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Abstract

The standard explanation for multiple filamentation of laser beams is that breakup of cylindrical symmetry is initiated by
noise in the input beam. In this study we propose an alternative deterministic explanation based on vectorial effects. We derive
a scalar equation from the vector Helmholtz equation that describes self-focusing in the presence of vectorial and nonparaxial
effects. Numerical simulations of the scalar equation show that when the input beam is sufficiently powerful, vectorial effects
lead to multiple filamentation. We compare multiple filamentation due to vectorial effects with the one due to noise, and
suggest how to decide which of the two leads to multiple filamentation in experiments. We also show that vectorial effects
and nonparaxiality have the same effect on self-focusing of a single filament, leading to the arrest of catastrophic collapse,
followed by focusing–defocusing oscillations. The magnitude of vectorial effects is, however, significantly larger than that of
nonparaxiality. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 42.25.Ja; 42.65.Jx; 42.65.Sf
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1. Introduction

The nonlinear Schrödinger equation (NLS) is the model equation for the propagation of intense laser beams in
a Kerr medium. Based on the NLS equation, Kelley [26] predicted in 1965 that intense laser beams whose input
power is above a certain threshold would undergo “catastrophic” self-focusing in a finite propagation distance.
Although this prediction was confirmed experimentally, the NLS, as a physical model for self-focusing, has several
weaknesses:

1. According to the NLS model, the beam intensity becomes infinite at a finite distance. As a result, the NLS model
fails to describe beam propagation beyond that point.
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2. The NLS is the leading order approximation to Maxwell’s equations. However, because the NLS is extremely
sensitive to the addition of small terms [20], one cannot ignore the remaining terms simply because they appear
to be small.

3. According to the NLS model, beams with cylindrically symmetric input profile should remain cylindrically
symmetric during propagation. However, self-focusing experiments in solids, liquids, and gases have shown that
catastrophic self-focusing is often preceded by multiple filamentation, 1 in which a single input beam breaks-up
into several long and narrow filaments [1,3,7,8,10–12,14,15,28,30,36–38]. Therefore, a self-focusing model
should include a mechanism that breaks-up the cylindrical symmetry and leads to multiple filamentation.

In this study we focus on the role of vectorial effects in self-focusing. As we shall see, these effects, which are
neglected in the derivation of the NLS model from Maxwell’s equations, relate to all of the above weaknesses of
the NLS model:

1. Vectorial effects arrest the blowup. As a result, the NLS model with vectorial effects can be used to describe
beam propagation beyond the NLS blowup point.

2. Vectorial effects, although small in magnitude, have a large effect on beam propagation. In fact, we show that
vectorial effects have a larger effect than nonparaxiality.

3. For over 30 years, the standard explanation for multiple filamentation, due to Bespalov and Talanov [4], has
been that it is initiated by random noise in the input-beam profile. In this study we show that the deterministic
vectorial effects can also lead to multiple filamentation.

The paper is organized as follows: In Section 2 we present the vector Helmholtz model, which leads to the NLS.
In Section 2.2 we give a short review of NLS theory. In Section 3 we approximate the vector Helmholtz equation
with a scalar PDE, which describes self-focusing in the presence of vectorial and nonparaxial effects. In Section
4 we present numerical simulations that show that vectorial effects can lead to multiple filamentation. In Section
5 we use modulation theory to reduce the scalar PDE to an ODE for self-focusing dynamics of a single filament
in the presence of vectorial and nonparaxial effects. In Section 6 we discuss the possibility that noise in the input
beam leads to multiple filamentation. In Section 7 we compare the noise and the vectorial effects explanations for
multiple filamentation. In Section 8 we suggest a simple experiment for deciding whether multiple filamentation is
due to vectorial effects or not. In Section 9 we describe the numerical methods used in our simulations, and show
that reflections from the numerical boundary can lead to “artificial” filaments.

2. The vectorial model

The propagation of an intense cw laser beam in a Kerr medium is described by the vector Helmholtz equations
[6,13]

� �E(x, y, z) − ∇(∇ · �E) + k2
0

�E = − k2
0

ε0n2
0

�PNL, (1)

∇ · �E = − 1

ε0n2
0

∇ · �PNL, (2)

where � = ∂xx + ∂yy + ∂zz, �E = (E1, E2, E3) is the electric field, �PNL the nonlinear polarization vector, ε0 the
vacuum permittivity, n0 the medium’s linear index of refraction, and k0 the wavenumber. When the Kerr medium

1 Multiple filamentation is also called multiple-foci, small-scale filaments, or beam-breakup.
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Table 1
Values of γ [6] and Cvec(γ ) [in Eq. (31)] for common Kerr mechanisms

Kerr mechanism γ Cvec(γ )

Electrostriction 0 5.7
Nonresonant electrons 0.5 7.6
Molecular orientation 3 9.8

is isotropic and homogeneous, the nonlinear polarization vector is given by [31,32]

�PNL( �E) = 4ε0n0n̄2

1 + γ
[( �E · �E∗) �E + γ ( �E · �E) �E∗], (3)

where �E∗ is the complex-conjugate of �E , n̄2 the Kerr coefficient, 2 and γ a constant, whose value depends on the
physical origin of the Kerr effect (see Table 1). It is instructive to rewrite relation (3) as

�PNL( �E) = 4ε0n0n̄2

1 + γ


| �E |2




1 0 0

0 1 0

0 0 1


+ γ




|E1|2 E2E∗
1 E3E∗

1

E1E∗
2 |E2|2 E3E∗

2

E1E∗
3 E2E∗

3 |E3|2







E1

E2

E3


 .

When γ = 0 the Kerr effect is only “semi-vectorial”, in the sense that �PNL = 4ε0n0n̄2| �E |2 �E . In other words, the
semi-vectorial Kerr effect is given by the scalar index of refraction

n2 = n2
0 + 4n0n̄2| �E |2. (4)

However, when γ 
= 0, the Kerr effect is genuinely vectorial, i.e., it cannot be written in the form (4).

2.1. From vector Helmholtz to NLS

Because of the linear and nonlinear coupling between the components of �E , direct analysis or simulations of
the system (1)–(3) is hard. Therefore, it is customary to approximate the vector Helmholtz equation with the NLS,
which is much more amenable to analysis and simulations. We now outline the derivation of the NLS from the
vector Helmholtz equation. A detailed derivation is given in Section 3.1.

We set the coordinate system so that the Kerr medium is located at z ≥ 0, the input laser beam is linearly polarized
in the x direction, and the beam propagates in the positive z direction as it enters the Kerr medium at z = 0. Because
the input beam is linearly polarized, it is usually assumed that the beam remains linearly polarized as it propagates
inside the Kerr medium, i.e., that E2 ≡ E3 ≡ 0 for z ≥ 0. In that case, the Kerr effect (3) is given by the scalar
relation n2 = n2

0 + 4n0n̄2|E1|2. If one further uses the approximation ∇ · �E = 0, then, to leading order, the vector
Helmholtz equations reduce to the scalar nonlinear Helmholtz equation for E1:

�E1(x, y, z) + k2E1 = 0, k2 = k2
0

(
1 + 4n̄2

n0
|E1|2

)
. (5)

Separating the fast oscillations from the slowly varying amplitude, i.e., E1 = A1(x, y, z) eik0z, Eq. (5) can be
rewritten as

A1,zz + 2ik0A1,z + �⊥A1 + 4k2
0 n̄2

n0
|A1|2A1 = 0.

2 See [6] for the various definitions of the Kerr coefficient.
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The scalar nonlinear Helmholtz equation can be further simplified by using the paraxial approximation |A1,zz| �
|k0A1,z|. The resulting equation for the beam amplitude A1 is the NLS

2ik0A1,z + �⊥A1 + 4k2
0 n̄2

n0
|A1|2A1 = 0, (6)

where �⊥ = ∂xx + ∂yy.

2.2. Review of NLS theory

We now give a short review of NLS theory. For more comprehensive presentations, see [20,40]. Let ψ be the
solution of the dimensionless NLS

iψz + �⊥ψ + |ψ |2ψ = 0, ψ(x, y, z = 0) = ψ0(x, y). (7)

Two important invariants of the NLS (7) are the power

N(z) = N(ψ(·, z)) := 1

2π

∫
|ψ |2 dx dy ≡ N(0) (8)

and the Hamiltonian

H(z) = H(ψ(·, z)) := 1

2π

(∫
|∇⊥ψ |2 dx dy − 1

2

∫
|ψ |4 dx dy

)
≡ H(0). (9)

The NLS has the cylindrically symmetric waveguide solution

ψ = R(r) eiz, r =
√

x2 + y2,

where R(r), the so-called Townes soliton, is the ground-state positive solution of

�⊥R − R + R3 = 0, R′(0) = 0, lim
r→∞R(r) = 0. (10)

A necessary condition for blowup in the NLS is that the input power be above the critical power Nc [42], i.e.,
N(0) ≥ Nc, where Nc is equal to the power of the Townes soliton

Nc =
∫ ∞

0
R2r dr ≈ 1.86. (11)

In addition, a sufficient condition for blowup in the NLS is that H(0) < 0.

3. Scalar equations with vectorial effects

In this section we identify and use the small parameter f of the model to reduce the vector Helmholtz equation
(1) to a scalar equation(s) that takes vectorial and nonparaxial effects into account. The results in this section are
as follows (see also Fig. 1). In Section 3.1 we apply perturbation analysis to the vector Helmholtz equation (1) and
derive the scalar equation (21). In Section 3.2 we apply a similar perturbation analysis to the Lagrangian (22) of
the vector Helmholtz equation, resulting in the Lagrangian (23), whose variational derivative leads to the scalar
equation (24). Although Eqs. (21) and (24) are not identical, the two equations agree with each other to the order
of accuracy of their derivation (Section 3.2.2). In Section 3.3 we approximate Eq. (21) with (26), which is an initial
value problem.
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Fig. 1. Schematic outline of the derivation in Section 3.

We note that previous studies [13,16,17] on vectorial effects on self-focusing obtained scalar equations which
differ from Eqs. (21), (24) and (26), as well as from each other, in the O(f 2) terms. Because of that, we present in
this study a careful systematic derivation of the equations. The agreement of Eqs. (21) and (24), which are derived
independently, provides further support that these equations are indeed correct.

3.1. From vector Helmholtz to a scalar equation

The key dimensionless parameter of the model is

f = 1

k0r0
= λ

2πr0
, (12)

where λ is the wavelength and r0 the input-beam width. Since the wavelength is much smaller than the input-beam
width, the parameter f is small, i.e.,

f � 1. (13)

The existence of a small parameter enables us to apply perturbation analysis on Eq. (1) and reduce it to a scalar
equation. To do that, we first use Eq. (2) to rewrite Eq. (1) as

� �E + k2
0

�E + k2
0

ε0n2
0

�PNL = − 1

ε0n2
0

∇(∇ · �PNL). (14)

We rescale the variables according to

x̃ = x

r0
, ỹ = y

r0
, z̃ = z

2LDF
, �E = 1

2r0k0

√
n0

n̄2

�A(x, y, z) eik0z, (15)
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where �A = (A1, A2, A3) is the dimensionless electric-field amplitude and LDF = k0r2
0 the diffraction length. For

convenience we drop the tilde signs from now on.
Substitution of (15) in the vector Helmholtz system leads to the dimensionless system

i �A,z + �⊥ �A + 1
4f 2 �A,zz + �N = −[f ∇⊥ + ê3(i + 1

2f 2∂z)][f ∇⊥ · �N + iN3 + 1
2f 2N3,z], (16)

f ∇⊥ · �A + iA3 + 1
2f 2A3,z = −f 2(f ∇⊥ · �N + iN3 + 1

2f 2N3,z), (17)

�N( �A) = 1

1 + γ
[( �A · �A∗) �A + γ ( �A · �A) �A∗], (18)

where ê3 = (0, 0, 1), and ∇⊥ = (∂x, ∂y, 0). Eqs. (16)–(18) correspond to Eqs. (14), (2) and (3), respectively.
Using a careful perturbation analysis, we show in Appendix A that over propagation distances of several diffraction

lengths the dimensionless amplitudes satisfy

A1 = O(1),

A2 = O(f 2), (19)

A3 = ifA1,x + O(f 3). (20)

These relations provide a quantitative measure of the degree to which the beam remains linearly polarized. In
particular, relations (19) and (20) indicate that the second transverse component E2 is significantly smaller than the
axial component E3. The fact that E2/E1 = O(f 2) plays an important role in the perturbation analysis, because it
means that E2 does not contribute to the perturbation terms in the scalar equations for A1 (see Appendix B). We
note that relation (20) was derived by Lax et. al. [29] under the assumptions that A2 ≡ 0 and that the Kerr effect is
“semi-vectorial”, i.e., n is given by a relation of the form (4). Thus, the derivation in Appendix A improves on [29]
in that relation (19) is proved for a “genuine” vectorial Kerr effect and then used to show that relation (20) remains
valid even when A2 
≡ 0.

Substituting relations (19) and (20) in the vector Helmholtz equation (16) leads to the following scalar equation
for A1 (Appendix B):

Proposition 3.1. When f � 1, Eqs. (1)–(3) can be approximated with the scalar equation

iA1,z + �⊥A1 + |A1|2A1

= −f 2
[

1

4
A1,zz + 4 + 6γ

1 + γ
|A1,x |2A1 + (A1,x)2A∗

1 + 1 + 2γ

1 + γ
(|A1|2A1,xx + A2

1A∗
1,xx)

]
+ O(f 4). (21)

When f = 0, Eq. (21) reduces to the NLS (7). The A1,zz term is the nonparaxial term, which comes from the scalar
Helmholtz equation (5). The remaining terms on the right-hand side correspond to vectorial effects, i.e., they result
from the combined effects of the linear and nonlinear coupling between E1 and E3 in Eqs. (1)–(3). Note that E2 does
not contribute to the vectorial terms in Eq. (21), because, in light of Eq. (19), its effect is only O(f 4).

3.2. A variational approach

We now give an alternative derivation of a scalar equation for A1, based on the Lagrangian of the vector Helmholtz
equation (1). It is straightforward to verify that the vector Helmholtz equation (1) has the Lagrangian density

LVH( �E, �E∗) = Ek,kE
∗
j,j − Ej,kE

∗
j,k + k2

0EkEk + 2k2
0 n̄2

n0(1 + γ )
(δl

iδ
k
j + γ δk

i δl
j )EiE

∗
j EkE

∗
l , (22)
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where

Ei,k := ∂Ei
∂xk

, δ
j
i :=

{
1, i = j,

0, i 
= j.

The Lagrangian in (22) is written using the standard summation convention. Alternatively,LVH can also be rewritten
as

LVH( �E, �E∗) = −
3∑

i,j=1
i 
=j

|Ei,j |2 + k2
0 | �E |2 + 2k2

0 n̄2

n0(1 + γ )
[( �E · �E∗)2 + γ ( �E · �E)2].

Clearly, the quadratic and the quartic terms of LVH correspond to the linear and nonlinear terms in the vector
Helmholtz equation, respectively.

Using the estimates (19) and (20), we show in Appendix C that LVH can be approximated with terms that depend
only on A1:

LA1(A1, A∗
1) = i

2
(A∗

1A1,z − A1A
∗
1,z) − |A1,x |2 − |A1,y |2 + 1

2
|A1|4

+f 2
{
−1

4
|A1,z|2 − |A1,xx|2 − |A1,xy|2 + i

2
(A1,xzA

∗
1,x − A∗

1,xzA1,x)

+ 1

2(1 + γ )
[2|A1|2|A1,x |2 − γ ((A1,x)2A∗2

1 + (A∗
1,x)2A2

1)]

}
+ O(f 4). (23)

Taking the variational derivative of LA1 leads to the following equation:

iA1,z + �⊥A1 + |A1|2A1 = f 2
{
−1

4
A1,zz + ∂xx(iA1,z + �⊥A1) − 1

1 + γ
[2γ |A1,x |2A1

−(1 + γ )(A1,x)2A∗
1 − |A1|2A1,xx + γ A2

1A∗
1,xx]

}
+ O(f 4). (24)

Thus, the scalar equation (24) for self-focusing in the presence of vectorial and nonparaxial effects preserves the
Lagrangian structure of the vector Helmholtz equation (1).

3.2.1. Invariance
We can use Noether’s Theorem to find conservation laws for Eq. (24). Invariance of the action

∫
LA1 dx dy dz

under phase change A1 → A1 eiε leads to∫
(|A1|2 + f 2|A1,x |2) dx dy − i

4
f 2
∫

(A1A
∗
1,z − A∗

1A1,z) dx dy ≡ const.

This relation can also be obtained by multiplying (24) by A∗
1, subtracting the complex-conjugate and integrating

over the (x, y) plane. Clearly, when f = 0 this relation reduces to (8). The term f 2|A1,x |2 corresponds to vectorial
effects. Indeed, from (19) and (20) we have that∫

| �A|2 dx dy =
∫

(|A1|2 + |A2|2 + |A3|2) dx dy =
∫

(|A1|2 + f 2|A1,x |2) dx dy + O(f 4),



G. Fibich, B. Ilan / Physica D 157 (2001) 112–146 119

which has the meaning of total beam power. The last integral corresponds to nonparaxiality, i.e., it comes from
balance of power in the scalar Helmholtz equation (5).

Invariance of the action under “time dilation” z → z + ε leads to∫ (
|A1,x |2 + |A1,y |2 − 1

2
|A1|4

)
dx dy

−f 2
∫ {

−1

4
|A1,z|2+|A1,xx|2+|A1,xy|2− 1

2(1 + γ )
[2|A1|2|A1,x |2 − γ ((A1,x)2A∗2

1 +(A∗
1,x)2A2

1)]

}
dx dy

≡ const.

This relation can also be obtained by multiplying (24) by A∗
1,z, adding the complex-conjugate and integrating over

the (x, y) plane.

3.2.2. Consistency of Eqs. (21) and (24)
The two scalar equations for A1, Eqs. (21) and (24), are derived from the same ‘mother’ equation and by

using the same assumptions and approximations. In both Eqs. (21) and (24), the O(1) and nonparaxial terms
are the same, but the O(f 2) terms that come from vectorial effects are not. This apparent inconsistency can be
resolved by showing that the two equations differ only by O(f 4) terms, which is the order of accuracy of these
equations:

Proposition 3.2. Eqs. (21) and (24) differ only by O(f 4) terms.

Proof. see Appendix D. �

Indeed, we note that if we use the vector Helmholtz equation in the form (1) instead of (14) in the derivation in
Appendix B, then the perturbation analysis will lead to Eq. (24), rather than to Eq. (21).

3.3. Initial value problem

Both Eqs. (21) and (24) contain the nonparaxial term A1,zz. This term is not related to vectorial effects, as it comes
from substitution of the ansatz E1 = A1(x, y, z) eik0z in the scalar nonlinear Helmholtz equation (5). Because the
Helmholtz equation is a boundary-value problem, solving it numerically on the half-plane z ≥ 0 requires setting
appropriate radiation boundary conditions at z → ∞. Since, in addition, this equation is nonlinear, solving it as a true
boundary-value problem is difficult. 3 Therefore, the standard approach in numerical simulations is to approximate
the nonparaxial term A1,zz with terms that do not have z-derivatives. In Appendix E we show that the nonparaxial
term in Eqs. (21) and (24) can be approximated with

A1,zz = −[�2
⊥A1+4|A1|2�⊥A1+4(∇⊥A1) · (∇⊥A∗

1)A1 + 2(∇⊥A1) · (∇⊥A1)A
∗
1 + |A1|4A1] + O(f 2),

(25)

where �2
⊥ := (∂xx + ∂yy)

2 is the biharmonic operator. Substituting the approximation (25) in Eq. (21) leads to the

3 For a recent numerical study of the scalar nonlinear Helmholtz equation as a true boundary-value problem, see [22].
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following initial value problem:

iA1,z + �⊥A1 + |A1|2A1︸ ︷︷ ︸
NLS

= 1
4f 2[�2

⊥A1 + 4|A1|2�⊥A1 + 4(∇⊥A1) · (∇⊥A∗
1)A1 + 2(∇⊥A1) · (∇⊥A∗

1)A∗
1 + |A1|4A1]︸ ︷︷ ︸

nonparaxial

×−f 2
[

4 + 6γ

1 + γ
|A1,x |2A1 + (A1,x)2A∗

1 + 1 + 2γ

1 + γ
(|A1|2A1,xx + A2

1A∗
1,xx)

]
︸ ︷︷ ︸

vectorial

+ O(f 4). (26)

For convenience, we note the origin of the terms in Eq. (26).
Clearly, all three scalar equations for A1 agree with each other to the order of their accuracy:

Corollary 3.1. Eqs. (21), (24) and (26) differ only by O(f 4) terms.

4. Vectorial effects and multiple filamentation

In self-focusing experiments, a sufficiently intense laser beam can break-up into several long and narrow filaments,
a phenomenon known as multiple filamentation [1,3,7–9,11,12,14,15,28,30,36–38]. According to the NLS model,
however, if the input beam is cylindrically symmetric, then the beam should remain cylindrically symmetric during
propagation. Therefore, in order to explain the phenomenon of multiple filamentation, where cylindrical symmetry
is clearly lost, one has to add a symmetry-breaking mechanism to the NLS model. The standard explanation for
multiple filamentation (see Section 6.2), is that breakup of cylindrical symmetry is initiated by random noise in the
input beam. We now show that deterministic vectorial effects can also lead to multiple filamentation.

In order to understand why vectorial effects might lead to multiple filamentation, we note that the asymmetry
in the x and y derivatives of the vectorial perturbation terms in either Eq. (21), (24) or (26) implies that vectorial
effects are a symmetry-breaking mechanism. Clearly, this, by itself, does not imply that vectorial effects lead to
multiple filamentation. However, the following simulations show that when the input beam is sufficiently powerful,
vectorial effects do lead to multiple filamentation.

We note that at present there is no theory for the NLS in the high-power regime N(0) � Nc. Therefore, our
results in this high-power regime on vectorial effects in general, and on multiple filamentation in particular, are
only numerical. The arrest of collapse and the focusing–defocusing oscillations that are observed in the following
simulations have some theoretical basis, which is discussed in Section 5.

We begin by presenting the results of simulations of Eq. (26) with f = 0.05 and γ = 1
2 , where we gradually

increase the input power N(0). The input beam is a cylindrically symmetric Gaussian,

A1(x, y, z = 0) = 2
√

N(0) e−(x2+y2), (27)

where the constant N(0) is equal to the input power of A1.
When N(0) = 2Nc, the beam propagates as a single filament which undergoes focusing–defocusing oscillations

(Figs. 2 and 3). Although the beam appears to be symmetric during its propagation, a more careful inspection shows
a small deviation from cylindrical symmetry.

When N(0) = 3Nc, the beam initially goes through the following stages: (i) self-focusing, (ii) defocusing into
a symmetric ring (crater), (iii) second self-focusing, (iv) defocusing and formation of two small sub-peaks, and
(v) focusing with a single peak (Fig. 4). During further propagation, the beam undergoes focusing–defocusing
oscillations (Fig. 5).
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Fig. 2. Solution of Eq. (26) with the input beam (27), f = 0.05, γ = 0.5, and N(0) = 2Nc.

Fig. 3. Iso-surface |A1|2 ≡ 7 of the data in Fig. 2.

Fig. 4. Same as Fig. 2 with N(0) = 3Nc.
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Fig. 5. Iso-surface |A1|2 ≡ 15 of the data in Fig. 4.

Fig. 6. Same as Fig. 2 with N(0) = 3.75Nc.

When the input power is raised to N(0) = 3.75Nc, the beam initially self-focuses and defocuses into an asym-
metric ring with two peaks on its rim (Fig. 6). After the second focusing–defocusing cycle, a complete breakup of
cylindrical symmetry occurs as the beam splits into two filaments. Shortly after, however, the two filaments reunite
and continue to propagate as a single filament, as can be seen in Fig. 7. We call this phenomenon pseudo-multiple
filamentation, in order to distinguish it from (genuine) multiple filamentation, in which the filaments do not reunite.

Fig. 7. Iso-surface |A1|2 ≡ 48 of the data in Fig. 6. Capital letters mark the corresponding z-slices on the 3D plots in Fig. 6.
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Fig. 8. Same as in Fig. 2 with N(0) = 4Nc. Viewing angle in the (x, y) plane is −35◦.

As the input power is further increased to N(0) = 4Nc, a similar dynamics leads to the emergence of two filaments
(Fig. 8). This time, however, the two filaments do not reunite. Rather, they propagate forward in the z direction,
while moving away from each other along the x-axis (Fig. 9). When the power is increased to N(0) = 10Nc, the
beam goes through the same stages, but in this case the two filaments move away from each other along the y-axis
(Figs. 10 and 11).

We note that vectorial effects induce a preferred direction in the transverse (x, y) plane: The direction on initial
polarization (the x-axis direction in our model). Therefore, in the case of cylindrically symmetric input beams, when
vectorial effects lead to breakup of the beam into two filaments, the two filaments can move away from each other
(in the transverse plane) either along the direction of initial polarization (as in Fig. 9) or perpendicular to it (as in
Fig. 11).

Finally, with N(0) = 20Nc we observe multiple filamentation into five filaments: One that continues to propagate
along the z-axis and four other filaments that propagate slightly ‘sideways’ (Figs. 12 and 13).

We now vary some other parameters in the simulations. In Fig. 14 we add a focusing lens at the medium’s interface
z = 0 to the input beam of Fig. 6, i.e., the initial condition is

A1(x, y, z = 0) = 2
√

2N(0) e−(x2+y2) e−i(x2+y2)/4, (28)

Fig. 9. Iso-surface |A1|2 ≡ 30 of the data in Fig. 8.
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Fig. 10. Same as Fig. 2 with N(0) = 10Nc.

Fig. 11. Iso-surface |A1|2 ≡ 70 of the data in Fig. 10.

Fig. 12. Same as Fig. 2 with N(0) = 20Nc. Viewing angle in the (x, y) plane is −35◦.
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Fig. 13. Iso-surface |A1|2 ≡ 50 of the data in Fig. 12.

and N(0) = 3.75Nc. In this simulation we observe the same qualitative dynamics as with the unfocused beam,
except that the pseudo-multiple-filamentation stage is much longer.

In Figs. 15 and 16 we repeat the simulation of Fig. 8 with f = 0.1. In this case we observe pseudo-multiple
filamentation, rather than a genuine one. We do, however, observe genuine multiple filamentation for f = 0.1 when
N(0) = 5Nc. Therefore, the threshold power for multiple filamentation is higher for f = 0.1 than for f = 0.05.
This result is surprising, since a larger f corresponds to stronger vectorial effects. In Figs. 17 and 18 we repeat
the simulations of Figs. 12 and 13 with f = 0.08. In this case, the beam splits into four filaments, all of which
propagate slightly off the z-axis.

Although there is still no complete picture of vectorial effects on self-focusing, the above simulations, as well
as additional ones which we do not show, suggest the following. For given model parameters, there is a threshold
power for genuine multiple filamentation (which appears to be in the range 3Nc–5Nc), such that,

1. When the input-power is sufficiently below this threshold, the beam propagates as a single filament, undergoing
focusing–defocusing oscillations.

2. When the input-power is slightly below the threshold, an asymmetric ring is formed during the defocusing stage,
followed by pseudo-multiple filamentation.

3. When the input-power is moderately above the threshold, an asymmetric ring is formed during the defocusing
stage, followed by beam splitting into two disjoint filaments (genuine multiple filamentation).

4. When the input-power is highly above the threshold, the beam can split into more than two filaments. In this case,

Fig. 14. Iso-surface |A1|2 ≡ 45 of the same data as in Fig. 6 with a focusing lens (i.e., the initial condition (28)).
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Fig. 15. Same as Fig. 8 with f = 0.1.

Fig. 16. Iso-surface |A1|2 ≡ 15 of the data in Fig. 15.

Fig. 17. Same as Fig. 12 with f = 0.08. Viewing angle in the (x, y) plane of the 3D graphs is −55◦.
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Fig. 18. Iso-surface |A1|2 ≡ 5 of the data in Fig. 17.

all filaments split from the central beam (rather than a fractal process where the beam splits into two filaments
and then each filament splits again).

In both (3) and (4) all filaments are of comparable power, which is roughly between 1.5Nc and 3.6Nc. Thus, the
power of each filament is below the threshold for additional splitting.

As we have already said, vectorial effects play an essential role in the multiple filamentation in Figs. 8–13, as they
are the only mechanism that breaks-up the axial-symmetry. Because nonparaxiality preserves axial-symmetry, a
natural question is whether it is ‘needed’ for multiple filamentation. To answer this question, we repeat the simulations
of Figs. 8–13 but without the nonparaxial terms. In these simulations we observe some breakup of axial-symmetry
but not multiple filamentation. Therefore, it is possible that nonparaxiality is also needed for multiple filamentation.

We remark that in the iso-intensity plots of multiple filamentation (Figs. 9, 11 and 13), the filaments are not
parallel to each other. Rather, there is an angle of several degrees between the filaments. Such an angle has neither
been reported in the multiple filamentation experiments literature, nor in previous numerical studies, where noise
in the input beam leads to multiple filamentation. This may suggest that multiple filamentation due to noise is
more similar to experimental observations than multiple filamentation due to vectorial effects. This is not the case,
however, because of the following reasons:

1. Most experiments of multiple filamentation measure the beam intensity at a fixed z. Therefore, it is possible that
such an angle went unnoticed.

2. Because of the different rescaling in the axial and transverse coordinates (see Eq. (15)), the physical angle is
approximately f times the angle in our iso-intensity plots. Thus, the physical angle is much smaller than what
appears in the plots.

3. In our simulations of noise-driven multiple filaments in Section 6, these filaments are also not parallel (see
Fig. 24).

5. Modulation theory for vectorial effects

The numerical simulations in Section 4 show that when the input beam is sufficiently powerful, vectorial effects can
lead to multiple filamentation. In addition, these simulations show that, regardless of whether multiple filamentation
occurs or not, beam collapse is arrested and a single filament or several filaments are formed, which propagate over
long distances while maintaining roughly a constant width.

At present there is no theory for analyzing self-focusing in the high-power regime N(0) � Nc, which is why we
rely on numerical simulations in the exploration of multiple filamentation. However, when the power of a single
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filament is not much higher than Nc, its propagation can be analyzed using modulation theory, which is an asymptotic
theory for analyzing the effects of small perturbations on critical self-focusing [20,21]. Modulation theory is based
on the observation that, after some propagation has taken place, a self-focusing filament rearranges itself as a
modulated Townesian, i.e., |A1| ∼ L−1(z)R(r/L(z)), where R(r) is defined in Eq. (10). Therefore, self-focusing
dynamics is described by the modulation variable L(z), which is proportional to beam-width and also to 1/(on-axis
amplitude). In particular, L → 0 and L → ∞ correspond to blowup and to complete defocusing, respectively.

By applying modulation theory to Eq. (21) we prove in Appendix F that

Proposition 5.1. When f � 1, the self-focusing dynamics of a single filament propagating in the presence of
vectorial and nonparaxial effects (i.e., Eq. (21)) is given, to leading order, by the reduced system of ODEs

Lzz(z) = − β

L3
, βz(z) = −f 2(Cnp + Cvec)Nc

2M

(
1

L2

)
z

, (29)

where

M = 1

4

∫ ∞

0
ρ2R2ρ dρ ≈ 0.55, (30)

Cnp = 1 and Cvec(γ ) ≈ 16

3

(
1 + γ

1 + γ

)
. (31)

Inspection of the derivation of Eq. (29) shows that the terms with Cnp and with Cvec correspond to nonparaxial and
vectorial effects, respectively. Therefore, the reduced system (29) shows that nonparaxiality and vectorial effects
have the same qualitative effect on self-focusing dynamics of a single filament. This observation is surprising,
because at the PDE level (i.e., Eq. (21)) the expressions for nonparaxiality and for vectorial effects are completely
different. It is interesting to note that the reduced system (29) also appears in the study of self-focusing dynamics
with a saturated-nonlinearity effect [19–21], such as Eq. (36).

As can be seen from Table 1, γ ≥ 0 for most common physical mechanisms leading to the Kerr effect. Therefore,
from (31) we have that Cvec(γ ) ≥ 16

3 . Thus, the reduced system (29) shows that vectorial effects dominate over
nonparaxiality. This observation implies that models of physical self-focusing which include nonparaxiality should
also include vectorial effects. We note that this has not been done in most previous studies.

We can follow [19,21] and integrate Eqs. (29) to get

(yz)
2 = −4H0

My
(yM − y)(y − ym), y(z) := L2(z), (32)

where

ym ≈ Mβ(0)

−2H0
(1 − √

1 − 4δ) ∼ f 2Nc(Cnp + Cvec)

4Mβ(0)
[1 + O(δ)],

yM ≈ Mβ(0)

−2H0
(1 + √

1 − 4δ) ∼ Mβ(0)

−H0
[1 + O(δ)], (33)

δ = −f 2Nc(Cnp + Cvec)H0/4M2β2(0) and H0 ≈ H(0).
We recall that a necessary condition for blowup in the unperturbed NLS, i.e., Eq. (6), is that the input power is

above critical, i.e., N(0) > Nc (see Section 2.2). In modulation theory variables [21], this condition amounts
to β(0) ≈ (N(0) − Nc)/M > 0. However, when β(0) > 0 we see from Eqs. (32) and (33) that y(z) ≥
ym > 0. Therefore blowup is arrested by vectorial and nonparaxial effects and the minimal beam width is Lm ∼
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Fig. 19. Blowup in NLS (i.e., Eq. (6), dashed line) is arrested by vectorial effects, with nonparaxiality (i.e., Eq. (26), solid line) and without
nonparaxiality (i.e., setting A1,zz ≡ 0 in Eq. (21), dots), resulting instead in focusing–defocusing oscillations. Here f = 0.04, γ = 0.5, and (a)

A1(z = 0, r) = √
1.05R(r) (i.e., N(0) = 1.05Nc); (b) A1(z = 0, r) = 2

√
1.1Nc e−r2

(i.e., N(0) = 1.1Nc).

L(0)f
√

Nc(Cnp + Cvec)/4Mβ(0), which, in physical variables, corresponds several wavelengths. Even at this stage
the magnitude of the nonparaxial and vectorial terms in Eq. (21) is O(β) smaller than that of the NLS terms �⊥A1

and |A1|2A1, providing an a posteriori justification for treating them as small perturbations.
In addition, a sufficient condition for blowup in the unperturbed NLS (6) is H(0) < 0. However, from Eqs. (32)

and (33) we see that if β(0) > 0 and H(0) < 0 then ym ≤ y(z) ≤ yM , i.e., arrest of blowup is followed by
focusing–defocusing oscillations. When nonadiabatic radiation is added to (29) the oscillations decay with propa-
gation [19].

The qualitative picture predicted by (29), i.e., arrest of blowup followed by focusing–defocusing oscillations, can
be observed in the simulations of Fig. 19 where the input power is only moderately above Nc, as well as in previous
numerical studies of vectorial effects [24,25]. We also verified the prediction of the reduced system (29) that the
effect of nonparaxiality is small compared with that of vectorial effects, by comparing in Fig. 19 the dynamics with
and without nonparaxial effects. Finally, we verified that if nonparaxial effects are kept but vectorial effects are

Fig. 20. Same as Fig. 2 with N(0) = 5Nc. Top: peak intensity. Bottom: iso-surface |A1|2 = 10.
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neglected in the simulations of Fig. 19 then the qualitative dynamics remains the same but the peak intensities are
significantly higher.

When the input power is above the threshold for multiple filamentation, a more careful inspection of the data
in Figs. 8,10 and 12 reveals that after the splitting has taken place each filament undergoes almost-periodic
focusing–defocusing oscillations. For example, in Fig. 20 multiple filamentation occurs after the first two os-
cillations, and the subsequent oscillations are the focusing–defocusing cycles of each filament.

As in the case of the angle between the filaments (see remark at the end of Section 4), in physical variables
the oscillations are much slower than what may appear from Figs. 3,5,16–19 and 20. These focusing–defocusing
oscillations can be interpreted as self-trapping, i.e., the formation of a long and narrow filament. Indeed, such
oscillations were observed in the cw self-trapping experiments of Bjorkholm and Ashkin [5].

6. Randomness and multiple filamentation

6.1. The Bespalov–Talanov model

In 1966, Bespalov and Talanov [4] suggested that noise in the input beam is the symmetry-breaking mechanism
that leads to multiple filamentation. Their analysis was based on the assumption that, to leading order, the electric
field is a plane-wave, i.e.,

E1(x, y, z) ∼ α e−iα2z, α ≡ const. (34)

Using this assumption, they showed that certain frequencies are linearly unstable. From this they concluded that
instabilities would breakup the cylindrical symmetry of the beam, leading ultimately to multiple filamentation.

To test numerically the Bespalov–Talanov model for multiple filamentation, we solve the unperturbed NLS (6)
with a high-power (N(0) � Nc) cylindrically symmetric Gaussian input beam, to which we add random noise both
in amplitude and in phase, i.e.,

A1(x, y, z = 0) = c1 e−(x2+y2)[1 + c2 noise(x, y)], (35)

where c1 is a constant, noise(x, y) a random complex-valued function, and the constant c2 determines the noise
level (c2 � 1). Although we have made many simulations with high-power input beams and random noise, we see
neither evidence for multiple filamentation nor even mild instabilities. Rather, the beam converges to a cylindrically
symmetric profile as it blows-up (see Fig. 21).

Fig. 21. Blow-up in the NLS (6) of high-power input beams (35) with noise (solid line, c2 = 0.1) and in the absence of noise (dot-dashed line,
c2 = 0) is very similar. Here c1 = 2

√
15Nc (i.e., N(0) ≈ 15Nc).
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Apparently, the major weakness of the Bespalov–Talanov argument is that it assumes that, to leading order, the
electric field is a plane-wave (34). Under this assumption (which implies infinite input power) the self-focusing
process of the field does not depend on the transverse dynamics, i.e., E1,z +|E1|2E1 = 0. As a result, instabilities can
grow while the leading order solution remains unchanged. This is not the case, however, for a propagating beam,
where the transverse dynamics of the beam dominates the evolution of the noise.

6.2. Noise and a saturating nonlinearity

In 1968, Marburger and Dawes [34] showed numerically that intense Gaussian beams propagating in a Kerr
medium with saturable nonlinearity do not collapse, but instead go through focusing–defocusing cycles. In addition,
they showed that the transverse profile of the beam can develop a concentric ring structure. Although they pointed
out the relation between a ring structure and the formation of small-scale filaments, they could not demonstrate this
numerically, because their code was cylindrically symmetric. This relation was established in 1979, when Konno and
Suzuki [27] solved the saturated NLS using a Cartesian grid and showed that the ring structure is indeed unstable.
Later, using both numerics and an approximate stability analysis, Soto-Crespo et al. [39] showed that the transition
from cylindrical symmetry to multiple filamentation is associated with the appearance of a spatial ring. Multiple
filamentation due to noise in the input beam and nonlinear saturation was also observed in [2,23,33,35,41].

In order to compare multiple filamentation due to vectorial effects with the one to noise, we solve the saturated
NLS

iA1,z + �⊥A1 + |A1|2A1

1 + ε|A1|2 = 0, 0 < ε � 1 (36)

with high-power noisy input beams (35). For example, when ε = 0.01/ ln 2 and c2 = 0.02, we observe pseudo-
multiple filamentation when N0 ≈ 10Nc (Fig. 22) and genuine multiple filamentation when N0 ≈ 15Nc (Figs. 23
and 24). Therefore, for these values of ε and c2, the threshold for multiple filamentation lies between 10Nc and
15Nc.

We carry additional simulations of Eq. (36) with the same values of ε and c2 in the range 15Nc ≤ N(0) ≤ 120Nc.
These simulations suggest that noise-induced multiple filamentation is characterized by a powerful central on-axis
filament, from which less-powerful off-axis filaments split. After multiple filamentation occurs, above half the input
power remains in the on-axis filament. The off-axis filaments are less powerful, as the power of each is below

Fig. 22. Solution of Eqs. (36) with ε = 0.01/ ln 2 with the input beam (35), where c1 = 7.5/
√

ln 2 (i.e., N(0) ≈ 10Nc) and c2 = 0.02.
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Fig. 23. Same as Fig. 22 with c1 = 9/
√

ln 2 (i.e., N(0) ≈ 15Nc).

Fig. 24. Iso-intensity surface |A1|2 = 30 of the data in Fig. 23. Note that the beam propagates from right to left.

one-tenth of the input power. In addition, a significant amount of power is radiated to the background, as was also
observed in [41]. We note that even when the power of the on-axis filament is much larger than 15Nc (i.e., above
the initial threshold for multiple filamentation), no additional splitting occurs. This observation shows that, as can
be expected, the effect of input noise diminishes with propagation.

We note that saturation of the Kerr nonlinearity has been observed experimentally for only some materials. For
example, Yau, Lee and Wang reported recently that the nonlinearity for sapphire crystal is of the form (36). However,
there are other materials for which the assumption of nonlinear saturation does not have a solid physical justification.
Therefore, a natural question is whether noise can lead to multiple filamentation in the absence of saturation. To
address this question, we note that nonparaxiality, which is always present, can also play the role of a stabilizing
mechanism which leads to the formation of rings. In addition, the simulations of Feit and Fleck [18] suggest that
a ring structure is unstable in the NLS with nonparaxiality but with no saturation, and that it breaks into multiple
filaments. Therefore, it is possible that the addition of nonlinear saturation is not really needed in order for noise to
lead to multiple filamentation.

7. Vectorial effects or noise?

As we have seen, regardless of whether the symmetry-breaking mechanism is vectorial effects or noise in
the input beam, multiple filamentation always occurs after the formation of a ring during the defocusing stage.
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Because a ring structure is unstable, it can be broken into multiple filaments by symmetry-breaking
mechanisms.

There are, however, significant differences between multiple filamentation induced by vectorial effects and by
noise. The most important difference is that the former is a deterministic process whereas the latter is a random
one. Therefore, when the input beam is cylindrically symmetric (‘clean’ input beam) the filamentation pattern is
reproducible in the case of vectorial-induced filaments but varies from experiment to experiment in the case of
noise-induced filaments. Another difference, which can be utilized to determine experimentally the mechanism of
multiple filamentation (see Section 8) is that vectorial effects induce a preferred direction in the transverse (x, y)

plane, which is the direction of input-beam polarization.
Our simulations suggest that the threshold power for multiple filamentation caused by vectorial effects is signif-

icantly lower than the one for multiple filamentation caused by noise. For example, simulations of Eq. (36) with
ε = 0.01 and noise level of c2 = 0.02 do not lead to multiple filamentation when N(0) < 10Nc, but do lead to
multiple filamentation when N(0) > 15Nc. In contrast, in the vectorial case with f = 0.05, we already observe
multiple filamentation when N(0) = 4Nc. Thus, multiple filamentation at these lower powers is more likely to be
the result of vectorial effects.

Another difference is that in vectorial-induced multiple filamentation, regardless of whether there is a central
filament after the splitting (Fig. 12) or not (Fig. 8), all filaments are of comparable power, which is below 3.6Nc. In
contrast, noise-induced multiple filamentation is characterized by a powerful central filament which has about half
the input power, and significantly less-powerful off-axis filaments.

8. An experimental test

The results presented so far show that multiple filamentation can result from either vectorial effects or from noise
in the input beam. Therefore, in theory, when all parameters of a multiple-filamentation experiment are known, one
can use numerical simulations to determine whether the mechanism behind multiple filamentation is vectorial effects
or noise. However, at the high input powers associated with multiple filamentation, other physical mechanisms (e.g.,
plasma generation, time-dispersion, etc.), which are neglected in both models, can also become important. Thus,
our model might not capture all the relevant physics, in which case, its reliability in determining the mechanism
behind multiple filamentation is less clear.

In order to overcome this difficulty and be able to determine whether vectorial or random effects are the physical
mechanism behind multiple filamentation, we propose the following experimental test. This test is based on the
observation that vectorial effects are the only mechanism neglected in the derivation of the NLS model that breaks-up
the cylindrical symmetry while inducing a preferred direction in an isotropic homogeneous medium (the direction
of input-beam polarization). Therefore, if multiple filamentation is caused by vectorial effects, then

1. The filamentation pattern in the transverse plane should persist between experiments.
2. When the direction of linear polarization of the input beam is rotated in the transverse plane between experiments,

the filamentation pattern should follow the same rotation.
3. When a beam splits into two filaments, the splitting should occur either along the direction of initial polarization

or perpendicular to it (see Figs. 9 and 11).

In contrast, when multiple filamentation results from random instabilities, the filamentation pattern should vary
between experiments and be independent of the direction of initial polarization.

We note that in the multiple-filamentation experiments in [36], Nowak and Ham observed that “the . . . [filament]
patterns. . . , although random in appearance, were perfectly reproducible shot to shot” (a similar observation was
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Table 2
Mesh size and computational domain (x, y) ∈ [0, Xmax] × [0, Ymax] used in simulations of Figs. 2–18

Figure dx = dy Xmax, Ymax

2 and 3 0.06 7.5, 7.5
4–7 and 14 0.05 8, 8
8 and 9 0.055 8, 8
10 and 11 0.04 7, 7
12 and 13 0.03 8, 12
15 and 16 0.05 7, 7
17 and 18 0.045 8, 16

reported by Brodeur et al. [9]). Because of this observation, Nowak and Ham conjectured that multiple filamentation
was due to small inhomogeneities in the medium. However, our study shows that this behavior is also consistent
with the vectorial effects explanation for multiple filamentation.

9. Numerical methods

In our simulations of the (2 + 1)D Eqs. (7), (26) and (36), we use a finite-difference scheme on a rectangu-
lar Cartesian grid (see Table 2) with fourth-order accuracy in space. Time-stepping (i.e., z-stepping) is achieved
by a fourth-order Runge–Kutta algorithm. The noise in the initial conditions (27) is realized using MATLABs
‘rand.m’ function, which generates random numbers that are uniformly distributed in the interval [0, 1]. We impose
zero-Dirichlet boundary conditions at the outer boundaries. Because Dirichlet boundary conditions are reflective
rather than absorbing, special care is taken to assure that reflections from the numerical boundaries have no ef-
fect (see also Section 9.2). In particular, simulations showing multiple filamentation are verified by enlarging the
computational domain, as well as by refining the grid.

In most simulations of Eq. (26) the symmetries in the x and y directions enable us to solve the equation on one
quadrant of the plane. However, in the rotation simulation of Fig. 25, these symmetries cannot be exploited. The
simulations in Section 6 are also carried on the whole (x, y) plane, since otherwise the noise would be symmetric in
the x and y directions, in which case it would be less likely to lead to a complete break-up of cylindrical symmetry.

9.1. Physical or grid-induced splitting

As noted in Section 4, vectorial effects induce a preferred direction in the transverse (x, y) plane, which, in our
model, is the x-axis direction. Therefore, in the case of cylindrically symmetric input beams, when vectorial effects

Fig. 25. Contour plots at z = 0.32 of the solution of (26) with the same parameters as in Fig. 20 and N(0) = 5Nc. (a) Computed in the (x, y)

plane. (b) Computed in the (x̃, ỹ) plane (θ0 = 30◦). Arrows show preferred directions of the numerical grid and of the vectorial perturbation
terms.
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lead to breakup of the beam into two filaments, the two filaments can move away from each other either along
the direction of initial polarization or perpendicular to it. Indeed, in our simulations the filaments move away in
either of these directions. However, the Cartesian grid that we use in our simulations also has the preferred x and y

directions. Therefore, we would like to make sure that the splitting in these simulations is due to vectorial effects,
rather than to grid effects.

To do that, we solve Eq. (26) using the same parameters and input beam as in Fig. 8, but in the rotated coordinate
system:

(ξ, η) = (x cos θ0 − y sin θ0, x sin θ0 + y cos θ0),

where θ0 is the angle of rotation. Since in the rotated (ξ, η) system the preferred direction of vectorial effects forms
an angle of θ0 with êξ , there is now a clear distinction between the preferred direction of vectorial effects and that
of grid effects. We note that NLS and nonparaxial terms in Eq. (26) remain the same under rotations. The vectorial
perturbation terms in Eq. (26) do change under rotations, according to:

A1,x = A1,ξ cos θ0 + A1,η sin θ0, A1,xx = A1,ξξ cos2θ0 + A1,ξη sin(2θ0) + A1,ηη sin2θ0.

In the simulation in Fig. 25 we take θ0 = 30◦. We observe the same dynamics as when θ0 = 0◦, except that
the direction of beam-splitting and filament propagation in the (ξ, η) plane follows the preferred direction of the
vectorial effects. Thus, this simulation shows that the multiple filamentation observed in our simulations is a feature
of the PDE (26), rather than a numerical artifact.

9.2. Boundary-induced filaments

We now show that when the computational domain is not sufficiently large, reflections from the boundary can
lead to what may appear as breakup of cylindrical symmetry and even as multiple filamentation. To see that, we
carry three simulations of Eq. (36) with the same high-power input beam. The first simulation, which serves as a
benchmark, is over a larger domain with Dirichlet boundary conditions. The other two simulations are over a smaller

Fig. 26. Solution of Eq. (36) with ε = 0.01 and with the input beam A1(x, y, z = 0) = 36 e−(x2+y2) ln(2)[1 + 0.02 noise(x, y)] (i.e.,
N(0) ≈ 253Nc). Computational domain and boundary conditions are (A) (x, y) ∈ [−8, 8]2, Dirichlet boundary conditions. (B) (x, y) ∈ [−3, 3]2,
Dirichlet boundary conditions. (C) (x, y) ∈ [−3, 3]2, periodic boundary conditions. Top: iso-surface |A1|2 = 30. Bottom: 3D plot at z = 0.9.
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computational domain, on which we impose either Dirichlet or periodic boundary conditions. For consistency, we
use the same noise function realization in the two simulations over the smaller domain and extend this noise function
in the (x, y) plane with zero values for the simulation over the larger domain.

In the simulation over the larger domain we do not observe multiple filamentation for 0 ≤ z ≤ 0.9 (Fig. 26A,
top). In addition, at z = 0.9 the beam has an almost-symmetric ring structure (Fig. 26A, bottom). In contrast, we
observe filament-type patterns in the iso-surfaces of the two simulations over the smaller domain (top of Fig. 26B
and C). Moreover, in the simulation over the smaller domain with Dirichlet boundary conditions the ring at z = 0.9
is asymmetric (Fig. 26B, bottom). Thus, the filaments observed in the simulations over the smaller domain, as well
as the breakup of symmetry of the ring, are a numerical artifact.

10. Final remark

In this study we derive a scalar PDE for self-focusing in the presence of vectorial and nonparaxial effects. When
the input power N(0) is only moderately above the critical power Nc, the propagation dynamics can by analyzed
using modulation theory, and is thus fairly well understood. Unfortunately, there is no such theory for the high-power
regime N(0) � Nc, at which multiple filamentation takes place. Therefore, at present, we can only rely on numerical
simulations to explore vectorial (and random) effects in this regime. Several key-questions still await an answer,
such as: (1) How does the threshold power for multiple filamentation depend on the model parameters? (2) How
do the number and pattern of the filaments depend on the input power? (3) What is the effect, in any, of plasma
generation and time dispersion on multiple filamentation of ultrashort pulses?

Perhaps the most important open question is whether vectorial effects or noise are the mechanism leading to
multiple filamentation. We believe that the results of this study support the vectorial effects explanation, at least
when the input power is only a few times Nc. A definite answer, however, would probably come from the experimental
test suggested in Section 8.
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Appendix A. Derivation of (19) and (20)

The input beam is linearly polarized in the x direction, i.e.,

A2 = A3 = 0 at z = 0. (A.1)

Therefore, to leading order, the beam remains linearly polarized over propagation distances of several diffraction
lengths, i.e.,

A1 = O(1), A2 = o(1), A3 = o(1). (A.2)

From Eq. (18) and (A.2), we have that

N1 = O(1), (A.3)
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N2 = G1(A1) · A2 + G2(A1) · A∗
2 + o(1), (A.4)

N3 = G3(A1) · A3 + G4(A1) · A∗
3 + o(1), (A.5)

where the functions Gi(i = 1, 2, 3, 4) are O(1). Using Eqs. (A.2)–(A.5), we can rewrite Eq. (17) as

A3 = if ∇⊥ · �A + f 2[− 1
2A3,z + iG3(A1) · A3 + iG4(A1) · A∗

3] + O(f 3).

From this equation and Eq. (A.2), we can conclude that

A3 = if (A1,x + A2,y) + O(f 3) = O(f ). (A.6)

Using Eqs. (18) and (A.6), we can rewrite Eq. (A.4) as

N2 = G1(A1) · A2 + G2(A1) · A∗
2 + O(f 2). (A.7)

The second component of the Helmholtz equation (16) reads

iA2,z + �⊥A2 + N2 + 1
4f 2A2,zz = −f ∂y(f ∇⊥ · �N + iN3 + 1

2f 2N3,z). (A.8)

In light of Eqs. (A.2)–(A.6), the right-hand side of Eq. (A.8) is O(f 2). Therefore, using Eq. (A.7) we can rewrite
Eq. (A.8) as

iA2,z = −�⊥A2 − G1(A1) · A2 + G2(A1) · A∗
2 + O(f 2). (A.9)

From (A.1) and (A.9) we obtain (19). The estimate (20) follows from (A.6) and (19).

Appendix B. Proof of Proposition 3.1

The first component of the Helmholtz equation (16) is

iA1,z + �⊥A1 + N1 + 1
4f 2A1,zz + f ∂x(f ∇⊥ · �N + iN3 + 1

2f 2N3,z) = 0. (B.1)

In light of Eqs. (A.5) and (A.6), we have that N3 = O(f ). Therefore, Eq. (B.1) can be rewritten as

iA1,z + �⊥A1 + N1 + 1
4f 2A1,zz + f ∂x(f ∇⊥ · �N + iN3) = O(f 4). (B.2)

In order to simplify the terms that depend on �N , we use the estimates (19) and (20) to obtain from Eq. (18) that

N1 = |A1|2A1 + f 2

1 + γ
[|A1,x |2A1 − γ (A1,x)2A∗

1] + O(f 4), (B.3)

N3 = if

1 + γ
(|A1|2A1,x − γ A2

1A∗
1,x) + O(f 3),

∇⊥ · �N = N1,x + N2,y = 2|A1|2A1,x + A2
1A∗

1,x + O(f 2). (B.3)

Substituting the estimates (B.3) in Eq. (B.2), we obtain the scalar equation

iA1,z + �⊥A1 + |A1|2A1 + f 2

1 + γ
[|A1,x |2A1 − γ (A1,x)2A∗

1] + 1

4
f 2A1,zz

+ f 2∂x

[
(2|A1|2A1,x + A2

1A∗
1,x) − 1

1 + γ
(|A1|2A1,x − γ A2

1A∗
1,x)

]
= O(f 4),

which can be simplified to give Eq. (21).
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Appendix C. Derivation of (23)

Lemma C.1. The components of the Lagrangian LVH (22) can be approximated with

Ek,kE
∗
j,j = O(f 6), (C.1)

Ej,kE
∗
j,k = f 2n0

4r2
0 n̄2

{[
1

f 2
|A1|2 + 1

f 2
|A2|2 + |A1,x |2

]
+
[
− i

2
(A∗

1A1,z − A1A
∗
1,z) + |A1,x |2 + |A1,y |2

]

+f 2
[

1

4
|A1,z|2 + |A1,xx|2 + |A1,xy|2 − i

2
(A1,xzA

∗
1,x − A∗

1,xzA1,x)

]}
+ O(f 6), (C.2)

k2
0EkE

∗
k = f 2n0

4r2
0 n̄2

[
1

f 2
|A1|2 + 1

f 2
|A2|2 + |A1,x |2

]
+ O(f 6) (C.3)

and

2k2
0 n̄2

n0(1 + γ )
(δl

iδ
k
j + γ δk

i δl
j )EiE

∗
j EkE

∗
l

= f 2n0

4r2
0 n̄2

1

2
|A1|4 + f 2n0

4r2
0 n̄2

f 2

2(1 + γ )
{2|A1|2|A1,x |2 − γ [(A1,x)2A∗2

1 + (A∗
1,x)2A2

1]} + O(f 6). (C.4)

Proof. Using the rescaling (15) and substituting the estimates (19) and (20) we have that

Ek,kE
∗
j,j

(15)= f 2n0

4r2
0 n̄2

∣∣∣∣A1,x + i

f
A3 + O(f 2)

∣∣∣∣2 (19),(20)= f 2n0

4r2
0 n̄2

· O(f 4) = O(f 6), (C.5)

which proves (C.1). Similarly,

Ej,kE
∗
j,k

(15)= f 2n0

4n̄2


∣∣∣∣A1,x

r0

∣∣∣∣2 +
∣∣∣∣A1,y

r0

∣∣∣∣2 +
∣∣∣∣∣ A1,z

2k0r2
0

+ ik0A1

∣∣∣∣∣
2

+
∣∣∣∣A2,x

r0

∣∣∣∣2 +
∣∣∣∣A2,y

r0

∣∣∣∣2 +
∣∣∣∣∣ A2,z

2k0r2
0

+ ik0A2

∣∣∣∣∣
2

+
∣∣∣∣A3,x

r0

∣∣∣∣2 +
∣∣∣∣A3,y

r0

∣∣∣∣2 +
∣∣∣∣∣ A3,z

2k0r2
0

+ ik0A3

∣∣∣∣∣
2



(19),(20)= f 2r4
0 n0

4n̄2

(
|A1,x |2 + |A1,y |2 +

∣∣∣∣12 fA1,z + i

f
A1

∣∣∣∣2 +
∣∣∣∣ i

f
A2

∣∣∣∣2 + |ifA1,xx|2 + |ifA1,xy|2

+
∣∣∣∣12 if 2A1,xz + iA1,x

∣∣∣∣2
)

+ O(f 6),
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which gives (C.2). Relation (C.3) is straightforward. Finally,

2k2
0 n̄2

n0(1 + γ )
(δl

iδ
k
j + γ δk

i δl
j )EiE

∗
j EkE

∗
l

(15)= 2k2
0 n̄2

n0(1 + γ )

f 4n2
0

16n̄2
2

(AiA
∗
i AkA

∗
k + γ AiAiA

∗
kA∗

k)

= f 2n0

4r2
0 n̄2

f 2

2(1 + γ )
[(|A1|2 + |A2|2 + |A3|2)2 + γ |A2

1 + A2
2 + A2

3|2] + O(f 4)

(19),(20)= f 2n0

4r2
0 n̄2

f 2

2(1 + γ )
[(|A1|2 + f 2|A1,x |2)2 + γ |A2

1 − if 2A2
1,x |2] + O(f 4),

which gives (C.4). �

Substituting Eqs. (C.1)–(C.4) in (22) and dividing by f 2n0/4r2
0 n̄2 gives (23).

Appendix D. Proof of Proposition 3.2

Eqs. (21) and (24) have the same O(1) and nonparaxial terms. Therefore, the difference between these equations
comes only from the vectorial terms, and is given by

Eq.(21) − Eq.(24) = f 2
{
−4 + 6γ

1 + γ
|A1,x |2A1 − (A1,x)2A∗

1 − 1 + 2γ

1 + γ
(|A1|2A1,xx + A2

1A∗
1,xx)

+ 1

1 + γ
[2γ |A1,x |2A1 − (1 + γ )(A1,x)2A∗

1 − |A1|2A1,xx + γ A2
1A∗

1,xx]

−∂xx(iA1,z + �⊥A1)

}
+ O(f 4). (D.1)

We now prove that this difference is O(f 4), rather than O(f 2). To do that, we differentiate Eq. (24) twice with
respect to x, to obtain

∂xx(iA1,z + �⊥A1 + |A1|2A1) = O(f 2).

Therefore,

∂xx(iA1,z + �⊥A1) = −[4|A1,x |2A1 + 2(A1,x)2A∗
1 + 2|A1|2A1,xx + A2

1A∗
1,xx] + O(f 2).

Substituting this equation in Eq. (D.1) gives that

Eq.(21) − Eq.(24) = f 2
{
−4 + 6γ

1 + γ
|A1,x |2A1 − (A1,x)2A∗

1 − 1 + 2γ

1 + γ
(|A1|2A1,xx + A2

1A∗
1,xx)

+ 1

1 + γ
[2γ |A1,x |2A1 − (1 + γ )(A1,x)2A∗

1 − |A1|2A1,xx + γ A2
1A∗

1,xx]

+[4|A1,x |2A1 + 2(A1,x)2A∗
1 + 2|A1|2A1,xx + A2

1A∗
1,xx]

}
+ O(f 4).

Technical calculations show that the O(f 2) terms on the right-hand side cancel each other. Therefore, the difference
between Eqs. (21) and (24) is only O(f 4).
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Appendix E. Proof of Eq. (25)

Let us denote

W := �⊥A1 + |A1|2A1. (E.1)

Using either of the scalar equations (24) or (21), we have that

A1,z = iW + O(f 2). (E.2)

Therefore, differentiating (E.2) with respect to z and using (E.1) and (E.2), we get that

A1,zz
(E.2)= iWz + O(f 2)

(E.1)= i�⊥A1,z + 2i|A1|2A1,z + iA2
1A∗

1,z + O(f 2)

(E.2)= −�⊥W − 2|A1|2W + A2
1W ∗ + O(f 2). (E.3)

Substituting (E.1) in the right-hand side of (E.3), we obtain

A1,zz = −�2
⊥A1 − �⊥(|A1|2A1) − 2|A1|2�⊥A1 + A2

1�⊥A∗
1 − |A1|4A1 + O(f 2). (E.4)

Eq. (25) follows from Eq. (E.4) and the vectorial identity

�⊥(|A1|2A1) ≡ 2|A1|2�⊥A1 + 4(∇⊥A1) · (∇⊥A∗
1)A1 + 2(∇⊥A1) · (∇⊥A1)A

∗
1 + A2

1�⊥A∗
1.

Appendix F. Modulation theory for vectorial and nonparaxial effects

F.1. Modulation theory

In order to conform to the notations of [20], we denote ψ = A1, ε = f 2, and rewrite Eq. (21) as the perturbed
NLS

iψz + �⊥ψ + |ψ |2ψ + εF [ψ] = 0, (F.1)

where F [ψ] = P [ψ] + G[ψ] + H [ψ] + K[ψ] and

P [ψ] = 1

4
ψzz, G[ψ] = 4 + 6γ

1 + γ
|ψx |2ψ, H [ψ] = (ψx)2ψ∗,

K[ψ] = 1 + 2γ

1 + γ
(|ψ |2ψxx + ψ2ψ∗

xx). (F.2)

Here P [ψ] corresponds to nonparaxiality, and G[ψ], H [ψ], and K[ψ] correspond to vectorial effects.
Modulation theory is based on the following assumptions:

• The focusing part of a filament is close to the asymptotic profile ψR(r, z), which is given by

ψR(r, z) := 1

L(z)
R(ρ) eiS, (F.3)

where R(ρ) is defined in Eq. (10),

ρ(r, z) := r

L(z)
, S(r, z) := ζ(z) + r2Lz(z)

4L(z)
, ζz(z) := 1

L2(z)
. (F.4)
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• The filament’s power is close to the critical power Nc.
• The perturbation terms are small, i.e., |εF | � |�⊥ψ | and |εF | � |ψ |3.

Under these assumptions, self-focusing dynamics of the perturbed NLS (F.1) is described, to leading order, by

Lzz(z) = − β

L3
, βz(z) = ε

2M
(f1,z − 4f2), (F.5)

where Nc and M are defined in Eqs. (11) and (30), respectively, and the auxiliary functions for F [ψ] are given by

f1(z) = L

π
Re
∫

F [ψR][R(ρ) + ρR′(ρ)] e−iS dx dy, f2(z) = 1

2π
Im
∫

F [ψR]ψ∗
R dx dy. (F.6)

Because Eq. (F.6) is linear in F , the reduced system (F.5) is additive in the perturbation terms. Therefore, in our
case we get that

f1 = p1 + g1 + h1 + k1, f2 = p2 + g2 + h2 + k2, (F.7)

where pi (i = 1, 2) are the auxiliary functions with P [ψR] instead of F [ψR] in Eqs. (F.6), and similarly for gi , hi ,
and ki (see Appendix F.4).

Lemma F.1. The auxiliary functions corresponding to P, G, H, and K in Eq. (F.2) satisfy:

p1,z � p2, p2 ∼ Nc

4

(
1

L2

)
z

, g2 ≡ 0, g1,z ∼ 4 + 6γ

3(1 + γ )
Nc

(
1

L2

)
z

, h1,z ∼ Nc

3

(
1

L2

)
z

,

h2 = Nc

4

(
1

L2

)
z

, k2 ≡ 0, k1,z ∼ 2 + 4γ

3(1 + γ )
(3Nc − 2I6)

(
1

L2

)
z

,

where I6 ≈ 6Nc.

In order to prove Lemma F.1, we first make some preliminary calculations.

F.2. Preliminaries calculations

In the following calculations we switch back and forth between Cartesian and cylindrical coordinates, given by

(x, y) = (r cos θ, r sin θ) = ρL(cos θ, sin θ).

We also denote (·)′ := d
dρ

.
The small parameter in modulation theory is β(z). We can utilize this to simplify the expressions in Lemma F.3,

by using the following relations:

Lemma F.2. Let |β| � 1. Then, the following relations hold:

[L2L2
z] = [x2L2

z] = O(β) � 1, (F.8)

R2
x − (RSx)2 ∼ R2

x, (F.9)

where [·] stands for the characteristic size.

Proof. These relations follow from [x] = [L], [Sx] = [LLz], and |β| = |L3Lzz| � 1. �
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Lemma F.3. Let ψR be given by (F.3) and (F.4). Then:

|ψR,x |2 ∼ L−4R′2 cos2θ, (F.10)

Im[(ψR,x)2 e−2iS] = L−2(R2)xSx, (F.11)

Re[(ψR,x)2 e−2iS] = L−4R′2 cos2θ, (F.12)

Re(ψ∗
RψR,xx) ∼ L−4

(
RR′′ cos2θ + 1

ρ
RR′ sin2θ

)
. (F.13)

Proof. From (F.3) and (F.4) we obtain that

Sx = xLz

2L
, Rx = R′ cos θ

L
, Rxx = 1

L2

(
R′′ cos2θ + 1

ρ
R′ sin2θ

)
. (F.14)

Using Eqs. (F.3) and (F.4) we get that

ψR,x = L−1(Rx + iRSx) eiS, (F.15)

from which we obtain

|ψR,x |2(F.15)= L−2(R2
x + R2S2

x )
(F.14)= L−4 cos2θ(R′2 + 1

4R2ρ2L2L2
z). (F.16)

This expression can be further simplified using (F.8), because

R′2 + 1
4ρ2R2L2L2

z = R′2 + O(L2L2
z) ∼ R′2.

Substituting this approximation in (F.16) leads to (F.10). In addition, from (F.15) we have that

(ψR,x)2 = L−2 e2iS[R2
x − (RSx)2 + i(R2)xSx], (F.17)

from which (F.11) follows. From (F.17) we also have that

Re[(ψR,x)2 e−2iS] = L−2[R2
x − (RSx)2]

(F.9)∼ L−2R2
x

(F.14)= L−4R′2 cos2θ,

which proves (F.12). Finally, we have that

ψR,xx
(F.15)= L−1 eiS[(Rxx − RS2

x) + i(2RxSx + RSxx)].

From this relation we get that

Re(ψ∗
RψR,xx)

(F.3),(F.4)= R

L2
(Rxx − RS2

x)

(F.14)= R

L4

[(
R′′ cos2θ + 1

ρ
R′ sin2θ

)
− 1

4
x2RL2

z

]
(F.8)∼ R

L4

(
R′′ cos2θ + 1

ρ
R′ sin2θ

)
,

which proves (F.13). �

F.3. Integral relations

In this section we obtain relations (F.18), (F.20), (F.21) and (F.26), in order to reduce the number of constants
that appear in the reduced system (29).
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The following relation is well known∫
R4ρ dρ = 2Nc. (F.18)

We now prove some additional relations.

Lemma F.4. Let R(ρ) be defined by Eq. (10) and let

I1 := 3
∫

R2R′2ρ dρ, I2 := 3
∫

ρRR′3ρ dρ, I3 := 3
∫

ρR2R′R′′ρ dρ,

I4 := 3
∫

R3R′′ρ dρ, I6 :=
∫

R6ρ dρ. (F.19)

Then the following relations hold:

I1 + I2 = Nc, (F.20)

I1 + I3 + I4 − 3
4R4(0) = 3Nc − 2I6. (F.21)

Proof. The proof will follow from the four linear equations (F.22)–(F.25) with I1, I2, I3, I4, I6, R(0), and Nc, which
we now derive. Multiplying Eq. (10) by (3ρ2R2R′ dρ) and integrating, we get that∫

(3ρ2R2R′R′′ + 3ρR2R′2 + 3ρ2R5R′ − 3ρ2R3R′) dρ = 0.

Using (F.19) we arrive at

I3 + I1 +
∫ [

1

2
ρ2(R6)′ − 3

4
ρ2(R4)′

]
dρ

IBP= I3 + I1 −
∫ (

ρR6 − 3

2
ρR4

)
dρ = 0,

where “IBP” stands for integration-by-parts. Using (F.18), we obtain that

I1 + I3 = I6 − 3Nc. (F.22)

Multiplying (10) by (R3ρ dρ) and integrating we obtain∫
(ρR3R′′ + R3R′ + ρR6 − ρR4) dρ = 0.

Using (F.18) we obtain the second relation

1

3
I4 +

∫ ∞

0

1

4
(R4)′ dρ + I6 − 2Nc = 1

3
I4 − 1

4
R4(0) + I6 − 2Nc = 0. (F.23)

From the definition of I1 we have that

I1 := 3
∫

R2R′R′ρ dρ
IBP= − 3

∫
(ρR2R′)′R dρ

(F.19)= − 3

4

∫ ∞

0
(R4)′ dρ − 2I1 − I4 = 3

4
R4(0) − 2I1 − I4,

which leads to the third relation

3I1 + I4 = 3
4R4(0). (F.24)
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Integration of the differential identity

3

2

d

dρ
(ρRR′)2 ≡ 3ρR2R′2 + 3ρ2RR′3 + 3ρ2R2R′R′′,

leads to the fourth relation

I1 + I2 + I3 = 0. (F.25)

Solving the linear system (F.22)–(F.25) we obtain

I1 = I6 − 2Nc, I2 = 3Nc − I6, I3 = −Nc, I4 = 6Nc − 3I6 + 3
4R4(0),

from which (F.20) and (F.21) follow. �

Finally, our numerical calculations show that I6 ≈ 6.07Nc. Therefore, we can use the approximation

I6 ≈ 6Nc, (F.26)

which has about 1% accuracy.

F.4. Proof of Lemma F.1

The first perturbation term in Eq. (F.2) is the nonparaxial term P [ψ]. In [19] it was shown that

p1,z � p2 := 1

2π
Im
∫

1

4
ψR,zzψ

∗
R dx dy ∼ Nc

4

(
1

L2

)
z

. (F.27)

Therefore, to leading order, p1 can be neglected in the reduced system.
According to Eq. (F.6), the second auxiliary function corresponding to G[ψ] is

g2 := 1

2π

4 + 6γ

1 + γ

∫
Im(|ψR,x |2|ψ∗

R|2) dx dy = 0.

Calculating g1 gives that

g1 := 4 + 6γ

1 + γ

L

π
Re
∫

|ψR,x |2ψR(R + ρR′) e−iS dx dy

(F.3)= 4 + 6γ

1 + γ
π

∫
|ψR,x |2R(R + ρR′) dx dy

(F.10)∼ 4 + 6γ

1 + γ

1

πL4

∫
R′2 cos2θ(R2 + ρRR′) dx dy

= 4 + 6γ

1 + γ

1

πL2

∫ 2π

0
cos2θ dθ

∫
(R2R′2 + ρRR′3)ρ dρ

(F.19)= 4 + 6γ

1 + γ

1

3L2
(I1 + I2)

(F.20)= 4 + 6γ

3(1 + γ )

Nc

L2
. (F.28)

For H [ψ] we have that

h1 := L

π
Re
∫

(ψR,x)2ψ∗
R(R + ρR′) e−iS dx dy

(F.3)= 1

π

∫
Re[(ψR,x)2]R(R + ρR′) dx dy

(F.12)= 1

πL2

∫
RR′2(R + ρR′) cos2θρ dρ dθ

(F.19)= 1

3L2
(I1 + I2)

(F.20)= Nc

3L2
, (F.29)
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and

h2 := 1

2π
Im
∫

(ψR,x)2(ψ∗
R)2 dx dy

(F.3)= 1

2πL2

∫
R2Im[(ψR,x)2 e−2iS] dx dy

(F.11)= 1

2πL4

∫
R2(R2)xSx dx dy = 1

4πL4

∫
(R4)xSx dx dy

IBP= − 1

4πL4

∫
R4Sxx dx dy

(F.14)= − Lz

8πL5

∫
R4 dx dy = − Lz

8L3

∫
R4ρ dρ

(F.18)= Nc

4

(
1

L2

)
z

. (F.30)

For K[ψ] we have that

K[ψR]ψ∗
R = 1 + 2γ

1 + γ
(|ψR|2ψR,xx + ψ2

Rψ∗
R,xx)ψ

∗
R

(F.3)= 2 + 4γ

1 + γ

R2

L2
Re(ψ∗

RψR,xx). (F.31)

In light of (F.31), the integrand in k2 (F.6) is real valued. Therefore, k2 = 0. Calculating k1 gives that

k1 := L

π
Re
∫

K[ψR](R + ρR′) e−iS dx dy
(F.3)= L

π

∫
Re

(
K[ψR]ψ∗

R

L

R

)
(R + ρR′) dx dy

(F.31)= 1 + 2γ

1 + γ

2

π

∫
Re(ψ∗

RψR,xx)(R
2 + ρRR′)ρ dρ

(F.13)∼ 1 + 2γ

1 + γ

2

πL4

∫ (
RR′′ cos2θ + 1

ρ
RR′ sin2θ

)
(R2 + ρRR′)ρ dρ

(F.19)= 1 + 2γ

1 + γ

2

3L2

[
I4 + I3 − 3

4
R4(0) + I1

]
(F.21)= 2 + 4γ

3(1 + γ )
(3Nc − 2I6)

1

L2
. (F.32)

Combining (F.27)–(F.30) and (F.32) proves Lemma F.1.

F.5. Proof of Proposition 5.1

To obtain Eqs. (29), we substitute the auxiliary functions of Lemma F.1 in Eq. (F.5), use Eq. (F.7), and use ε = f 2.
Doing that, to leading order we obtain

βz = f 2

2M
(−4p2 + g1,z + h1,z − 4h2 + k1,z) = −f 2Nc

2M

(
1

L2

)
z︸ ︷︷ ︸

nonparaxial

+ f 2

2M

[
4 + 6γ

3(1 + γ )
Nc + 1

3
Nc − Nc + 2 + 4γ

3(1 + γ )
(3Nc − 2I6)

](
1

L2

)
z︸ ︷︷ ︸

vectorial

,

from which we obtain the second equation in (29) with Cnp = 1 and

Cvec(γ ) = 4

3
· (I6/Nc − 2) + (2I6/Nc − 4)γ

1 + γ

(F.26)≈ 16

3

(
1 + γ

1 + γ

)
.

References

[1] S.C. Abbi, H. Mahr, Correlation of filaments in nitrobenzene with laser spikes, Phys. Rev. Lett. 26 (11) (1971) 604–606.
[2] J. Atai, Y. Chen, J.M. Soto-Crespo, Stability of three-dimensional self-trapped beams with a dark spot surrounded by bright rings of varying

intensity, Phys. Rev. A 49 (1994) 3170–3173.



146 G. Fibich, B. Ilan / Physica D 157 (2001) 112–146

[3] T. Bergqvist, B. Kleman, P. Wahren, Breakdown phenomena in CS2 caused by Nd-laser radiation, Ark. Fys. 34 (1967) 81–95.
[4] V.I. Bespalov, V.I. Talanov, Filamentary structure of light beams in nonlinear media, Zh. Eksper. Teor. Fiz. — Pis’ma Redakt. (USSR JETP)

3 (1966) 471–476 [Trans. in JETP Lett. 3 (1966) 307–310].
[5] J.E. Bjorkholm, A. Ashkin, Cw self-focusing and self-trapping of light in sodium vapor, Phys. Rev. Lett. 32 (1974) 129–132.
[6] R.W. Boyd, Nonlinear Optics, Academic Press, Boston, 1992.
[7] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, Self-channeling of high-peak-power femtosecond laser pulses in air, Opt. Lett. 20

(1995) 73–75.
[8] R.G. Brewer, J.R. Lifsitz, Narrow optical waveguides and instabilities induced in liquids, Phys. Lett. 23 (1966) 79–81.
[9] A. Brodeur, F.A. Ilkov, S.L. Chin, Beam filamentation and the white light continuum divergence, Opt. Commun. 129 (1996) 193–198.

[10] A. Brodeur, F.A. Ilkov, S.L. Chin, O.G. Kosareva, V.P. Kandidov, Moving focus in the propagation of ultrashort laser pulses in air, Opt.
Lett. 22 (1997) 304–306.

[11] A.V. Butenin, V.V. Korobkin, A.A. Malyutin, M.Ya. Shchelv, Investigation of the kinetics of self-focusing in liquids, Zh. Eksper. Teor. Fiz.
— Pis’ma Redakt. (USSR JETP) 6 (1967) 687–690 [Trans. in JETP Lett. 6 (1967) 173–176].

[12] A.J. Campillo, S.L. Shapiro, B.R. Suydam, Periodic breakup of optical beams due to self-focusing, Appl. Phys. Lett. 23 (1973) 628–630.
[13] S. Chi, Q. Guo, Vector theory of self-focusing of an optical beam in Kerr media, Opt. Lett. 20 (15) (1995) 1560–1598.
[14] R.Y. Chiao, M.A. Johnson, S. Krinsky, C.H. Townes, E. Garmire, 6A1 — a new class of trapped light filaments, IEEE J. Quant. Electron.

QE- 2 (9) (1966) 467–469.
[15] Yu.S. Chilingarian, Self-focusing of inhomogeneous laser beams and its effect on stimulated scattering, Zh. Eksper. Teor. Fiz. — Pis’ma

Redakt. (USSR JETP) 55 (5) (1968) 832–835 [Trans. in Sov. Phys. JETP 28 (1968) 832–835].
[16] B. Crosignani, P.D. Porto, A. Yariv, Nonparaxial equation for linear and nonlinear optical propagation, Opt. Lett. 22 (1997) 778–780 [Errata

22, 1820].
[17] R. de la Fuente, O. Varela, H. Michinel, Fourier analysis of non-paraxial self-focusing, Opt. Commun. 173 (2000) 403–411.
[18] M.D. Feit, J.A. Fleck, Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams, J. Opt. Soc. Am.

B 5 (1988) 633–640.
[19] G. Fibich, Small beam nonparaxiality arrests self-focusing of optical beams, Phys. Rev. Lett. 76 (1996) 4356–4359.
[20] G. Fibich, G.C. Papanicolaou, Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension, SIAM

J. Appl. Math. 60 (1999) 183–240.
[21] G. Fibich, G.C. Papanicolaou, A modulation method for self-focusing in the perturbed critical nonlinear Schrödinger equation, Phys. Lett.

A 239 (1998) 167–173.
[22] G. Fibich, S. Tsynkov, High-order two-way artificial boundary conditions for nonlinear wave propagation with backscattering. JCP, in

press.
[23] S. Gatz, J. Hermann, Propagation of optical beams and the properties of two-dimensional spatial solitons in media with a local saturable

nonlinear refractive index, J. Opt. Soc. Am. B 14 (1997) 1795–1805.
[24] Q. Guo, Private communication.
[25] C.S. Milsted Jr., C.D. Cantrell, Vector effects in self-focusing, Phys. Rev. A 53 (1996) 3536–3542.
[26] P.L. Kelley, Self-focusing of optical beams, Phys. Rev. Lett. 15 (26) (1965) 1005–1008.
[27] K. Konno, H. Suzuki, Self-focusing of a laser beam in nonlinear media, Phys. Scripta 20 (1979) 382–386.
[28] V.V. Korobkin, R.V. Serov, Investigation of self-focusing of neodymium-laser radiation, Zh. Eksper. Teor. Fiz. — Pis’ma Redakt. (USSR

JETP) 6 (1967) 642–644 [Trans. in JETP Lett. 6 (1967) 135–137].
[29] M. Lax, W.H. Louisell, W.B. McKnight, From Maxwell to paraxial wave optics, Phys. Rev. A 11 (4) (1975) 1365–1370.
[30] G.J. Lord, Small-scale filaments in liquids and tracks of moving foci, Phys. Rev. Lett. 22 (1969) 994–997.
[31] P.D. Maker, R.W. Terhune, Study of optical effects due to an induced polarization third order in the electric field strength, Phys. Rev. 137

(1965) A801–A819.
[32] P.D. Maker, R.W. Terhune, C.M. Savage, Intensity-dependent changes in the refractive index of liquids, Phys. Rev. Lett. 12 (1964) 507–509.
[33] A.V. Mamaev, M. Saffman, D.Z. Anderson, A.A. Zozulya, Propagation of light beams in anisotropic nonlinear media: from symmetry

breaking to spatial turbulence, Phys. Rev. A 54 (1996) 870–879.
[34] J.H. Marburger, E.L. Dawes, Dynamical formation of small-scale filaments, Phys. Rev. Lett. 21 (1968) 556–558.
[35] M. Mlejnek, M. Kolesik, J.V. Moloney, E.M. Wright, Optically turbulent femtosecond light guide in air, Phys. Rev. Lett. 83 (1999)

2938–2941.
[36] A.V. Nowak, D.O. Ham, Self-focusing of 10 �m laser pulses in SF6, Opt. Lett. 6 (1981) 185–187.
[37] N.F. Pilipetskii, A.R. Rustamov, Observation of self-focusing of light in liquids, Zh. Eksper. Teor. Fiz. — Pis’ma Redakt. (USSR JETP) 2

(1965) 88–89 [Trans. in JETP Lett. 2 (1965) 55–56].
[38] J. Schwartz, P. Rambo, J.C. Diels, M. Kolesik, E.M. Wright, J.V. Moloney, Ultraviolet filamentation in air, Opt. Commun. 180 (2000)

383–390.
[39] J.M. Soto-Crespo, E.M. Wright, N.N. Akhmediev, Recurrence and azimuthal-symmetry breaking of a cylindrical Gaussian beam in a

saturable self-focusing medium, Phys. Rev. A 45 (1992) 3168–3174.
[40] C. Sulem, P.L. Sulem, The Nonlinear Schrödinger Equation, Springer, New York, 1999.
[41] F. Vidal, T.W. Johnston, Electromagnetic beam breakup — multiple filaments, single beam equilibria and radiation, Phys. Rev. Lett. 77

(1996) 1282–1285.
[42] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys. 87 (1983) 567–576.


