (same) lattice minima (see also [15]).

V. NONLINEAR STABILITY OF VORTEX
AND DIPOLE SOLITONS

Until now, we have studied the linear stability properties of
vortex and dipole solitons that we found earlier. None of those
vortex or dipole solitons are found to be linearly stable.

Another important issue is the nonlinear stability of these
vortex and dipole solitons. The natural question to examine is
whether linearly unstable vortex and dipole solitons are also
nonlinearly unstable.

In order to examine the nonlinear stability of the vortex
and dipole solitons found above, we directly compute Eq. (1),
over a long distance (z = 20 or 30 is typically found to be
sufficient) for both types of potential. As with the linearized
problem, finite differences were used for the derivatives uxx

and uyy and a fourth-order Runge-Kutta method to advance in
z. The initial conditions were taken to be a vortex (or a dipole)
with 1% random noise in amplitude and phase.

While examining the nonlinear stability, we evaluated the
maximum amplitude versus the propagation distance, the
change in the location of centers of mass and the phase
structure of the vortex and dipole solitons. A stable soliton
should nearly preserve (1) its peak amplitude, as opposed
to undergoing self-focusing and /or finite-distance collapse;
(2) its position on the lattice, i.e., it should be be drift-stable
(drift-unstable solitons are typically characterized by “humps”
that drift from lattice maxima toward nearby minima); and (3)

FIG. 9. (Color online) Linear evolution of the five-hump vortex
on the Penrose lattice. Centered at (a) lattice minimum, close to
the origin; (b) lattice minimum, away from the origin; (c) lattice
maximum.
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FIG. 10. (Color online) (a) Linear evolution of the ten-hump
vortex on the Penrose lattice minimum on a double-logarithmic plot;
(b) instability growth rate of (a).

its phase structure. If all three conditions are met then the
soliton will be considered nonlinearly stable.

The center of mass is monitored as

(〈x〉,〈y〉) = 1

P

∫∫ ∞

−∞
(x,y)|u|2dxdy. (9)

Here, P ≡ P [u] := ∫∫ ∞
−∞ |u|2dxdy is the soliton power.

The nonlinear stability of vortex and dipole solitons is
investigated in the following sections separately.

A. Nonlinear stability of vortex solitons

Here we investigate the nonlinear stability of the vortex
solitons that were obtained earlier. First, we examined the
nonlinear stability properties of vortex solitons on lattice
minima. We also investigated the effect of the location of
the five-hump vortex. In this regard, we first considered the
fiv- hump vortex (see Fig. 2) as the initial condition. The
aforementioned five-hump vortex solitons are located close to
the center of the lattice (the global maxima).

In Fig. 13, we show the maximum amplitude and the
location of the center of mass versus the propagation distance
z. It can be seen from this figure that the maximum amplitude of
vortex solitons increases significantly just after approximately
z = 3. This reveals that vortex solitons at lattice minima,
located close to the center of the lattice, eventually become
unstable and potentially collapse after a finite propagation dis-
tance z. The phase structure and contour plots are also shown
in the same figure. An interesting phenomenon is observed
during the nonlinear evolution; we see the amalgamation of
two vortex humps near the propagation distance z = 3.55.

Similarly we note that the phase structure becomes entan-
gled. In Fig. 14, the phase structures of the vortex on lattice

FIG. 11. (Color online) (a) Linear evolution of the ten-hump
vortex on the Penrose lattice maximum on a double-logarithmic plot;
(b) instability growth rate of (a).

FIG. 12. (Color online) (a) Linear evolution of dipole solitons on a
Penrose lattice minimum on a double-logarithmic plot; (b) instability
growth rate of (a); (c) evolution on maxima.

minima located close to the lattice center are displayed for
increasing propagation distances. As can be seen from the
figure, the phase structure of the five-hump vortex starts to
deteriorate at around z = 1.5. The phase structure of these
vortex solitons is eventually disrupted and is not preserved
after some propagation distance.

Next the nonlinear stability properties of the five-hump
vortex on the lattice minima but farther away from the lattice
center were examined in order to show the positive effect of
increasing distance to the lattice center on nonlinear stability.
To demonstrate this, as the initial condition, we took the five-
hump vortex on a lattice minimum (farther away from the
lattice center) shown in Fig. 3.

As can be seen from the Fig. 15, the maximum amplitude of
these vortex solitons oscillates with relatively small amplitude
and vortex humps stay nearly at the same place during the
direct simulation (no drift instability). As a result of this fact,
vortex solitons on the Penrose potential minimum, far away
from the lattice center, are found to be nonlinearly stable. So
one may conclude that, as the vortex humps get farther from

FIG. 13. (Color online) Amalgamation and collapse of five vortex
solitons on a Penrose lattice. (a) Maximum amplitude as a function
of propagation distance; (b) center of mass; (c) contour plot of
the complex phase at z = 3.55; (d) contour plot of the amplitude
at z = 3.55.
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FIG. 14. (Color online) Phase structures of five vortex solitons on
Penrose lattice minima, at various propagation distances: (a) z = 1.5;
(b) z = 3.5; (c) z = 3.55 (just before the collapse).

each other, the nonlinear stability improves. The nonlinear
stability holds despite the fact that we found this mode to be
linearly unstable.

Next, the nonlinear stability properties of vortex solitons
with ten humps at both lattice minima and maxima are also
examined. In Fig. 16, we plot the maximum amplitude and
the location of the centers of mass of a ten-hump vortex on
Penrose lattice minima versus the propagation distance z = 20.
The phase structure and the contour plots of the maximum
amplitudes at the final point z = 20 are also depicted in the
same figure.

It is seen that the maximum amplitude of these vortex
solitons increases somewhat until z = 8 and after this value
oscillates with relatively small amplitude. On the other hand,
the phase structure breaks up after a few diffraction lengths
(z = 1) (see Figs. 16 and 17).

The immediate breakup in the phase structure indicates the
nonlinear instability of the ten-hump vortex solitons at Penrose
lattice minima.

We investigated the nonlinear stability of the five- and
ten-hump vortex solitons at the lattice maxima of the Penrose

FIG. 15. (Color online) Nonlinear stability of five vortex solitons
on a Penrose lattice. (a) Maximum amplitude as a function of
propagation distance; (b) center of mass; (c) contour plot of the
complex phase at z = 20; (d) contour plot of the amplitude at z = 20.

FIG. 16. (Color online) Nonlinear instability of ten vortex soli-
tons on a Penrose lattice. (a) Maximum amplitude as a function
of propagation distance; (b) center of mass; (c) contour plot of the
complex phase at z = 20; (d) contour plot of the amplitude at z = 20.

potential by taking the five- (Fig. 5) and ten-hump (Fig. 6)
vortices respectively on the Penrose lattice maxima as initial
conditions. For both cases, we see that the maximum ampli-
tudes increase quite sharply after a short propagation distance
(around z = 0.8 and 0.75 for the five- and ten-hump cases,
respectively), indicating nonlinear instability (see Figs. 18
and 19). The breakup in the phase is also observed in both
figures. Further, during the evolution, both five-hump and
ten-hump vortex solitons move from their initial locations
(lattice maxima) to the lattice minima. Similar behavior
was numerically observed in the case of fundamental lattice
solitons by Ablowitz et al. [32] (see also [14–16]).

In view of the above investigations, only the five-humped
vortex solitons on Penrose lattice mimina (away from
the origin) are found to be nonlinearly stable. The other
lattice vortex solitons are found to be nonlinearly unstable
due to either the sharp increment in the amplitude during the
evolution, or breakup in the phase structure, or slipping of the
centers of mass from lattice maxima through lattice minima
(drift instability).

FIG. 17. (Color online) Phase structures of ten vortex solitons
on a Penrose lattice, at various propagation distances: (a) z = 1;
(b) z = 10; (c) z = 20.
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FIG. 18. (Color online) Collapse of five vortex solitons on a
Penrose lattice. (a) Maximum amplitude as a function of propagation
distance; (b) center of mass; (c) contour plot of the complex phase at
z = 0.8; (d) contour plot of the amplitude at z = 0.8.

We also numerically obtained vortex solitons for a deep
lattice, i.e., V0 = 300. The nonlinear stability of five vortex
solitons on a deep Penrose lattice is shown in Fig. 20. The
propagation constant is taken to be μ = −2 for this vortex.

For a relatively shallow potential (V0 = 10), five vortex
solitons centered on aPenrose lattice minimum (located close
to the center of the lattice) have been found to be nonlinearly
unstable due to the sharp increment in the maximum amplitude.
Amalgamation of two vortex humps is also observed just

FIG. 19. (Color online) Collapse of ten vortex solitons at Penrose
lattice maxima. (a) Maximum amplitude as a function of propagation
distance; (b) center of mass; (c) contour plot of the complex phase at
z = 0.75; (d) contour plot of the amplitude at z = 0.75.

FIG. 20. (Color online) Nonlinear stability of the five-hump
vortex on Penrose lattice minima for V0 = 300, z = 50.

before the collapse occurs (see Fig. 13). On the other hand,
when the lattice depth is increased to V0 = 300, the maximum
amplitude of the vortex solitons begins to oscillate with small
amplitude, showing that the collapse is suppressed. It is also
seen from Fig. 20(d) that there is no amalgamation. Therefore,
the vortex solitons centered on a Penrose lattice minimum for
the deep lattice case are found to be nonlinearly stable.

In Fig. 21, the nonlinear stability of a single vortex soliton
centered at a lattice minimum is demonstrated. Figure 22
shows that the power for each of the humps of a vortex
Penrose soliton (i.e., P [u]/5) decreases monotonically with
the lattice depth when V0 � 0.5 and scales approximately as
V −0.05

0 for large V0. The power of each hump is below the
power of the homogeneous-medium fundamental soliton, i.e.,
the Townes mode, while it is slightly above the power of the
fundamental soliton centered on Penrose lattice minima (close
to the center). The “extra” power present in the vortex humps
above the fundamental Penrose soliton is a consequence of the
small overlap between adjacent humps.

B. Nonlinear stability of dipole solitons

In the last part of this work, we study the nonlinear stability
properties of a dipole on a Penrose lattice. We first examine
the nonlinear stability of dipole solitons on the Penrose lattice
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FIG. 21. (Color online) Nonlinear stability of a fundamental
mode on Penrose lattice minima for V0 = 300, z = 50.
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FIG. 22. (Color online) The power of each hump in a vortex
Penrose soliton (P [u]/5, solid curve) vs the lattice depth. Also shown
are the powers of the fundamental homogeneous-medium soliton
(horizontal dots) and of the fundamental Penrose soliton centered at
a local minimum near the origin (11.9V −0.05

0 , dashed curve below
the solid curve), and the best power-law fit to the single-hump power
(dash-dotted line).

minima that are previously shown in Fig. 7. These structures
are found to be nonlinearly stable due to the conservation of
the location and the phase structure and, at the same time, show
only small oscillations in the maximum amplitude during the
evolution (see Fig. 23). We recall, in contrast, that this dipole
was shown to be linearly unstable.

The nonlinear stability properties of the dipole solitons on
the Penrose lattice maxima are demonstrated in Fig. 24. The
dipole solitons are found to be nonlinearly unstable since they
exhibit strong localization after a few diffraction lengths and
their phase structures break up. They also suffer from drift
instability since the dipole humps both move from the lattice
maxima toward nearby lattice minima immediately.

FIG. 23. (Color online) Nonlinear stability of a dipole on a
Penrose lattice. (a) Maximum amplitude as a function of propagation
distance; (b) center of mass; (c) contour plot of the complex phase at
z = 20; (d) contour plot of the amplitude at z = 20.

FIG. 24. (Color online) Collapse of dipoles on a Penrose lattice.
(a) Maximum amplitude as a function of propagation distance; (b)
center of mass; (c) contour plot of the complex phase at z = 0.83; (d)
contour plot of the amplitude at z = 0.83.

Actually, this is expected since solitons on lattice maxima
are typically drift-unstable [15] and also their power is above
the collapse threshold (see [15,19]). However, comparing the
collapse of the vortex and dipole solitons on Penrose lattices,
we observe that the number of humps does not affect the
collapse distance much. In fact, the collapse distances are
more or less the same (z ≈ 0.3) for five-hump and ten-hump
vortex solitons, and for dipole solitons at Penrose lattice
maxima (z ≈ 0.8, 0.75, and 0.83, respectively). Furthermore,
the blowup dynamics are similar for all the above-mentioned
vortex solitons. Therefore, these nonlinear stability properties
may be predicted for triple vortex solitons centered at Penrose
lattice maxima, should this be of interest.

VI. CONCLUSION

We have numerically investigated dipole and multiple
vortex structures associated with Penrose lattices. The results
of this study show that vortex and dipole solitons do exist
on Penrose lattices and that they can be stable under suitable
conditions. In particular, we show the numerical existence
of vortex and dipole solitons, investigate their linear stability
properties using direct simulations of the linearized NLS
equation, and investigate their nonlinear stability properties
using direct simulations of the NLS equation.

The simulations of the NLS equation showed the following:
(i) Five-hump vortex solitons located far away from the lattice
center are nonlinearly stable. (ii) The dipole and the vortex
solitons situated at lattice maxima are nonlinearly unstable.
In this case, the nonlinear instability occurs as a result of
collapse, whereas the phase structure remains fairly stable up
until the collapse points. (iii) For vortex solitons centered at the
Penrose lattice minimum (close to the origin), the amplitude
(self-focusing) instability can be accompanied by degeneration
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in the phase structure as a result of the amalgamation of two
or more vortex humps. Vortex solitons for deep lattices were
investigated as well, and it is found that the depth of the lattice
can suppress instabilities. In addition, the simulations of the
linearized NLS equation showed that vortex and dipole solitons
can be nonlinearly stable, but linearly unstable. Consequently,
linear stability cannot be considered as a necessary or sufficient
condition for nonlinear stability for these types of lattice
problems.

Although computational results do not prove rigorously
the existence and stability of solutions, the results of this

study are encouraging for further investigations of localized
nonlinear waves on quasicrystal and other complex lattices
that can be created in Bose-Einstein condensates and nonlinear
optics.
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