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We present an approach for instabilities of solitons that is based on the spectrum of a fourth-order linearized op-
erator. Unlike the standard approach which is based on the slope (Vakhitov–Kolokolov) condition, this
approach provides the quantitative value of the instability rate and the qualitative nature of the instability
dynamics. © 2011 Optical Society of America
OCIS codes: 190.0190, 190.6135.

Solitons are localized nonlinear waves that maintain their
shape as they propagate. They arise in many physical
fields, including nonlinear optics and Bose-Einstein con-
densates, where their dynamics is modeled by the non-
linear Schrödinger equation (NLS). The key question
with regard to a soliton is whether it is stable. The stan-
dard approach for answering this question goes back to
Vakhitov and Kolokolov (VK), who showed that a neces-
sary condition for stability is that the curve of the soliton
power as a function of the propagation constant should
have a nonnegative slope [1]. Although the VK/slope con-
dition has been used in hundreds if not thousands of stu-
dies, it has two major limitations. The first limitation is
qualitative: The slope condition determines whether
the soliton is susceptible to an amplitude (focusing)
instability, whereby the soliton amplitude increases (de-
creases) as its width decreases (increases). The slope
condition, however, does not determine whether the
soliton is susceptible to a drift instability, whereby the
soliton drifts away from potential minima [2,3]. The oc-
currence of a drift instability can be determined by a dif-
ferent condition, the spectral condition, which is based
on the number of negative eigenvalues of the second-
order linearized operator Lþ. The second limitation of
the slope condition is that it is not quantitative, i.e., it pro-
vides a yes/no answer to the question whether the soliton
is susceptible to an amplitude instability, but it does not
provide the instability rate. This quantitative information
is important, e.g., in the case of an unstable soliton whose
instability rate is very small, since such a soliton is
“mathematically” unstable, yet it can be experimentally
stable [2,4,5].
In [2] we showed that the spectral condition is also

quantitative, i.e., the rate of the drift instability depends
on the magnitude of the negative eigenvalues of Lþ. In
this study we first ask whether the slope condition is also
quantitative. Indeed, since a negative (positive) slope im-
plies an amplitude instability (stability), this suggests that
a small negative slope implies a weak amplitude instabil-
ity, and more generally, that the magnitude of the nega-
tive slope jP0ðμÞj is a measure of the instability rate.
Surprisingly, however, we show that the magnitude of
the slope does not provide any information on the in-
stability rate. Therefore, we adopt a different approach
for instability, which is based on the spectrum of the

fourth-order linearized operator L
−

Lþ. As we shall see,
the soliton is unstable if and only if this operator has ne-
gative eigenvalues. The nature of the instability can be
inferred from the corresponding eigenfunctions: An even
eigenfunction corresponds to an amplitude instability,
whereas an odd eigenfunction corresponds to a drift in-
stability. In both cases, the instability rate is given by the
square root of the negative eigenvalue.

We briefly review the linear instability analysis that
leads to the slope condition. See [1,6,7] for more details.
We begin with the ð1þ dÞ-dimensional homogeneous
NLS

iψ tðx; tÞ þΔψ þ Fðjψ j2Þψ ¼ 0; Δ≐

Xd

k¼1

∂

2
xk ; ð1Þ

where t > 0, x ∈ Rd, and F represents a power-law, a sa-
turable, or a photorefractive nonlinearity The NLS (1) ad-
mits the standing-wave solution ψðx; t; μÞ ¼ Rðx; μÞeiμt,
where μ is the frequency and Rðx; μÞ satisfies

−μRþΔRþ FðR2ÞR ¼ 0: ð2Þ

Let ψðx; tÞ ¼ ½Rðx; μÞ þ εhðx; tÞ&eiμt be a perturbed soliton
solution of (1), where R is the positive (ground-state)
solution of (2). The OðεÞ linearized equation for h is

ht ¼ −if½−Δþ μ − FðR2Þ&h − R2F 0ðR2Þh'g; ð3Þ

where h' is the complex conjugate of h and F 0 denotes
the derivative of F with respect to R2. Let

hðx; tÞ ¼ ½uðxÞ þ ivðxÞ&eΩt; ð4Þ

where uðxÞ and vðxÞ are real. If the ground state is line-
arly stable, there are no solutions of (3) with Ω > 0. In
order to investigate whether there are such unstable
modes, we substitute (4) into (3) and assume that
Ω ∈ R. This leads to

L
−

u ¼ Ωv; L
−

≐ −Δþ μ − FðR2Þ; ð5aÞ

Lþv ¼ −Ωu; Lþ≐L
−

− 2R2F 0ðR2Þ: ð5bÞ

The eigenvalues of the system (5) were studied analyti-
cally in [6,7]. Alternatively, one can apply L

−

to (5b),
which gives the fourth-order system
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L
−

Lþv ¼ λv; λ≐ − Ω2: ð6Þ

Let R⊥ denote the subspace orthogonal to R. Then L
−

and
L−1
−

are bounded and positive definite on R⊥. Applying
L−1
−

to (6) gives

Lþv ¼ λL−1
−

v; ∀v ∈ R⊥: ð7Þ
Let λmin be the smallest eigenvalue of (6), with a corre-
sponding eigenfunction vmin. Taking the inner product
of (7) with v leads to the variational characterization
of λmin

λmin≐ inf
v∈R⊥;∥v∥2¼1

ðv; LþvÞ
ðv; L−1

−

vÞ
¼ ðvmin; LþvminÞ

ðvmin; L−1
−

vminÞ
: ð8Þ

Hence, the necessary condition for stability be-
comes λmin ≥ 0. Since L−1

−

> 0, ðv; L−1
−

vÞ ¼ ∥L−1=2
−

v∥22 > 0.
Therefore,

sgnλmin ¼ sgnαLþ ; αLþ
≐ inf

v∈R⊥;∥v∥2¼1
ðv; LþvÞ: ð9Þ

Thus, the necessary condition for stability λmin ≥ 0 implies
that αLþ

≥ 0. By [6] Lemma E.1, ðL−1
þ R;RÞ ≤ 0 ⇒ αLþ

≥ 0.
Differentiating (2) with respect to μ gives LþQ ¼ −R,
where Q≐∂μR. Therefore, −ðL−1

þ R;RÞ ¼ ðQ;RÞ ¼
1
2
d∥R∥22
dμ ¼ 1

2P
0ðμÞ. Hence, the necessary condition for stabi-

lity is satisfied when P0ðμÞ ≥ 0, which is known as the
VK/slope condition. In [6,7] it was rigorously proved that
the positive solitons of Eq. (1) are orbitally stable if
P0ðμÞ > 0 and unstable if P0ðμÞ < 0.
When P0ðμÞ < 0, it follows from (4) that the instability

rate is given by the maximal positive eigenvalue of (5),
which can be expressed in terms of the most negative
eigenvalue of L

−

Lþ as

Ωmax≐
ffiffiffiffiffiffiffiffiffiffiffi
−λmin

p
: ð10Þ

To show analytically that the magnitude of P0ðμÞ is “un-
related” to the instability rate Ωmax, we consider the case
of a power-law nonlinearity Fðjψ j2Þ ¼ jψ j2σ . In this case,
the NLS is invariant under the dilation symmetry
ðx; t;ψÞ↦ð ffiffiffiμp

x; μt; μ 1
2σψÞ. Therefore, the ground state

can be written as Rðx; μÞ ¼ μ 1
2σRð ffiffiffiμp

x; μ ¼ 1Þ. Hence,
the slope scales with μ as

P0ðμÞ ¼ μðcσ;d−1Þcσ;d∥Rð·; μ ¼ 1Þ∥22; cσ;d≐
2 − σd
2σ :

This implies that when cσ;d < 1 the slope’s magnitude
jP0ðμÞj decreases with μ. On the other hand, Eq. (4)
and the dilation invariance Ωt↦Ωμt imply that Ωmax in-
creases linearly with μ for any ðσ; dÞ. In particular, since
the instability rate can be large when the slope is small
and vice versa, the magnitude of the slope is unrelated to
the instability rate.
To better understand this surprising observation,

we note that the derivation of the slope condition is
based on the relations sgnP0ðμÞ ≥ 0 ⇒ sgnαLþ

≥ 0 ⇒
sgnλmin ≥ 0. The magnitudes of λmin and αLþ are “related,”
as they are the minima of similar variational problems,
Eqs. (8) and (9), respectively. In contrast, the magnitudes
of P0ðμÞ and αLþ are unrelated (see proof of Lemma E.1
in [6]).

To confirm numerically that the instability rate, which
is associated with the violation of the slope condition is
indeed given by Eq. (10), let us consider the NLS (1) with
the initial condition

ψ0ðxÞ ¼ Rðx; μÞ þ εuðxÞ; jεj ≪ 1; ð11Þ

where u is the eigenfunction of (5) that corresponds to
Ωmax. Because (5) is invariant under the transformation
ðu; v;ΩÞ↦ðu;−v;−ΩÞ, the linearized solution of (1) with
the initial conditions (11) is given by

ψðx; tÞ ≅
"
Rþ ε

2
ðuþ ivÞeΩmaxt þ ε

2
ðu − ivÞe−Ωmaxt

#
eiμt:

Hence, the on-axis amplitude of ψ satisfies

jψð0; tÞj ≅ jRð0Þ þ ε½uð0Þ coshðΩmaxtÞ
þ ivð0Þ sinhðΩmaxtÞ&j: ð12Þ

We solve directly the supercritical NLS (1) with d ¼ 1,
Fðjψ j2Þ ¼ jψ j6, and the perturbed ground-state initial con-
dition (11) with μ ¼ 1. Recall that Rðx; μÞ is given expli-
citly by R ¼ ð4μÞ16sech1

3ð3 ffiffiffiμp
xÞ. Therefore, P0ðμÞ < 0,

showing that the soliton is unstable. As noted, however,
the slope condition approach does not provide the in-
stability rate. In contrast, computing the spectrum of
L
−

Lþ yields the single negative eigenvalue λmin ≈ −8:44,
which gives an instability rate of Ωmax ≈ 2:9; see (10).
Figure 1 shows that the on-axis dynamics of the per-
turbed bound state agrees with the prediction (12) during
the initial stage of the propagation, both for a focusing
(ϵ > 0) and a defocusing (ϵ < 0) perturbation.

The above approach can be extended to the variable-
coefficients NLS

iψ tðx; tÞ þΔψ þ Fðjψ j2Þψ − VðxÞψ ¼ 0; x ∈ Rd: ð13Þ

The linear stability analysis is the same as in the constant-
coefficient case, except that now

L
−

≐ −Δþ μþ V − FðR2
V Þ; Lþ≐L

−

− 2R2
VF

0ðR2
V Þ;

where RV is the bound state in the presence of the poten-
tial V . In the homogeneous case, the operators Lþ and
L
−

Lþ have d zero eigenvalues with corresponding eigen-
functions ∇R. The inhomogeneous potential breaks up
the translation invariance, leading to a bifurcation of

Fig. 1. (Color online) On-axis amplitude of the perturbed un-
stable ground state of the supercritical NLS (blue, solid line)
agrees with the prediction (12) with Ωmax ≈ 2:9 (red, dashed
line) both for (a) a focusing perturbation ε ¼ 10−2 and (b) a de-
focusing perturbation ε ¼ −10−2.
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these d eigenvalues away from zero. The eigenvalues of
L
−

Lþ that become negative are associated with a drift in-
stability, which typically occurs when the soliton is cen-
tered at a potential maximum or at a saddle point [2,3].
Therefore, negative eigenvalues of L

−

Lþ can be indica-
tions of both an amplitude instability and a drift instabil-
ity. Fortunately, one can easily distinguish between
negative eigenvalues that induce an amplitude instability
and those that induce a drift instability, as the former
correspond to symmetric eigenmodes, and the latter cor-
respond to asymmetric eigenfunctions (as they are per-
turbed from ∇R).
In summary, we propose the following approach for

stability:

1. Compute the bound state (cf. [8,9]), and use it to
compute the negative eigenvalues of L

−

Lþ.
2. A negative eigenvalue with a symmetric eigen-

mode indicates an amplitude instability.
3. A negative eigenvalue with an asymmetric eigen-

mode indicates a drift instability.
4. In both cases, the instability rate is given by

Ω ¼
ffiffiffiffiffiffi
−λ

p
.

This scheme thus completes the quantitative theory pre-
sented in [2,3]. Our approach applies to positive solitons
in any dimension, any nonlinearity Fðjψ j2Þ, as well as for
any lattice configuration. To illustrate that, consider so-
litons of the quintic NLS with a periodic-lattice potential,

iψ tðt; xÞ þ ψxx − 2 cosð2πxÞψ þ jψ j4ψ ¼ 0; ð14Þ

that are centered at x ¼ 0 (i.e., at a potential maximum).
Under the standard approach, one plots the PðμÞ curve.
Since PðμÞ has a maximum at μc ≃ 3, see Fig. 2(a), the
solitons are unstable for μ > μc. Alternatively, under
the new approach, one computes the negative eigenva-
lues of L

−

Lþ, as a function of μ, see Fig. 2(b). Because

one of the negative eigenvalues exists for 0 < μ, these so-
litons are unstable for all μ > 0, and not just for μ > μc.
This negative eigenvalue corresponds to an asymmetric
eigenmode [see Figs. 3(a) and 3(b)] and is thus asso-
ciated with a drift instability in the x direction, away from
the potential maxima. The second negative eigenvalue
exists for μ > μc. This eigenvalue corresponds to a sym-
metric eigenmode [see Fig. 3(b)] and is thus associated
with an amplitude instability. Plotting the instability rates
given by (10) in Fig. 2(c) shows that when μ < 8:5 the
drift instability dominates the initial dynamics, while
for μ > 8:5 the amplitude instability dominates. This plot
also show that, as already noted, jP0ðμÞj is unrelated to
the instability rate.

In conclusion, the standard VK/slope condition pro-
vides a yes/no answer to the existence of an amplitude
instability. In contrast, the spectrum of L

−

Lþ (1) detects
both amplitude and drift instabilities, (2) provides the
rates of these instabilities, and (3) determines which
of them is dominant. Therefore, we propose that future
studies will compute the negative spectrum of L

−

Lþ,
rather than (or in addition to) the power curve PðμÞ. Note
that the eigenvalues of the system (5) were computed in
several studies [10–12]. However, to the best of our
knowledge, these eigenvalues were never used to study
the three aforementioned attributes but only to provide a
yes/no answer to the question of stability.
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Fig. 2. (Color online) (a) Frequency-power curve for solitons
of (14) centered at a lattice maximum, (b) the negative eigen-
values of L

−

Lþ, and (C) the instability rates computed from (b)
using (10) [same line types as in (b)]. The shapes in (c) are de-
lineated for Fig. 3. Dotted curve is 100jP0ðμÞj.

Fig. 3. (Color online) Eigenmodes for the shapes in Fig. 2(c).
(a) Asymmetric drift eigenmode corresponding to μ ¼ 2ð∘Þ,
(b) asymmetric drift eigenmode (dashed curve) and symmetric
amplitude eigenmode (solid curve) corresponding to μ ¼ 5.
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