
Physica D 189 (2004) 277–286

Gap-soliton bullets in waveguide gratings
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Abstract

We derive a perturbed two-dimensional nonlinear Schrödinger equation which describes the propagation of gap-soliton
bullets in nonlinear periodic waveguides at frequencies close to the gap for Bragg reflection. Analysis and simulations of this
equation show that the bullets amplitude undergoes stable focusing–defocusing cycles.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Gap solitons are realizations of a balance between nonlinearity and grating assisted dispersion in optical fibers.
At high powers this balance is achieved within a few centimeters of pulse propagation and has the unique feature of
having a full range of velocities from zero to the speed of light in the uniform medium, depending on the location
of the frequency of the electromagnetic field with respect to the gap created by the grating. For a general review of
gap solitons, see[1,2].

Two particular limits that have attracted much attention are when the soliton frequency is (1) inside the band-gap,
corresponding to the formation of slow or even stationary gap solitons, and (2) close to and outside the band-gap,
in which case the soliton is reminiscent of that of the integrable one-dimensional nonlinear Schrödinger equation
(NLSE). In fact, using asymptotic methods one can show that in this regime the governing coupled mode equations
are well approximated by the NLSE. There have been experimental demonstrations of gap solitons in both regimes
[3,4] with velocities as low as 50% of the speed of light and in gratings of no more than 20 cm of length. To date,
however, no experiments have been reported demonstrating zero velocity gap solitons. This is not surprising, given
the intrinsic difficulty in trapping light through a region of strong linear back reflection. There have been interesting
proposals on how to achieve this, such as the use of defects or chirped gratings[5] or through a Raman downshift
mechanism[6]. The potential application to light storage devices makes this effort quite worthwhile.
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In recent times research on gap-soliton phenomena has extended not only to other classical optical media (e.g.,
quadratic dielectrics[7]) but also to condensed matter waves[8] and quantum systems[9] to name some.1 What
is common to these works is that they are all in one-dimensional geometries (i.e., the distance of propagation (z)
plays the role of ‘time’, whereas physical time plays the role of a spatial variable). Very little is known at present
on existence of stable two-dimensional or three-dimensional gap solitons[11–14]. In [11,12]research has focused
on two-dimensional periodic structures in the directions transverse to propagation. In contrast, in this study we
consider propagation in a planar waveguide Kerr medium with a periodic refractive index profile in the direction of
propagation.

Under the envelope approximation, the equations for fully localized optical pulses (optical bullets) propagating
in Kerr-type planar waveguides or in bulk media are the two-dimensional and the three-dimensional cubic NLSE,
respectively. In both cases the NLSE model predicts at low intensities a dispersion/diffraction dominated dynamics,
whereas at high intensities the field amplitude reaches infinite values in finite propagation distances (collapse). In
particular, in both cases optical bullets are unstable[15,16].

We recall that the two-dimensional cubic NLSE is thecritical case for collapse, in the sense that it is the
“boundary” between thesubcritical one-dimensional case where stable soliton dynamics occurs and thesupercritical
three-dimensional case for which collapse is typically not arrested by small perturbations. In contrast, it has been
shown that collapse in the two-dimensional critical NLS can be arrested by various mechanisms (e.g., nonlinear
saturation, vectorial effect and nonparaxiality) even when they are small[17]. Therefore, it is more reasonable to
try to realize stable bullet propagation (i.e., no collapse) in the planar waveguide two-dimensional case rather than
in the bulk media three-dimensional case.

In this paper we present the first asymptotic study of localized pulse dynamics in a grating waveguide. We use a
careful multiple-scales analysis to derive a perturbed two-dimensional NLS for the amplitude of the gap bullets. We
then use asymptotic analysis and simulations to show that solutions of this perturbed NLS do not collapse. Thus, a
unique feature of this model is that collapse arrest is solely due to the specific dispersion relation associated with the
grating. While this study is just a first step in the overall study of gap-soliton dynamics, we believe that it indicates
the potential for realizing gap solitons in planar waveguides.

2. Slowly-varying envelope approximation

We consider electromagnetic waves propagating in a Kerr medium with a planar waveguide geometry, i.e., the
field is confined in one (y) transverse direction and diffracts in the other (x) transverse direction. We assume the usual
envelope approximation, which in this case consists of two components (E+, E−) each describing the envelope of
plane waves propagating in the±z-directions, respectively.

Nonlinear wave phenomena results from the balance between dispersion and nonlinearity and in many instances
the description is given by the NLSE. In this section we show this is the case for gap bullets, at least within a certain
range of frequencies.

Our starting point are the nonlinear coupled mode equations in a waveguide configuration[13]:

i(∂T + cg∂z)E+(T, x, z)+ κE− + ∂2
x2E+ + Γ(|E+|2 + 2|E−|2)E+ = 0,

i(∂T − cg∂z)E−(T, x, z)+ κE+ + ∂2
x2E− + Γ(|E−|2 + 2|E+|2)E− = 0.

1 Ref. [10] highlights several of these applications.
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In the linear case (i.e.,Γ = 0) the solution of these equations is given by(
E+
E−

)
= U ei(kzz+kxx−ΩT) + c.c., U =

(
U+
U−

)
,

whereΩ, kz, kx satisfy the dispersion relation(Ω − k2
x)

2 = κ2 + cgk
2
z . In particular, whenkx = kz = 0 then

Ω = ±κ, and the linear problem has the solution:(
E+
E−

)
= c

(
1

−1

)
e−iκT + c.c.

We note that this solution satisfies

L

(
E+
E−

)
= 0,

whereL is the operator

L =
[

i∂T κ

κ i∂T

]
.

2.1. Weakly nonlinear theory

Our goal is to derive the envelope equation for frequencies in the vicinity ofΩ = κ, kx = kz = 0, when dispersion
and nonlinearity are of the same order. Letε be the distance betweenΩ andκ, i.e.,Ω = κ+O(ε). From the dispersion
relation it follows thatkx, kz = O(ε1/2). Therefore, using the method of multiple scales (see, e.g.,[18]) we look for
solutions of the form(

E+
E−

)
= ε1/2A(τ1, τ2, X,Z)

(
1

−1

)
e−iκT + εU1 + ε3/2U2 + ε2U3 + · · · ,

whereτ1 = εT , τ2 = ε2T ,X = ε1/2x andZ = ε1/2z.
We now proceed to solve for(E+, E−) for successive orders inε. Balancing the O(ε) terms gives

LU1 = −icg∂ZA

(
1

1

)
e−iκT .

This linear problem has the solution

U1 = −i
cg

2κ
∂ZA

(
1

1

)
e−iκT .

In order to go to higher orders we first need a careful computation of the nonlinear terms. We have that

(|E+|2 + 2|E−|2)E+ =
(∣∣∣ε1/2A− iε

cg

2κ
∂ZA

∣∣∣2 + 2
∣∣∣−ε1/2A− iε

cg

2κ
∂ZA

∣∣∣2)(ε1/2A− iε
cg

2κ
∂ZA|2

)
e−iκT .

Expanding the square modulus terms gives∣∣∣ε1/2A− iε
cg

2κ
∂ZA

∣∣∣2 =
(
ε1/2A− iε

cg

2κ
∂ZA

) (
ε1/2A∗ + iε

cg

2κ
∂ZA

∗
)

= ε|A|2 + iε3/2 cg

2κ
(A∂ZA

∗ − A∗∂ZA)+ ε2
c2

g

4κ2
∂ZA∂ZA

∗.
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Similarly,

2
∣∣∣ε1/2A+ iε

cg

2κ
∂ZA

∣∣∣2 = 2
(
ε1/2A+ iε

cg

2κ
∂ZA

) (
ε1/2A∗ − iε

cg

2κ
∂ZA

∗
)

= 2

(
ε|A|2 + iε3/2 cg

2κ
(A∗∂ZA− A∂ZA

∗)+ ε2
c2

g

4κ2
∂ZA∂ZA

∗
)
.

Thus the nonlinear terms read

(|E+|2 + 2|E−|2)E+ =
(

3ε|A|2 + iε3/2 cg

2κ
(A∗∂ZA− A∂ZA

∗)+ 3ε2
c2

g

4κ2
∂ZA∂ZA

∗
)

×
(
ε1/2A− iε

cg

2κ
∂ZA

)
e−iκT + c.c.

=
(

3ε3/2|A|2A− iε2 cg

2κ
(2|A|2∂ZA+ A2∂ZA

∗)

+ ε5/2

(
c2

g

2κ2
A∂ZA∂ZA

∗ + c2
g

4κ2
A∗(∂ZA)2

)
− iε3

3c3
g

8κ3
(∂ZA)

2(∂ZA
∗)

)
e−iκT + c.c.

Similarly,

(|E−|2 + 2|E+|2)E− = −
(

3ε3/2|A|2A+ iε2 cg

2κ
(2|A|2∂ZA+ A2∂ZA

∗)

+ε5/2

(
c2

g

2κ2A
∂ZA∂ZA

∗ + c2
g

4κ2
A∗(∂ZA)2

)
+ iε3

3c3
g

8κ3
(∂ZA)

2(∂ZA
∗)

)
e−iκT + c.c.

We now continue computing higher order corrections to(E+, E−). Balancing the O(ε3/2) terms gives

LU2 =
(

−i∂τ1A− ∂2
X2A− c2

g

2κ
∂2
Z2A− 3Γ |A|2A

)(
1

−1

)
e−iκT + c.c.

Note that the right-hand side has slowly-varying terms arising fromU1. Since(
1

−1

)
e−iκT

is in the null space ofL, the physical requirement that

i∂τ1A+ ∂2
X2A+ c2

g

2κ
∂2
Z2 + 3Γ |A|2A = 0, (1)

accounts for the removal of secular terms, or solvability condition. Once this condition is imposed, one findsU2 = 0.
The derivation of the two-dimensional NLSE for the bullets amplitude is not surprising, given that the one-

dimensional NLSE has been previously derived for fiber grating with no diffraction due to the transverse waveguide
structure at frequencies close to but outside the gap. We recall that for the focusing critical NLSE

iψt(t, x, y)+ ψxx + ψyy + |ψ|2ψ = 0, ψ(0, x, y) = ψ0(x, y),
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collapse can occur when the input power
∫ |ψ0|2 dx dy is above the critical powerNc [19], whereas no collapse

occurs for the mixed-signs NLSE

iψt(t, x, y)+ ψxx − ψyy + |ψ|2ψ = 0,

which is similar to the hydrodynamics problem. Therefore,Eq. (1)has blowup solutions for pulses whose center
frequency is atΩ ∼ κ, but not whenΩ = −κ, in which case the NLSE is given by

i∂τ1A+ ∂2
X2A− c2

g

2κ
∂2
Z2 + 3Γ |A|2A = 0.

Returning to the case of more interest (Ω ∼ κ), the possibility of collapse indicates a breakdown of the asymptotic
expansion. From physical considerations, however, we do not expect the bullet to collapse. Indeed, since pulse
compression leads to spectral broadening, at some point the down-frequency side of the spectral pulse will “see”
the edge of the gap in the dispersion relation, thus preventing further broadening and most likely arresting the
collapse. Of interest is then to see if this could be modeled by considering higher order corrections in the asymptotic
expansion. To do so we introduce a slower time variableτ2 = ε2T . Continuing the expansion we have to O(ε2),

LU3 =
(

i
Γcg

2κ
(2|A|2∂ZA+ A2∂ZA

∗)− i
cg

2κ
∂Z(−i∂τ1 − ∂2

X2)A

)(
1

1

)
e−iκT + c.c.

Using(1) we have that

∂Z(−i∂τ1 − ∂2
X2)A = c2

g

2κ
∂3
Z3A+ ∂Z(3Γ |A|2A).

Therefore, the equation forU3 can be rewritten as

LU3 = −
[

i
Γcg

2κ
(4|A|2∂ZA+ 2A2∂ZA

∗)+ c3
g

4κ2
∂3
Z3A

](
1

1

)
e−iκT + c.c.,

whose solution is

U3 = −i
cg

4κ2

[
Γ(4|A|2∂ZA+ 2A2∂ZA

∗)+ c2
g

2κ
∂3
Z3A

](
1

1

)
e−iκT + c.c.

The O(ε5/2) terms give

LU4 = −
(

i∂τ2A+ c2
g

4κ2
(Γ∂Z4|A|2∂ZA+ 2A2∂ZA

∗)+ c4
g

8κ3
∂4
Z4A+ Γc2

g

4κ2
2A∂ZA∂ZA

∗ + A∗(∂ZA)2
)

×
(

1

−1

)
e−iκT + c.c.

As in the O(ε3/2) case, in order to prevent secular terms we impose the condition

i∂τ2A+ Γc2
g

4κ2
(5A∗(∂ZA)2 + 10A∂ZA∂ZA

∗ + 4|A|2∂2
Z2A+ 2A2∂2

Z2A
∗)+ c4

g

8κ3
∂4
Z4A = 0. (2)

We finish by addingEqs. (1) and (2)and defining the slow timeτ = τ1+ετ2, leading to the perturbed two-dimensional
NLSE

i∂τA+ ∂2
X2A+ c2

g

2κ
∂2
Z2A+ 3Γ |A|2A = −εF(A), (3)
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F(A) = Γc2
g

4κ2
(5A∗(∂ZA)2 + 10A∂ZA∂ZA

∗ + 4|A|2∂2
Z2A+ 2A2∂2

Z2A
∗)+ c4

g

8κ3
∂4
Z4A.

3. Analysis of the 2D perturbed NLSE

In the previous section we derived the perturbed NLSE(3) as the slowly-varying envelope approximation of the
coupled mode equations. While we do not expectEq. (3)to remain valid over very long distances, a natural question
is whether solutions of(3) can collapse. We now show that collapse is arrested in(3), resulting instead in stable
focusing–defocusing oscillations.

In order to bringEq. (3)to the standard form we make the change of variables

y =
√

2κ

cg
z, ψ =

√
3ΓA.

This leads to the nondimensional equation

iψτ(τ, x, y)+�ψ + |ψ|2ψ = − ε

12κ

(
10ψ|ψy|2 + 5ψ∗ψ2

y + 4|ψ|2ψyy + 2ψ2ψ∗
yy + 1

2
ψyyyy

)
, (4)

where� = ∂xx + ∂yy. When the input power is close to the critical power we can analyze the effects of the
small terms on the right hand-side of(4) on collapse and on the propagation dynamics usingmodulation theory
[17]. Modulation theory is based on the observation that a self-focusing pulse rearranges itself as a modulated
Townesian, i.e.,|ψ| ∼ L−1(z)R(r/L(z)), whereR(r), the so-calledTownes soliton, is the ground-state positive
solution of

�R(r)− R+ R3 = 0, R′(0) = 0, lim
r→∞ R(r) = 0. (5)

Application of modulation theory toEq. (4)leads to the following result.

Proposition 1. When ε/κ � 1, self-focusing dynamics in Eq. (4)is given, to leading order, by the reduced system
of ODEs

Lττ(τ) = − β

L3
, βτ(τ) = − ε

κ
CGS

Nc

2M

(
1

L2

)
τ

, (6)

where

Nc =
∫ ∞

0
R2r dr ≈ 1.86, M = 1

4

∫ ∞

0
r2R2r dr ≈ 0.55 and CGS ≈ 55/48.

To proveProposition 1, we first rewrite(4) as the perturbed NLS

iψτ +�⊥ψ + |ψ|2ψ + ε

12κ

5∑
i=1

Fi[ψ] = 0, (7)

where

F1[ψ] = 10|ψy|2ψ, F2[ψ] = 5(ψy)
2ψ∗, F3[ψ] = 4|ψ|2ψyy,

F4[ψ] = 2ψ2ψ∗
yy, F5[ψ] = 1

2ψyyyy. (8)
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It is known that in critical collapse the focusing core approaches the asymptotic profileψR(r, τ) which is given by

ψR(r, τ) := 1

L(τ)
R(ρ)eiS, (9)

whereR(ρ) is defined inEq. (5),

ρ(r, τ) := r

L(τ)
, S(r, τ) := ζ(τ)+ r2Lτ(τ)

4L(τ)
, ζτ(τ) := 1

L2(τ)
. (10)

Under these assumptions, self-focusing dynamics of the perturbed NLSequation (7)is described, to leading order,
by Fibich and Papanicolaou[17, Proposition 4.3]

Lττ(τ) = − β

L3
, βτ(τ) = ε

2M

(
5∑
i=1

f1,τ − 4
5∑
i=1

f2

)
, (11)

where the auxiliary functions forF [ψ] are given by

f i1(τ) = L

π
Re
∫
Fi[ψR][R(ρ)+ ρR′(ρ)] e−iS dx dy, f i2(τ) = 1

2π
Im
∫
Fi[ψR]ψ∗

R dx dy. (12)

The leading-order behavior of the auxiliary functions is given in the following lemma.

Lemma 1. The auxiliary functions corresponding to Eq. (8)satisfy:

f 1
1,τ ∼ 10Nc

3

(
1

L2

)
τ

, f 1
2 = 0,

f 2
1,τ ∼ 5Nc

3

(
1

L2

)
τ

, f 2
2 = 5Nc

4

(
1

L2

)
τ

,

f 3
1,τ ∼

(
4Nc − 8

3
I6

)(
1

L2

)
τ

, f 3
2 = −Nc

(
1

L2

)
τ

,

f 4
1,τ ∼

(
2Nc − 4

3
I6

)(
1

L2

)
τ

, f 4
2 = Nc

2

(
1

L2

)
τ

,

f 5
1,τ ∼ 1

4
(3I6 − 9Nc)

(
1

L2

)
τ

, f 5
2 = 0,

where I6 ≈ 6Nc.

The auxiliary functions ofF1 andF2 are calculated in[20] and the auxiliary functions ofF5 are calculated in
[17]. To calculate the other auxiliary functions we note that (see[20, Appendices])

Syy = Lτ

2L
, Ry = R′ cosθ

L
, Ryy = 1

L2

(
R′′ cos2 θ + 1

ρ
R′ sin2 θ

)
,

ψR,yy = L−1 eiS [(Ryy − RS2
y)+ i(2RySy + RSyy)],∫

R4ρ dρ = 2Nc,

I1 := 3
∫
R2R′2ρ dρ, I3 := 3

∫
ρR2R′R′′ρ dρ, I4 := 3

∫
R3R′′ρ dρ, I6 :=

∫
R6ρ dρ,
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I1 = I6 − 2Nc, I3 = −Nc, I4 = 6Nc − 3I6 + 3
4R

4(0).

Therefore, forf 3
1 [ψ] we have that

f 3
1 := L

π
Re
∫
F3[ψR](R+ ρR′)e−iS dx dy = 4L

π
Re
∫

|ψR|2ψR,yy(R+ ρR′)e−iS dx dy

= 4

πL2

∫
R2(Ryy − RS2

y)(R+ ρR′)dx dy ≈ 4

πL2

∫
R2Ryy(R+ ρR′)dx dy

= 4

πL2

∫
R2
(
R′′ cos2 θ + 1

ρ
R′ sin2 θ

)
(R+ ρR′)ρ dρ dθ = 4

L2

∫
R2
(
R′′ + 1

ρ
R′
)
(R+ ρR′)ρ dρ

= 4

L2

∫ (
R3R′′ + ρR2R′R′′ + R2R′2 + 1

ρ
R3R′

)
ρ dρ

= 4

3

[
I4 + I3 + I1 − 3

4
R4(0)

]
1

L2
=
(

4Nc − 8

3
I6

)
1

L2
.

Similarly, for f 4
1 [ψ] we get that

f 4
1 := L

π
Re
∫
F4[ψR](R+ ρR′)e−iS dx dy = 2L

π
Re
∫
ψ2
Rψ

∗
R,yy(R+ ρR′)e−iS dx dy

= 2

πL2

∫
R2(Ryy − RS2

y)(R+ ρR′)dx dy = 1

2
f 3

1 ∼
(

2Nc − 4

3
I6

)
1

L2
.

Forf 3
2 [ψ] we have that

f 3
2 := 2

π
Im
∫

|ψR|2ψR,yyψ
∗
R dx dy = 2

πL4

∫
R3(2RySy + RSyy)dx dy

= 2

πL4

∫ [
1

2
(R4)ySy + R4Syy

]
dx dy = 1

πL4

∫
R4Syy dx dy = Lτ

L3

∫
R4ρ dρ = −Nc

(
1

L2

)
τ

.

Similarly, for f 4
2 [ψ] we get that

f 4
2 := 1

π
Im
∫
ψ2
Rψ

∗
R,yyψ

∗
R dx dy = − 1

πL4

∫
R3(2RySy + RSyy)dx dy = −1

2
f 3

2 = Nc

2

(
1

L2

)
τ

.

To obtainEq. (6)we substitute the auxiliary functions fromLemma 1in (11). Therefore, to leading order we obtain

βτ = ε

12κ

[
10Nc

3
+ 5Nc

3
+
(

4Nc − 8

3
I6

)
+
(

2Nc − 4

3
I6

)

+ 1

4
(3I6 − 9Nc)− 5Nc + 4Nc − 2Nc

]
1

2M

(
1

L2

)
τ

= 1

48
(23Nc − 13I6)

ε

κ

1

2M

(
1

L2

)
τ

≈ −55

48

ε

κ

Nc

2M

(
1

L2

)
τ

,

from which we obtain the second equation in(6) with CGS ≈ 55/48.
In [17] it was shown that(6) is the generic reduced equation in critical self-focusing. Analysis of this reduced

system shows that its solutions do not collapse. Rather, they undergo stable focusing–defocusing oscillations. Indeed,
we observe this behavior when we solveEq. (4)numerically (seeFig. 1).



A.B. Aceves et al. / Physica D 189 (2004) 277–286 285

0 4.5
0

9

26

τ

|ψ
(τ

,0
,0

)|
2

Fig. 1. On-axis intensity of the solution ofEq. (4) with ε/κ = 0.075. The initial condition isψ(τ = 0, x, y) = 2
√
N(0)e−(x2+y2), and

N(0) = 1.2Nc.

4. Numerical methods

Because the small perturbation terms inEq. (4)depend only on they derivatives, this equation is anisotropic in
the (x, y) plane. Hence, even though we use a radially-symmetric Gaussian for the initial conditions, the solution
does not remain cylindrically-symmetric during propagation. We therefore solveEq. (4)on a rectangular Cartesian
domain, using a finite-difference scheme with fourth-order accuracy in space. Time-stepping is achieved using
a fourth-order Runge–Kutta algorithm. We impose Dirichlet boundary conditions at the outer boundaries. Since
Dirichlet conditions are reflective, special care is taken to assure that reflections from the numerical boundaries have
no effect on the solution. This is especially important when solvingEq. (4), because the radiation can propagate
quickly in they-direction. We therefore take sufficiently large numerical boundaries in they-direction and verify
the validity of our results by using a larger domain.

5. Conclusions

We have used a multiple-scales analysis to derive the extended NLSE approximation for optical bullet dynamics
in a waveguide with a grating in the direction of propagation. We then showed that in this extended NLSE, collapse
is arrested. An intuitive explanation for this is as follows. When the field frequency lies outside of the gap in the
dispersion relation, the dynamics is initially well approximated by the two-dimensional NLSE and for sufficiently
high input power a collapse-type dynamics occurs (seeFig. 1). Since critical collapse occurs in a radially symmetric
way [21,22], the resulting spectral broadening occurs in all wavenumber directions. Our analysis thus shows that
the fact that broadening of thez-component of the wavenumber is prevented by the presence of the band-gap is
enough to prevent the collapse,2 leading instead to nontrivial dynamics which is yet to be fully understood. This
suggests, nevertheless, that the periodic waveguide structure is a suitable candidate for first observing gap-soliton
bullets in short propagation, if only as a metastable object. Better understanding of the overall dynamics, however,
will require a direct analysis of the coupled mode equations.

2 It remains to see whether such a small effect would be able to prevent the collapse in bulk media, where collapse is supercritical.
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