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Abstract

We derive a perturbed two-dimensional nonlinear Schrédinger equation which describes the propagation of gap-soliton
bullets in nonlinear periodic waveguides at frequencies close to the gap for Bragg reflection. Analysis and simulations of this
equation show that the bullets amplitude undergoes stable focusing—defocusing cycles.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Gap solitons are realizations of a balance between nonlinearity and grating assisted dispersion in optical fibers.
At high powers this balance is achieved within a few centimeters of pulse propagation and has the unique feature of
having a full range of velocities from zero to the speed of light in the uniform medium, depending on the location
of the frequency of the electromagnetic field with respect to the gap created by the grating. For a general review of
gap solitons, sefd,2].

Two particular limits that have attracted much attention are when the soliton frequency is (1) inside the band-gap,
corresponding to the formation of slow or even stationary gap solitons, and (2) close to and outside the band-gap,
in which case the soliton is reminiscent of that of the integrable one-dimensional nonlinear Schrédinger equation
(NLSE). In fact, using asymptotic methods one can show that in this regime the governing coupled mode equations
are well approximated by the NLSE. There have been experimental demonstrations of gap solitons in both regimes
[3,4] with velocities as low as 50% of the speed of light and in gratings of no more than 20 cm of length. To date,
however, no experiments have been reported demonstrating zero velocity gap solitons. This is not surprising, given
the intrinsic difficulty in trapping light through a region of strong linear back reflection. There have been interesting
proposals on how to achieve this, such as the use of defects or chirped gfatiogthrough a Raman downshift
mechanisnj6]. The potential application to light storage devices makes this effort quite worthwhile.
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In recent times research on gap-soliton phenomena has extended not only to other classical optical media (e.g.
quadratic dielectric§7]) but also to condensed matter way8sand quantum systenj8] to name somé.What
is common to these works is that they are all in one-dimensional geometries (i.e., the distance of propggation (
plays the role of ‘time’, whereas physical time plays the role of a spatial variable). Very little is known at present
on existence of stable two-dimensional or three-dimensional gap sdlittr4] In [11,12]research has focused
on two-dimensional periodic structures in the directions transverse to propagation. In contrast, in this study we
consider propagation in a planar waveguide Kerr medium with a periodic refractive index profile in the direction of
propagation.

Under the envelope approximation, the equations for fully localized optical pulses (optical bullets) propagating
in Kerr-type planar waveguides or in bulk media are the two-dimensional and the three-dimensional cubic NLSE,
respectively. In both cases the NLSE model predicts at low intensities a dispersion/diffraction dominated dynamics,
whereas at high intensities the field amplitude reaches infinite values in finite propagation distances (collapse). In
particular, in both cases optical bullets are unst@tiel6].

We recall that the two-dimensional cubic NLSE is ttrétical case for collapse, in the sense that it is the
“boundary” between thaubcritical one-dimensional case where stable soliton dynamics occurs angbéhneritical
three-dimensional case for which collapse is typically not arrested by small perturbations. In contrast, it has been
shown that collapse in the two-dimensional critical NLS can be arrested by various mechanisms (e.g., nonlinear
saturation, vectorial effect and nonparaxiality) even when they are §h7dllTherefore, it is more reasonable to
try to realize stable bullet propagation (i.e., no collapse) in the planar waveguide two-dimensional case rather than
in the bulk media three-dimensional case.

In this paper we present the first asymptotic study of localized pulse dynamics in a grating waveguide. We use a
careful multiple-scales analysis to derive a perturbed two-dimensional NLS for the amplitude of the gap bullets. We
then use asymptotic analysis and simulations to show that solutions of this perturbed NLS do not collapse. Thus, a
unique feature of this model is that collapse arrest is solely due to the specific dispersion relation associated with the
grating. While this study is just a first step in the overall study of gap-soliton dynamics, we believe that it indicates
the potential for realizing gap solitons in planar waveguides.

2. Slowly-varying envelope approximation

We consider electromagnetic waves propagating in a Kerr medium with a planar waveguide geometry, i.e., the
field is confined in oney() transverse direction and diffracts in the oth@rtfansverse direction. We assume the usual
envelope approximation, which in this case consists of two componEntsH_) each describing the envelope of
plane waves propagating in the-directions, respectively.

Nonlinear wave phenomena results from the balance between dispersion and nonlinearity and in many instance:
the description is given by the NLSE. In this section we show this is the case for gap bullets, at least within a certain
range of frequencies.

Our starting point are the nonlinear coupled mode equations in a waveguide configkation

(97 + cgd) E4 (T, x,2) + kKE_ + 0% E, + I|E4|* + 2| E_|*)E. =0,

i(97 — cgd) E_(T, x,2) + kKE4 + 0% E_ + I|E_|* + 2| EL|*)E_ = 0.

1 Ref.[10] highlights several of these applications.
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In the linear case (i.el; = 0) the solution of these equations is given by

E, —Udkeathe=2D 4 oo U= Ut ,
E_ U_

where 2, k., k. satisfy the dispersion relatiof2 — k2)2 = «? + cgk2. In particular, wherk, = k, = 0 then
2 = +«, and the linear problem has the solution:

E )
( +>=c<1>e_“‘T+c.c.
E_ -1

We note that this solution satisfies

E
E_

whereL is the operator

L — iaT .K '
K 107
2.1. Weakly nonlinear theory

Our goal is to derive the envelope equation for frequencies in the vicini®/efk, k, = k, = 0, when dispersion
and nonlinearity are of the same order. £be the distance betweéhandk, i.e.,2 = «+O(¢). From the dispersion
relation it follows that,, k, = O(e'/?). Therefore, using the method of multiple scales (see, [@&]), we look for
solutions of the form

E 1 .
(E+> = el/zA(‘L']_, 2, X,7) ( 1) e T 4 eUp 4 €¥?Up + Uz + - -,

wherer; = €T, 1 = €2T, X = €¥/2x andZ = ¥/?7.
We now proceed to solve f@ ., E_) for successive orders in Balancing the @) terms gives

; 1 —ikT
LUy = —icgozA 1 e .

This linear problem has the solution

: Cg 1 —ixT
Uy =-1—0zA e .

In order to go to higher orders we first need a careful computation of the nonlinear terms. We have that
2 2 . .
(E+|? +2|E_P)E4 = (el/ZA . ieﬁazA’ 42 ’—el/zA - iec—gazA’ (el/ZA - ie‘—gaZAF) e T,
2 2K 2
Expanding the square modulus terms gives
2 C C
Y24 _jel9y A‘ =(1/2A—i “Lp74) (M24* +ie-Ls A*)
€ 62/( 7 € 62/( 7 € + 62/< 7

2
> C,
= e|AP + ie3/2%’(AazA* — A%074) + & 50,A0,4",
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Similarly,
2
2]el24 + ieﬂazA) - 2(61/214 n ieﬁazA) (el/zA* — ieﬁazA*)
2k 2k 2k
C C2
=2]|e¢ +ie’ = 7A — Adz +€°—07A07 .
2| elA2 +ie¥222 (A*97A — AdzA*) + 2L 9,40, A%
2K 442

Thus the nonlinear terms read
2

C,
(|E4? 4+ 2/E_|)E4 = (3€|A|2 + ieB/zg—i(A*azA — AdzAY) + 36259232/432/4*)

X (el/zA — ie%BZA) e T 4 cc.

— (363/2|A|2A — ieZ%(2|A|232A + A%3,A%)

2 2 3
42 (59 g, A0,4% + 9 A*9,4)2) — | 33% AzA)%(7A%) ) e T
22 A02A0ZA” + 25 (9zA) 68K3(Z )°(0zA™) | €7 +c.c.

Similarly,

. C
(E_|?+2/EL|DE_ = — (363/2|A|2A + lezi(2|A|282A + A29,A%)

2 2 3
c 3c )
+€2/2 (—gazAazA* + ﬁzA*(azA)z) + ie38—Kg(aZA)2(BZA*)) e T 4 cc.

We now continue computing higher order correctionéiq, £_). Balancing the @/?) terms gives

1 —ixT
1) e + C.C.

2
C
LUy = (—ia,lA — 02,4 — iaizA - 3F|A|2A) (

Note that the right-hand side has slowly-varying terms arising ftanrSince

)

is in the null space oL, the physical requirement that

2 G .2 2
|at1A—|-aX2A+ZaZZ+3F|A| A =0, 1)
accounts for the removal of secular terms, or solvability condition. Once this condition is imposed, obk fiads
The derivation of the two-dimensional NLSE for the bullets amplitude is not surprising, given that the one-
dimensional NLSE has been previously derived for fiber grating with no diffraction due to the transverse waveguide
structure at frequencies close to but outside the gap. We recall that for the focusing critical NLSE

iV (6, %, ) + U+ Yy + WP =0, ¥(0,x,y) = Yox, y),
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collapse can occur when the input povyfeh/fo|2 dx dy is above the critical poweN; [19], whereas no collapse
occurs for the mixed-signs NLSE

iV (1, X, y) + Y — Yy + (V129 = 0,

which is similar to the hydrodynamics problem. Therefdgq, (1) has blowup solutions for pulses whose center
frequency is af2 ~ «, but not when2 = —«, in which case the NLSE is given by

2

C
19, A+ 0%,A — iagz +3r|APA = 0.

Returning to the case of more interet { «), the possibility of collapse indicates a breakdown of the asymptotic
expansion. From physical considerations, however, we do not expect the bullet to collapse. Indeed, since pulse
compression leads to spectral broadening, at some point the down-frequency side of the spectral pulse will “see”
the edge of the gap in the dispersion relation, thus preventing further broadening and most likely arresting the
collapse. Of interest is then to see if this could be modeled by considering higher order corrections in the asymptotic
expansion. To do so we introduce a slower time variaple €27. Continuing the expansion we have tge),

deg o002 2 - g : 2 1\ ier
LUs = <.§(2|A| 024+ A20,4) = i220,(<idey — ) A e 4 cc.

1
Using (1) we have that

CZ
dz(—i0y — 82,)A = iagaA + 32(3T|A2A).

Therefore, the equation fdt; can be rewritten as

3
Tt C 1\
LUg = — |:|2—Kg(4|A|282A + 2A%9,A%) + EQZB;A} <1> e T 4+ cc.,

whose solution is

C

2
C 1 .
Us = —i—% | I'(4|A1%0,A + 24%0,A%) + 233, A e T 4 cc.
42 z 1

2

The Q€%/?) terms give

C It

2 4 2
C
LUg = — (ia,zA + 4—gz(1“824|A|282A +242%9,A%) + —L 9%, A+ —3240, A0, A% + A*(BZA)2>
K

8«3 Z Qyc?
1 .
x e T 4 c.c.

As in the Qe%/?) case, in order to prevent secular terms we impose the condition

- Ie§ . 2 x 2.2 2.2 oen . € 4
i0,,A + 4—K2(5A (02A)° + 10402 A0z A* + 4| A[°05, A + 24%05,A%) + ﬁazm =0. 2)
We finish by addingegs. (1) and (2&nd defining the slow time = t1+¢t2, leading to the perturbed two-dimensional
NLSE
2
19:A + 02,4+ -20%,A + 3I'|APA = —eF(A), ®3)
2% %
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4

FCS 2 2.2 2 4
F(A) = —2(5A%(37A)% + 10A0,A07A* + 41A|%9%,A + 2A%9 S2AY) + —a
4K2 Z 8k 3 Z

3. Analysis of the 2D perturbed NL SE

In the previous section we derived the perturbed NI(SEas the slowly-varying envelope approximation of the
coupled mode equations. While we do not exagt(3)to remain valid over very long distances, a natural question
is whether solutions of3) can collapse. We now show that collapse is arrestd@)irresulting instead in stable
focusing—defocusing oscillations.

In order to bringeg. (3)to the standard form we make the change of variables

yzﬁz, Y = /3T A.

‘g
This leads to the nondimensional equation

(5, X, ) + AY + [P = —— <1Ol/f|1//y| +5Y* Y2 + Ay Py + 2075, + S I/fyyyy) 4

where A = dx + dyy. When the input power is close to the critical power we can analyze the effects of the
small terms on the right hand-side @) on collapse and on the propagation dynamics usindulation theory

[17]. Modulation theory is based on the observation that a self-focusing pulse rearranges itself as a modulated
Townesian, i.e.]y| ~ L~Y(z)R(r/L(z)), whereR(r), the so-calledlownes soliton, is the ground-state positive
solution of

ARG)—R+R3=0, R(0)=0, imoo R() =0. (5)

Application of modulation theory t&q. (4)leads to the following result.

Proposition 1. When ¢/x « 1, self-focusing dynamicsin Eq. (4)is given, to leading order, by the reduced system
of ODEs

Nc 1
L (1) = _é’ B (1) = __CGSZM < ) s (6)
where

o0 1 o
Ne = / R?rdr ~ 1.86, M=3 / r°R%rdr ~ 055 and Cgs~ 55/48.
0 0

To proveProposition 1we first rewrite(4) as the perturbed NLS

e + ALY + Y] w+—ZF’[w]—0 (7

where

FHyl = 100yy 1%y, Fy] =520, F3y] = 419120y,
FUyl =292y, Foly] = ymy. (8)
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It is known that in critical collapse the focusing core approaches the asymptotic grgfiter) which is given by

_ 1 is
Yr(rT) = L(r)R(’O)eI ) (9)
whereR(p) is defined inEq. (5)
T . rZLT(T) . 1
pr ) = I’ S 1) =)+ AL & () = 200" (10)

Under these assumptions, self-focusing dynamics of the perturbeadilaBion (7)s described, to leading order,
by Fibich and Papanicolad?, Proposition 4.3]

5 5
Lor(r) = —%, Be(1) = ﬁ (Z fre—4)" fz) : (12)
i=1

i=1

where the auxiliary functions faF[/] are given by
‘ L . . . 1 _
Al = ZRe [ FLUAIRE + pR()e S drdy.  f50 = 5 Im [ Flyividrdy. (12)

The leading-order behavior of the auxiliary functions is given in the following lemma.

Lemma 1. Theauxiliary functions corresponding to Eq. (8)satisfy:

10N: (1
1 c 1
~— (=), =0,
fie™ 73 <12>,

1
7.~ 33l = oo (

where Ig ~ 6N¢.

The auxiliary functions of! and F2 are calculated ifi20] and the auxiliary functions of® are calculated in
[17]. To calculate the other auxiliary functions we note that (86 Appendiceg]

S — L, R _R/cose R — 1 R”COSZO—i—lR/sinZG
W= o YT T W= 13 p :
Vryy = L L5[(Ry — R) +1(2R, S, + RSy,

/ Rpdp = 2N¢,

L= 3/ R%R"pdp, I3:= B/pRzR/R”pdp, I = 3/ R3R" pdp, Ig = / R8pdp,
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Ii=1Is—2N;, Iz3=-N;  Is=6Nc— 3+ 3R*0).

Therefore, forff[zﬁ] we have that

L N 4L :
72 i= 2 Re [ LR+ pR) & dedy = 2Re [ a2y (R + pR) &S drdy

4
=— R*(Ryy — RS)(R + pR) dxdy~ — f R?Ryy(R + pR') dx dy
4 2 /" 2 1 / a2 / 2 /" 1 / /
= R°| R"cos“6+ —R sin“0 (R+pR)pdpd9=— REIR'+—-R ) (R+ pR)pdp
L2 P L? 0

1
:ﬁf(RSR//+pR2R/R//+R2R/2+;R3R/>pdp

g P 3R4(0) 1 (an.-8f) 2

Similarly, for f{[y] we get that
4 L 4 N o—iS 2L 2 4 i
1 .:—Re F[yrI(R+ pR) € dxdyZ—Re YRV Ry (R + pR) €7 dxdy
2 2 4 1
= 2 [ RRy ~ROR+ pR) dedly = fl <2Nc -1 16) =2

For f3[y] we have that

2 2
£ = ;lm/|WR|2WR,WW; dxdy = m/R3(2RySy+RSyy) dxdy

= 2 || Z((RY,S, + R*Sw | drdy = —— [ R*Swdxdy = =% [ R*pdp = —N. [ — ) .
nL4/[2( )ySy + W} S nL4/ WY =173 pEp ‘\12).

Similarly, for £2[y] we get that

Ne (1
f = —Im/lepRyyl//Rdxdy———/R3(2R Sy +RSyy)dxdy———f2 2C <ﬁ>t

To obtainEq. (6)we substitute the auxiliary functions frobemma 1in (11). Therefore, to leading order we obtain

po= <[220 D (ane— Bg) + (ave - 2
T 1| 3 3 ¢~ 3’6 ¢~ 3t

1 1 1

2M
1 1 /1 55¢ Ne [ 1

— (23N — 131 AT (e
28 @3Ne — 6) (LZ) 481 2M <L2>T’

from which we obtain the second equation(®) with Cgs ~ 55/48.

In [17] it was shown tha(6) is the generic reduced equation in critical self-focusing. Analysis of this reduced
system shows that its solutions do not collapse. Rather, they undergo stable focusing—defocusing oscillations. Indeec
we observe this behavior when we sobvg. (4)numerically (sed-ig. 1).
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26

|W(1,0,0)|°

©
!

T

Fig. 1. On-axis intensity of the solution &q. (4) with ¢/« = 0.075. The initial condition is/(z = 0, x,y) = 2/N(0) e?+?  and
N(0) = 1.2N,.

4. Numerical methods

Because the small perturbation termgiap. (4)depend only on the derivatives, this equation is anisotropic in
the (x, y) plane. Hence, even though we use a radially-symmetric Gaussian for the initial conditions, the solution
does not remain cylindrically-symmetric during propagation. We therefore &gjvét)on a rectangular Cartesian
domain, using a finite-difference scheme with fourth-order accuracy in space. Time-stepping is achieved using
a fourth-order Runge—Kutta algorithm. We impose Dirichlet boundary conditions at the outer boundaries. Since
Dirichlet conditions are reflective, special care is taken to assure that reflections from the numerical boundaries have
no effect on the solution. This is especially important when solang(4) because the radiation can propagate
quickly in the y-direction. We therefore take sufficiently large numerical boundaries in-tfieection and verify
the validity of our results by using a larger domain.

5. Conclusions

We have used a multiple-scales analysis to derive the extended NLSE approximation for optical bullet dynamics
in a waveguide with a grating in the direction of propagation. We then showed that in this extended NLSE, collapse
is arrested. An intuitive explanation for this is as follows. When the field frequency lies outside of the gap in the
dispersion relation, the dynamics is initially well approximated by the two-dimensional NLSE and for sufficiently
high input power a collapse-type dynamics occurs E8gel). Since critical collapse occurs in a radially symmetric
way [21,22], the resulting spectral broadening occurs in all wavenumber directions. Our analysis thus shows that
the fact that broadening of thecomponent of the wavenumber is prevented by the presence of the band-gap is
enough to prevent the collap$déeading instead to nontrivial dynamics which is yet to be fully understood. This
suggests, nevertheless, that the periodic waveguide structure is a suitable candidate for first observing gap-soliton
bullets in short propagation, if only as a metastable object. Better understanding of the overall dynamics, however,
will require a direct analysis of the coupled mode equations.

2 It remains to see whether such a small effect would be able to prevent the collapse in bulk media, where collapse is supercritical.
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