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Solitons in dispersion-managed mode-locked lasers
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The dynamics and propagation of ultrashort optical pulses generated in mode-locked lasers are investigated.
The mode locking process depends crucially on the gain and loss mechanisms inside the cavity. Analytical
models are introduced that include dispersion management and gain-loss terms with energy and power satu-
ration. Comparisons of the pulse dynamics with previously well-known models are discussed. Stable soliton
solutions are found for wide ranges of the parameters; the only significant requirement being sufficient gain in
the system. The evolution of the system “locks” into the pure soliton solutions obtained independently with
mode finding algorithms. Such solutions can be viewed as soliton wave attractors. Finally, it is shown that
these solutions satisfy an asymptotic averaged system and can be approximated by elementary, Gaussian-type,

functions.
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Solitons and solitary waves in general have been pre-
dicted and observed in an abundance of physical systems. A
prototypical example of a system that supports solitary
waves, which is also of great technological importance, is
mode-locked (ML) lasers. ML lasers have a long history dat-
ing back for more than 4 decades [1,2]. It is only been in
recent years that researchers have begun to utilize their po-
tential for science and technology. Many modern applica-
tions employ ultrashort pulses of the order of a few femto-
seconds to a picosecond. Applications utilizing ML lasers
include communications [2], high quality optical oscillators
(optical clock technology) [3,4], high harmonic generation
[5], and measurements of the fundamental constants of na-
ture [6]. Various types of ML lasers have been used to pro-
duce ultrashort pulses, they include Ti:sapphire, Sr-fosterite,
and fiber lasers among others. To produce ultrashort soliton
pulses these lasers are often dispersion-managed systems in
which the underlying normal dispersion is suitably compen-
sated so that the average over one cavity round-trip is in the
anomalous regime.

Mode locking can be achieved in a laser by the use of an
active element (active mode locking) or a passive element
(passive or Kerr-lens mode locking). The latter produces the
shortest pulses and hence we shall be concerned with the
dynamics of passive ML lasers. Many different models have
been used to describe pulse propagation in mode-locked la-
sers. The best known mode-locking system is the so-called
master equation [2,7,8]. The master equation models the ef-
fects of nonlinearity, dispersion, bandwidth limited gain, en-
ergy saturation, and intensity discrimination in the laser cav-
ity. Gain is saturated with energy while loss is represented by
a cubic nonlinearity. For a narrow range of these parameters
[9] this equation has stable soliton solutions with mode-
locking evolution. Otherwise the solitons are found to be
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unstable; either dispersing to radiation or evolving into non-
localized quasiperiodic states. The amplitude with more gen-
eral initial data can also grow rapidly under evolution. Thus
the basic master equation captures some qualitative aspects
of pulse propagation in a laser cavity, however, there is only
a small range of the parameter space for which stable mode-
locked soliton pulses exist.

To overcome this sensitivity various modifications have
been proposed; e.g., higher-order nonlinear (quintic) terms or
more complex absorber terms have been introduced.
Ginzburg-Landau type equations with higher order nonlin-
earities have also been extensively studied. Such equations
support many types of solutions such as pulsating, chaotic,
and periodically growing or decaying (“exploding”) local-
ized states [10-12], the latter occurring when the laser oper-
ates at a critical point. On the other hand, there are wide
operating regimes where soliton mode locking is observed
[13].

Modeling ultrashort pulse ML lasers must take into ac-
count dispersion management and amplification and feed-
back. Recently a modified system was introduced [14,15]
which takes into account these effects. There the gain me-
dium is modeled by a distributive saturated energy term,
whereas the Kerr-lens effect is modeled as a lumped fast
absorber saturated with power. This equation was employed
to model the propagation of large amplitude self-similar
pulses for Ti:sapphire lasers in the normal dispersion regime.

Similar to the above system, we propose a normalized
distributed dispersion-managed, power saturation model. We
find this system to naturally describe the locking and evolu-
tion of pulses in ML lasers operating in the soliton regime.
Further, the essential features of the lumped model are also
included in this distributive equation. For a pulse with am-
plitude u(z,7), power P(z,0)=|ul’>, and energy E(z)
=[*7|u|*dt, which is propagting along the z direction, our
model equation takes the form
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where the parameters g, 7, [, Eg,;, and P, are positive. It is
the averaged variation along the propagation direction of the
dispersion and nonlinearity maps, given by d=d(z) and n
=n(z), respectively, that enables the temporal localization
(i.e., along 1) of the pulses. Hereafter, the right-hand side of
Eq. (1) will be denoted by Q[u]. The first term on the right-
hand side represents saturable gain, the second is nonlinear
filtering, and the third saturable loss. For our analysis, 7# 0,
so that spectral filtering is present. An important observation
is that when the loss term is approximated in the weakly
nonlinear regime by the first-order Taylor polynomial we ob-
tain the master equation. Hence the master equation is in-
cluded in the power saturated model as a first-order approxi-
mation. The master equation and the lumped model have
parameters which are obtained from experiments [2,14]. The
same holds for the distributive model, Eq. (1). We refer to
this equation as the perturbed nonlinear Schrodinger (PNLS)
equation. When there is insufficient gain, pulses dissipate to
zero. On the other hand, remarkably, a distinguishing feature
of this model is that even under large gain, pulses do not
blow up nor do they exhibit instabilities. On the contrary:
when the gain is greater than some threshold value g=g",
during the evolution, the pulse readjusts itself as it mode
locks into a stable soliton solution which we call a soliton
wave attractor (SWA). Furthermore, all pulses that evolve
into SWAs can be obtained independently using a mode-
finding algorithm.

Power saturation models also arise in other problems in
nonlinear optics and are important in the underlying theory;
for example, in the study of the dynamics of localized lattice
modes (solitons, vortices, etc.) propagating in photorefrac-
tive nonlinear crystals [16,17]. If the nonlinear term in these
equations was simply a cubic nonlinearity, without satura-
tion, two-dimensional fundamental lattice solitons would be
vulnerable to blow up singularity formation, which is not
observed. Thus saturable terms are crucial in these problems.

The introduction of dispersion and nonlinear management
induces rapidly varying dynamics which often obscure the
main features. To overcome this difficulty we employ an av-
eraged, or mean-field theory, and work with the underlying
averaged equation. Solitons as solutions of equations with
constant dispersion are localized modes whose amplitude is
constant in time. On the other hand dispersion managed
(DM) solitons exhibit rapid breathing behavior, namely their
amplitude changes according to the dispersion map. A con-
venient feature of the averaged model is that the modes rep-
resent pulses averaged over one cavity round-trip, as though
the pulses were propagating in a system with the (constant)
average cavity dispersion. In the averaged equation the DM
solitons have constant amplitude.

We model the effect of dispersion management by split-
ting the dispersion d(z) into two components [18] d(z)=d,
+1/z,A(z/z,). The variable z, is the dispersion-map period,
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which measures the ratio of the characteristic nonlinear dis-
tance to the characteristic dispersion length. Typically z, is
small, ie., z,<1. The function d({)=d(z/z,)=d,
+A(z/z,)/z, is large and periodic and n(z/z,)=n({) is O(1)
and periodic. The path-averaged dispersion is d and A(z) is
rapidly varying and has zero average. We focus on the case
of positive average dispersion, d,>0, which corresponds to
the soliton regime. Within each map period, the dispersion
flips its sign as  follows: A()={-4,, 0<¢
<1/2, A, 1/2<{¢<1}, whereas the propagation is peri-
odically  linear-nonlinear-linear, ie., n({)={0, 0<¢
<1/2, ny, 1/2<{¢<1}. A key parameter is the map
strength s=A, /4, which models the variability of the disper-
sion around the average. To illustrate the features of this
system, we set dy=1, ng=1, and allow s to vary.

To obtain the averaged equation we introduce multiple
scales and apply perturbation theory [18]. Define the new
variables for distance {=z/z, and Z=z representing the
short- and long-scale dynamics, respectively. Next expand u
in powers of z,< 1 as u(¢,Z,0)=u"(¢,Z,t)+z,u"(£,Z,1)
+0(zi). In this way Eq. (1) breaks into a series of equations
corresponding to the different powers of z,. At O(z;')
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To leading order the evolution of the pulse is determined by
the large variations of d(z) about the mean and nonlinearity
and residual dispersion represent only a small perturbation to
the linear equation. The linear equation, Eq. (2), can be
solved using Fourier transforms, namely

2
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where C(0)=[$A(L)dL’, and Uy(Z, 0)=i®({=0,Z, »). The
Fourier transform of any function, f(z), is denoted

Hw) = Fif0) = f Ho)explion)dr.

The function UO represents the slowly evolving amplitude of
i1, whereas the fast oscillations induced by the local values of
the dispersion are included in the exponential term. The
function U, is arbitrary at this stage and is determined by
removing secular terms at the next order of perturbation.

This procedure determines an equation for ﬁo(Z , )
which is given by

20y _dy
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This is a nonlocal equation for UO(Z,w) and describes the
averaged dynamics of the pulse envelope. We refer to Eq. (4)
as the dispersion-managed gain-loss nonlinear Schrédinger
(DMNLS-GL) equation.
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A central issue is how to compute localized, i.e., soliton,
solutions for this equation. Various techniques have been
used, e.g., shooting, relaxation, self-localization, etc. Here
we use the method introduced in Ref. [19] which generalizes
the method of Ref. [20] to more general nonlinearities. This
technique takes advantage of the fact that in a physical sys-
tem dispersion tends to widen and break the soliton apart
whereas nonlinearity has the opposite effect. When these ef-
fects balance a stable pulse forms. This spectrally accurate,
iterative method adjusts in each iteration the ratio between
the dispersive and the nonlinear parts of the equation in order
to “balance” the two effects.

To find soliton solutions of Eq. (4) first assume a localized
solution of the form Uy(Z,r)=exp(iuZ)q(t), where u is the
propagation constant or the soliton eigenvalue. Substitute
this into Eq. (4) to obtain
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0
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This is a nonlinear eigenvalue problem for ¢ and u with
boundary conditions g — 0 as t— * oo, In order to construct a
solution whose amplitude does not grow indefinitely nor
tends to =zero we introduce wv(f) such that g(z)
=\v(1) & §(w)=\i(w) where N #0 is called the renormal-
ization constant and is to be determined. Multiplying by ¢*
and integrating over the entire space w we find an algebraic
relation, at say the jth iteration, relating v and A

+00 +00 1 2
f (,u,+d0w2/2)|vj|2dw—J f exp{—i%C(g’)]
—o -0 0
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where u@=\w. Given vj, this can be solved for A\ using
suitable numerical root finding methods, e.g., Newton’s
method, thus determining the values of the renormalization
constant, \;. The solution to Eq. (5) is obtained by iterating

as follows:
1 w?
fexp{—i?C(O}
G = rdetn MOF {InwiPw)
- f{QD\jo]/)\j})dg,

subject to the additional constraint that Im{\;}=0. To begin
the iteration, at j=0, an initial guess is given, e.g., a Gauss-
ian.

For realistic lasers one cannot hope to have a soliton as
the initial input. Hence we first study the mode-locking
mechanism of more general pulses inserted in the cavity at
z=0. To study such an evolution, we integrate the
DMNLS-GL Egq. (4) with Eq. (3) (using fourth order Runge—
Kutta) with a given initial profile Uy(0,7)=exp(~7>). In order
to lock onto stable soliton solutions the gain parameter g
needs to be sufficiently large to counter the two lossy terms;
noting that the filtering in the equation acts as an additional
loss term for the system.
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FIG. 1. (Color online) Evolution of the soliton’s peak of a unit
Gaussian using the DMNLS-GL equation with s=1 and a wide
range of gain parameters g=0.1 (damped evolution), 0.3, and 1.0.
Inset: the early evolution of the peaks is shown.

In what follows we fix 7=[=0.1 and E. ;=P ,=1. Let us
first consider g=0.1, s=1. In this case the pulse vanishes
quickly due to the effect of excessive loss in the system. No
oscillatory behavior nor complex dynamics are noticed, the
pulse simply decays to zero, in this damped evolution. Next,
we take g=0.3,1 and s=1. Two distinct evolutions are ob-
served in Fig. 1. When g=0.3 and due to the loss in the
system the pulse amplitude initially undergoes a sharp de-
crease, relative to its amplitude. It then rapidly recovers and
with further propagation locks to a stable solution. Note the
difference with the master equation. When too much loss
was present in the master equation either the pulse amplitude
decayed into radiation or the pulse evolved to a nonlocalized
quasiperiodic or chaotic state. The evolution reflected the
fact that the solitons were unstable for a wide range of pa-
rameter values. In this power saturation model, the solitons,
when they exist, are stable. For a given map strength s, when
g is above a critical value g”, the resulting evolution always
mode locks into solitons (which can be obtained by the mode
finding algorithm presented above as will be shown below).
Even under extreme gain, when g=1, s=1, a stable solution
is reached, see Fig. 1. Additional insights into this behavior
will be discussed after we discuss the soliton solutions of the
DMNLS-GL equation. Even when one introduces detailed
gain dynamics where the gain coefficient g varies in a more
complicated fashion [21], mode locking is still expected to
occur, in which case one would replace g by an effective
value.

We now proceed to solve for solitons from Eq. (5) for the
parameter values used above. We vary the gain parameter g
and the map strength s. When g <g*(s) Eq. (5) has no solu-
tion, i.e., we do not find values of u for which the numerical
iteration converges to a localized solution. This implies that
when the effect of loss is stronger than the gain the only
acceptable solution is the trivial solution. The solutions
throughout have been compared and verified to solutions of
Eq. (1) obtained by direct simulations. We study Eq. (5) be-
cause it exhibits solutions with uniform evolution.

On the other hand, when g > g*(s), there exists a solution
to Eq. (5) for an appropriate value of w; the value of the
propagation constant is unique for the specific values of the
other parameters. The solutions of the DMNLS-GL equation
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FIG. 2. (Color online) Solitons of the DMNLS-GL equation
corresponding to different map strengths and gain parameters. No-
tice that these solitons occur only for a specific value of w in con-
trast to the unperturbed case where solutions exist for x>0, thus
providing the mode-locking mechanism.

in the different regimes are presented in Fig. 2. From this
figure we see that for given map strengths the amplitude of
the pulses increases with g. In addition, the pulses also be-
come broader as the map strength s increases. As the gain
parameter increases both the energy and the amplitude of the
pulse increase and tend to the “pure” (unperturbed) DMNLS
solution—without additional gain-loss terms. Blowup does
not occur, even under extreme gain. Indeed, this is what one
would expect from Eq. (5). If blowup were to occur that
would mean that both the amplitude and the energy of the
pulse are infinite, or very large, and the equation reduces to
the pure DMNLS equation, Q[u]— 0, for which stable soli-
ton solutions exist for all values of the propagating constant;
this is a Hamiltonian system. Hence for sufficiently large
values of the propagation constant where Q[u]— 0 the solu-
tions of the pure DMNLS and the perturbed equation are
comparable. Similarly if one considers relatively small val-
ues for the parameters such that Q[u] can be regarded as a
small perturbation of the unperturbed equation the modes of
DMNLS-GL and DMNLS must be again close. This suggests
that the influence of Q[u] is only the mode-locking mecha-
nism and that when that occurs the modes correspond to the
modes of the unperturbed equation with the same propaga-
tion constant u. The difference between the two cases is that
when p and the amplitude is large enough the system be-
comes Hamiltonian and any choice of u beyond that will
effectively result in a soliton solution. We call these solutions
quasisolitons or near-soliton solutions of the DMNLS-GL
equation.
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FIG. 3. (Color online) Comparison between the solutions of
DMNLS-GL [solid (blue) curve] and pure DMNLS [dashed (red)
curve] for s=1 and g=0.3.

In Fig. 3 we show the solutions of both the pure DMNLS
and the DMNLS-GL equations and for a moderate dispersion
map when g=0.3. As mentioned above, the solutions of the
two equations are compared for the same value of u. The
very good agreement between these modes suggest that we
can use the unperturbed DMNLS equation for the same value
of the propagation constant to approximate modes of the
perturbed equation. This is also particularly useful because
modes of the DMNLS equation can be approximated analyti-
cally by Gaussians [22], thus suggesting that the same will
also hold for the perturbed system.

To conclude, we have presented a distributive model
equation for the study of pulse propagation in mode-locked
lasers. This model captures the qualitative features of differ-
ent types of mode-locked lasers operating in the soliton re-
gime. Advantages of the DMNLS-GL model over other mod-
els are discussed. Depending on the size of the gain
parameter, pulses are either damped, i.e., decay to zero, or
are asymptotically attracted to a stable solitary wave. Insta-
bilities and blowup are not observed for a wide range of the
parameters, even when the perturbing effects cannot be con-
sidered small. The energy-saturated gain and filtering and
power-saturated loss are crucial for the mode-locking mecha-
nism. The ensuing modes are essentially those of the unper-
turbed system for the same propagation constant.
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