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We consider the escape dynamics of an ensemble of Bose-Einstein-condensed atoms from an optical-dipole
trap consisting of two overlapping Gaussian wells. Earlier theoretical studies �based on a model of quantum
evolution using ensembles of classical trajectories� predicted that self-similar fractal features could be visible
in this system by measuring the escaping flux as a function of time for varying initial conditions. Here, direct
numerical quantum simulations show the clear influence of quantum interference on the escape data. Fractal
features are still evident in the data, albeit with interference fringes superposed. Furthermore, the nonlinear
influence of atom-atom interactions is also considered, in the context of the �2+1�-dimensional Gross-
Pitaevskii equation. Of particular note is that an attractive nonlinear interaction enhances the resolution of
fractal structures in the escape data. Thus, the interplay between nonlinear focusing and dispersion results in
dynamics that resolve the underlying classical fractal more faithfully than the noninteracting quantum
�or classical� dynamics.
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I. INTRODUCTION

The Hamiltonian evolution of a classical or quantum en-
semble through �phase� space under chaotic dynamics gov-
erns numerous and diverse physical phenomena, including
the ionization of atoms in external fields �1–19�, the emission
of light from lasing microbeads �20,21�, chaotic advection in
fluids at low Reynolds number �22–26�, and the transport of
comets, asteroids, and spacecraft in the solar system �27,28�.
Furthermore, it has long been appreciated that such chaotic
transport processes generate self-similar fractal structures.
Though this fractal geometry is manifest in the dynamics of
individual classical trajectories, in practice, the visualization
of individual trajectories and their associated fractal structure
is limited by the inherent instabilities of the chaotic system.
That is, an initially localized ensemble designed to follow a
given chaotic trajectory will rapidly disperse throughout the
available phase space.

Atomic systems, due to their insensitivity to external per-
turbations and high degree of control, have proved to be very
effective for the experimental and theoretical study of chaos,
both classical and quantum �29�. Initial studies of chaos in
atomic physics focused on the electron dynamics within an
atom, typically with an applied electric or magnetic field
�1–19�. More recently, however, consideration has been
given to chaotic dynamics in the position degree of freedom
for the trapped atoms themselves �30–41�. For example, Rai-
zen and co-workers �40� and Davidson and co-workers �41�
independently demonstrated that the long-time decay rate of
ultracold atoms from an open optical billiard trap would
show a characteristic exponential decay for fully developed
chaos and an algebraic decay for regular �nonchaotic� dy-
namics. Subsequently, Ref. �42� predicted that the early time
escape dynamics of ultracold or Bose-Einstein-condensed at-
oms from an optical trap could be used to directly image
fractal structures over several orders of self-similarity. The
analysis in Ref. �42� was motivated by related studies of the
time-dependent chaotic ionization of hydrogen in applied

electric and magnetic fields �16–18�; after an excitation by
an initial laser pulse, the hydrogen atom is predicted to emit
a chaos-induced train of electron pulses, which reflects the
underlying fractal structure of the dynamics. However, com-
pared to ionization dynamics, atomic traps have certain ad-
vantages, such as flexibility in tailoring the optical potential,
direct control over the shape and placement of the initial
ensemble, and direct access to measuring the subsequent
distribution of the ensemble as a function of time.

Reference �42� modeled the time evolution of the Bose-
Einstein condensate �BEC� within a chaotic trapping poten-
tial using a classical ensemble of noninteracting atoms.
Here, we study this dynamics using a full quantum simula-
tion based on both the linear �2+1�-dimensional Schrödinger
equation as well as the �nonlinear� Gross-Pitaevskii equation.
The impact of interference as well as atom-atom interactions
on the resolution of the fractal structure in the escape dynam-
ics is investigated. The Schrödinger analysis yields a fractal
structure that follows the classical density, except with inter-
ference fringes superposed. When atom-atom interactions are
taken into account via the Gross-Pitaevskii equation, we find
that a modest repulsive interaction does not destroy the frac-
tal features, though for large enough interactions, the fractal
structure is washed out. More interestingly, a strong attrac-
tive interaction between the atoms induces a considerable
enhancement of the fractal structure. This can be understood
as the attractive interactions partially offsetting the inherent
dispersion of the state, so that the state more faithfully tracks
the central trajectory of the classical dynamics. Such reduc-
tion in dispersion has been dramatically demonstrated in the
experimental observation of BEC solitons in one dimension
�43–45�. A critical distinction here is our use of a two-
dimensional and chaotic potential.

In this work, it is important to distinguish between two
separate “nonlinear” effects. There is the classical nonlinear-
ity of the chaotic potential, which causes neighboring trajec-
tories to diverge exponentially from one another. There is
also the cubic wave-function nonlinearity ���2� in the
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Gross-Pitaevskii equation. As mentioned above, for the fo-
cusing case these two effects are in competition and partially
balance.

This paper is organized as follows. In Sec. II we describe
the basic geometry of the optical trap, the initial conditions
of the atomic state, and the detection scheme. In Sec. III we
review the classical trap dynamics described in Ref. �42�.
Section IV presents our classical and quantum models of
BEC evolution, along with the numerical results. Notably,
Sec. IV C discusses how the time-dependent escaping atomic
flux depends on the initial launch angle of the condensate.
We focus on the resolution of fractal features in the data.
Section V demonstrates how the fractal resolution can be
enhanced by decreasing the effective Planck’s constant.

II. SETUP OF THE ATOMIC TRAP

Following Ref. �42�, we consider a two-dimensional
optical-dipole trap constructed from two overlapping Gauss-
ian beams, giving rise to an asymmetric double-well poten-
tial

V�x,y� = − V1 exp�−
x2

2�1x
2 −

y2

2�1y
2 �

− V2 exp�−
�x − x2�2

2�2x
2 −

y2

2�2y
2 � , �1�

where x2 measures the distance between the wells, V1 and V2
measure the depths of the wells, and where �1x, �1y, �2x, and
�2y measure the x and y widths of the wells �Fig. 1� Further-
more, the atoms are assumed to be constrained in the z di-
rection, so that the z dynamics can be ignored. �More pre-
cisely, we assume a uniform density in the z direction.�

The variables in Eq. �1� are dimensionless scaled vari-
ables defined relative to the physical length scale X0 and
energy scale E0. The unscaled “physical” variables denoted
by tildes are thus

x̃ = xX0, ỹ = yX0,

x̃2 = x2X0, Ṽi = ViE0, i = 1,2,

�̃ij = �ijX0, i = 1,2, j = x,y . �2�

We fix the dimensionless parameters of the potential to be
those used in Ref. �42�

�1x = 0.25, �1y = 0.333, x2 = 1,

�2x = 1.5, �2y = 0.333, V1 = V2 = 1. �3�

Note that these choices imply that the length scale X0 equals
the separation distance x̃2 between the Gaussians and that the

energy scale E0 equals the depths Ṽi, i=1,2, of the Gauss-
ians. As seen in Fig. 1, the right Gaussian is highly elongated
in the y direction, whereas the left Gaussian is fairly isotro-
pic. Though the depth of each Gaussian individually is the
same, the manner of their overlap is such that the left well is
much deeper than the right. Importantly, this potential is non-
separable and exhibits strong classical chaos.

By changing the power, shape, and position of the laser
beams, the length and energy scales X0 and E0 �i.e., the size
and depth of the potential� can be experimentally adjusted,
while keeping the dimensionless parameters �3� fixed. Under
such adjustments of scale, the classical dynamics remains
invariant when expressed in dimensionless variables. How-
ever, the quantum dynamics is not invariant, as can be seen
from the dimensionless scaled Planck’s constant

� = �̃/�X0P0� = �̃/�E0T0� = �̃/�X0
�M0E0� . �4�

Here, �̃ is the original dimension-full value of Planck’s con-
stant and M0, T0=X0�M0 /E0�1/2, and P0=�M0E0 are the
mass, time, and momentum scales. The mass scale M0 is
chosen to be the atomic mass. Equation �4� shows how we
can adjust the effective Planck’s constant, while keeping the
scaled classical mechanics invariant. For example, if the di-
mensionless parameters �3� and X0 are held fixed and the
laser power is increased by a factor of four, increasing the
depth E0 of the dipole potential by a factor of four, then the
effective Planck’s constant is reduced by a factor of two. The
same effect could be achieved by scaling the size of the trap
by a factor of two, while keeping the laser intensity at the
center of each Gaussian beam fixed.

A detection line is created by a resonant laser sheet placed
in the right well at x=x2 and oriented in the y direction �Fig.
1�. When atoms strike the detection line, they fluoresce and
are subsequently kicked out of the trap. Since the detection
line is placed just to the right of the saddle between the
wells, any atoms that pass from the left well over the saddle
into the right well will be detected and, furthermore, will
never pass back into the left well. The right well thus acts as
an exit channel for the trap.

Following Ref. �42�, we utilize the following proposed
protocol. At t=0, the atomic ensemble is loaded in the center
�x=y=0� of the left Gaussian and given a “kick” in the
launch direction �, measured relative to the positive x axis.
We assume that the kick simply results in an overall shift �p
in the momentum of the state. The mean energy of the re-
sulting state is chosen to be E=−0.420. This value is above
the potential saddle, so that transport into the right well can
occur classically, without relying on quantum tunneling. As

FIG. 1. �Color online� The trapping potential �1� is shown by the
shading. The size of each Gaussian is denoted by an ellipse. Three
trajectories launched from the origin are shown, with launch angles
�=0.85, 2.04, and �.
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atoms cross the saddle, they quickly reach the detection line,
where their arrival is recorded as a function of time. Thus,
this setup measures the outgoing flux of atoms striking the
detection line as a function of time, for a given initial launch
angle �.

III. CLASSICAL DYNAMICS OF
THE CENTRAL TRAJECTORY

The simplest model of the escape dynamics would be to
approximate the evolution of the atomic state as a packet that
simply follows the central trajectory. By the central trajec-
tory, we mean the classical trajectory whose initial position
and momentum are the expectation values 	r
 and 	p
 over
the initial state. In this model, the outgoing flux measured at
the detection line would be a short pulse centered at the time
that the central trajectory crosses the line. As it does so, this
pulse would also have undergone some �linear� dispersion
relative to the initial state. For a harmonic potential, this
model is valid for all time; but for a nonlinear, and in par-
ticular, a chaotic potential, this model may be valid for short
times but it eventually breaks down. This breakdown is es-
sentially a classical phenomenon. A classical ensemble fol-
lowing the central trajectory will first disperse linearly about
the central trajectory. Eventually, however, it will disperse
sufficiently so as to be influenced by the nonlinear terms
about the central trajectory, resulting in the ensemble ulti-
mately dispersing throughout the available �phase� space.
Nevertheless, the central trajectory model gives an idealiza-
tion appropriate in the limit that the position and momentum
widths of the initial packet go to zero. We thus first consider
the behavior of a single trajectory launched from the origin,
with energy E=−0.420, as a function of the launch angle �,
measured relative to the positive x axis.

Figure 1 shows three classical trajectories beginning at the
origin with �=0.85, 2.04, and � �in radians�. The complexity
and diversity of these paths illustrate the chaotic nature of
the potential. The time for such a trajectory to escape, i.e., to
reach the detector, is highly sensitive to its launch angle �, as
shown in the escape-time plot Fig. 2. This plot displays a
fractal structure characteristic of chaotic escape and scatter-
ing functions �46–60�. It has an infinite number of smooth
icicle-shaped regions �47�, the edges of which go to infinite
escape time. These regions, which we call simply icicles,
occur at all scales in � and at arbitrarily long times. They
display a well defined self-similar structure, as illustrated by
the expanded plots in Fig. 2. The expansions show one pat-
tern, or template, of icicles that is repeated on smaller scales.
In fact, the fractal structure is more complicated than even
this suggests, as there are multiple such templates repeated
recursively within one another on all scales within the same
escape-time plot. Reference �42� discusses this in more detail
and gives a symbolic encoding for the self-similar structure
of Fig. 2. The study of such fractal structure and how it can
be described using symbolic techniques has been extensively
studied and is still an active area of research �51,52,54–68�.

As noted above, the model of the packet following the
central trajectory, with some �linear� dispersion, is valid
when the position and momentum distribution of the initial

state is sufficiently small and the escape time is sufficiently
short. In this spirit, Ref. �42� argued that a small ensemble of
ultracold atoms should have sufficient resolution to resolve
several orders of the fractal structure in Fig. 2. The resolution
was particularly pronounced below the BEC transition,
where the state occupies essentially a single Planck cell. In
the next section, after first reviewing the classical-ensemble
model of Ref. �42�, we compute the influence of quantum
interference and atom-atom interactions on the fractal
resolution.

IV. CHAOTIC ESCAPE DYNAMICS
OF AN ATOMIC ENSEMBLE

A. Escape dynamics of a classical ensemble

We can improve upon the central trajectory approximation
by numerically evolving an initial classical Gaussian
ensemble, with phase-space probability distribution

��r,p� =
1

��r�p2��2exp�−
r2

2�r
2 −

�p − pc0�2

2�p
2 � , �5�

where �r and �p are the position and momentum standard
deviations, and where pc0= pc0�cos � , sin �� is the central
momentum. Note that the magnitude pc0 of the central mo-
mentum is already determined by the mean ensemble energy
E=−0.420, i.e., pc0=�2�E−V�0,0��. For a thermal �noncon-
densed� atomic state, the phase-space area �r�p is consider-
ably larger than � /2. Restricting here to pure condensates,
however, the atomic state occupies a single Planck cell in
phase space and, hence, �r�p=� /2. We divide the total un-
certainty between position and momentum as

�r = s��

2
, �p =

1

s
��

2
, �6�

where s=0.321, so that �r and �p are of the same order of
magnitude. Recalling that we can adjust � independently
from the classical quantities, we set �=0.020 4, which places
us solidly in the semiclassical regime.

The classical evolution of 5�104 initial points drawn
from the distribution �5� is shown in the first column of Fig.
3, for launch angle �=0.85. In the first frame, the ensemble
is closely following the central trajectory shown as the curve
that begins at the origin and terminates at the large dot. In the
second frame, the central trajectory is about to cross the de-
tection line. The bulk of the ensemble, however, has already
escaped at this time. This is seen in the escape-rate plot at the
bottom of the first column, where the vertical line denotes
the escape time of the central trajectory. Thus, the flux pri-
marily exits as a single pulse occurring somewhat before the
central trajectory. However, the second frame does show that
a noticeable fraction of the ensemble has also reflected off
the saddle. In the next two frames, this remaining ensemble
spreads throughout the left well and slowly leaks across the
saddle. Nevertheless, the main observation for this launch
angle is that the classical dispersion is slow enough that most
of the packet exits the trap as a single pulse that closely
follows the central trajectory. We shall consider other launch
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angles in Sec. IV C, but first we consider the quantum
evolution.

B. Quantum analysis of the BEC dynamics

The classical model of the packet is appropriate for a
thermal �i.e., noncondensed� atomic ensemble. It is also an
appropriate model for a quantum packet, so long as the evo-
lution time is short enough that the packet does not break up
and interfere with itself.

At longer times, the correspondence between the classical
and quantum evolution of wave packets has been well stud-
ied from the semiclassical perspective �69–71�. The basic
picture is that the classical trajectories carry the quantum
amplitude forward with a phase given by the classical action
integrated along the trajectory. Thus, the quantum evolution

follows the classical density, with interference fringes super-
posed due to overlapping trajectories. At a long enough time
�on the order of log ��, the classical ensemble develops small
scale structure that the quantum amplitude is no longer able
to resolve.

Though we are guided by the semiclassical perspective,
our analysis here is based on a direct numerical computation
of the BEC wave-packet evolution using the Gross-Pitaevskii
equation �72,73�

i�
�

�t
� = −

�2

2
� �2

�x2 +
�2

�y2�� + V� + g���2� , �7�

where we normalize the order parameter ��x ,y , t� to unity,
i.e., ����2dxdy=1, and where we continue to work in the
scaled variables of Sec. II. The cubic nonlinearity is the

1 1.5 2 2.5 3
0

2

4

6

8

10

12

Launch angle θ (rad)
T

im
e

t
to

es
ca

p
e

(s
ca

le
d

un
it

s)

1 1.2 1.4 1.6 1.8 2 2.2

2

4

6

8

10

12

T
im

e
t

to
es

ca
p
e

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

4

6

8

10

12

14

16

1.5 1.6 1.7 1.8 1.9

8

10

12

14

16

18

Launch angle θ (rad)

T
im

e
t

to
es

ca
p
e

1.55 1.6 1.65 1.7 1.75 1.8 1.85

10

12

14

16

18

20

Launch angle θ (rad)(b)

(a)

FIG. 2. The escape time for a trajectory launched from the origin with angle � and with energy E=−0.420. The lower four frames are
progressively larger expansions of the central region of the escape-time plot, illustrating the structural self-similarity of the function.
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mean-field interaction energy between the atoms, where g
measures the strength of the atom-atom interaction

g = 4��2a0N/Z . �8�

Here, a0 is the �scaled� atomic scattering length, N is the
number of atoms in the condensate �since � is normalized to
unity�, and Z is the thickness of the condensate in the z
direction �assuming uniform density in the z direction�. We
consider an atomic species �such as 7Li� that permits g to be
adjusted from positive to negative through a Feschbach
resonance.

We again choose the initial state to be a Gaussian of width
�r, centered at r=0 and with momentum expectation value
pc0, i.e.,

�0�r� =
1

�2��r

exp� ipc0 · r

�
�exp�−

r2

4�r
2� . �9�

The Wigner function W0�r ,p� of this state agrees with the
classical probability distribution �5�.

We numerically propagate the wave packet forward in
time using the standard fourth-order �symmetric� split-step
algorithm. The grid size is typically taken to be dx=dy
=� /4 and the validity of the results was verified by using
dx=dy=� /8.
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FIG. 3. �Color online� The evolution of the initial state as a function of time for launch angle �=0.85. Column 1 is a classical trajectory
simulation using 5�104 trajectories. The curve beginning at the origin and terminating at the large dot illustrates the central trajectory up to
the given value of t. �The central trajectory is not shown once it strikes the detection line.� The dashed curve forms the boundary of the
classically allowed region for trajectories whose energy equals the mean energy E=−0.420 of the state. Column 2 is the Schrödinger
simulation using an equivalent initial state. Column 3 is the Gross-Pitaevskii simulation for g=−0.9. In the second and third columns, the
color scale is adjusted for each snapshot to maintain contrast in the wave function, i.e., red always denotes the maximum remaining density
and blue the minimum. The escape rate for each simulation is plotted at the bottom of each column. In the second and third columns, the
color range �or grayscale range� is adjusted for each snapshot to maintain contrast in the wave function, i.e., in the color versions, red always
denotes the maximum remaining density and blue the minimum. The escape rate for each simulation is plotted at the bottom of each column.
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The size of the actual computational domain �xmin,xmax�
� �ymin,ymax� is quite larger than the domain V�x ,y�	E and
well beyond the detection line x=1. In order to implement
the escaping boundary conditions at x=1, we use a combi-
nation of �i� extending the profile of the potential at the de-
tection line invariantly for x
1, and �ii� imposing a cutoff
function for x
1, i.e., multiplying the solution by a para-
bolic function that decreases from 1 to 0 in x� �1,xmax�. A
similar parabolic cutoff function is applied on the solution in
the other three directions as well. By solving the same prob-
lem on a much larger computational domain, we verified that
this method of implementing the boundary conditions does
not introduce spurious numerical artifacts.

1. Schrödinger evolution

We first consider the case g=0, so that the �linear�
Schrödinger equation applies. The second column of Fig. 3
shows the evolution of ���2 for launch angle �=0.85. In the
first frame, no considerable difference distinguishes the
Schrödinger results from the adjacent classical result. In the
second frame, the Schrödinger result still follows the classi-
cal density, but fringes are now evident, due to the interfer-
ence of overlapping classical trajectories. Nevertheless, the
plot of the Schrödinger escape rate differs little from the

classical. This is because the interference fringes, being
transverse to the detection line, average out upon integration.
In the next two frames, the quantum density continues to
follow the classical, but with interference fringes superposed.

2. Focusing Gross-Pitaevskii evolution

We now consider the influence of atom-atom interac-
tions by using a nonvanishing g in the Gross-Pitaevskii equa-
tion. A positive g corresponds to a repulsive interaction,
which would increase the dispersion of the state. We instead
consider a negative g, which corresponds to an attractive
interaction, thereby, forming a focusing nonlinearity, which
reduces the dispersion of the packet. Since we have set
����2=1, the necessary condition for collapse of the Gross-
Pitaevskii Eq. �7� is g�−gcr=−c�2, where c�5.85 is de-
rived from the two-dimensional Townes soliton �74�. There-
fore, we choose g=−0.9gcr, which ensures that we are
subcritical for collapse.

Using the same initial state given by Eq. �9�, the third
column of Fig. 3 shows the Gross-Pitaevskii evolution for
�=0.85. In the first frame, the packet is significantly tighter
than in the adjacent Schrödinger analysis. This continues to
be evident in the second frame as well. In particular, the
wave-packet spreading is reduced to such a degree that the
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FIG. 4. �Color online� The evolution of the initial state as a function of time for launch angle �=�. Column 1 is a classical trajectory
simulation using 5�104 trajectories; column 2 is the Schrödinger simulation; and column 3 is the Gross-Pitaevskii simulation for
g=−0.9gcr.
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interference fringes are essentially absent. Furthermore,
though the escape-rate plot is similar to the previous two
analyses, there is a slight shift in the escaping flux forward in
time. We conclude, therefore, that the focusing nonlinearity
causes the wave packet to track the central trajectory more
faithfully. In subsequent frames, the wave packet eventually
disperses and the Gross-Pitaevskii analysis more closely
resembles the Schrödinger case.

C. Variation in escape dynamics with launch angle

The escape-time behavior changes dramatically as we ad-
just the launch angle of the initial state. For example, Fig. 4
shows the evolution for �=�. Focusing first on the classical
ensemble in the first column, the central trajectory escapes
around t=4.5, as seen by the vertical bar in the escape-rate
plot. The central trajectory is associated with a broad pulse,

whose maximum occurs just after the vertical bar. However,
there is also a taller and sharper initial precursor pulse, which
precedes the central trajectory. The precursor pulse is clearly
visible near the detection line in the second frame. It has
evidently reflected off the left side of the well before the
broad pulse following the central trajectory.

Considering now the Schrödinger evolution in the second
column, the quantum density again closely follows the clas-
sical density, but with interference fringes clearly overlaid in
the second and third frames, once the wave packet has spread
out horizontally. Since the interference fringes are now
roughly parallel to the detection line, they are now recorded
as oscillations in the escape-rate plot.

Turning now to the focusing Gross-Pitaevskii evolution in
the third column, the packet has clearly spread less relative
to the Schrödinger evolution. In particular, in the second
frame there is essentially no precursor pulse near the detec-
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FIG. 5. �Color online� The evolution of the initial state as a function of time for launch angle �=2.04. Column 1 is a classical trajectory
simulation using 5�104 trajectories; column 2 is the Schrödinger simulation; and column 3 is the Gross-Pitaevskii simulation for
g=−0.9gcr.

NONLINEAR ENHANCEMENT OF THE FRACTAL… PHYSICAL REVIEW A 80, 043406 �2009�

043406-7



FIG. 6. �Color online� �a� The escape-time plot for an initial state modeled by a classical ensemble. 1�105 trajectories are used for each
�. �b� The escape-time plot for an initial quantum state modeled by the Gross-Pitaevskii equation with g=−0.9gcr. �c� The escape-time plot
for an initial quantum state modeled by the Schrödinger equation �g=0�. Similarly, �d�, �e�, and �f� use g /gcr=1, 10, and 50, respectively. In
each plot, the shading records the escape rate in scaled variables. In order to increase the visibility of smaller flux values, the color scale is
saturated so that the brightest white is used for all fluxes greater than 0.5.
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tion line. The missing precursor pulse is also clearly seen in
the escape-rate plot, which now consists of a single sharp-
ened pulse, escaping with the central trajectory. Thus, here
the focusing nonlinearity eliminates the separation of the
state into two pulses and causes the state to track the central
trajectory more faithfully.

The third �and final� launch angle we shall consider ex-
plicitly is �=2.04 �Fig. 5�. The central trajectory undergoes a
more complicated motion than the preceding two examples,
exiting around t=5.4. The classical escape-rate plot in the
first column shows a pulse aligned with the vertical bar and,
hence, associated with the central trajectory. However, by far
the largest pulse is the much earlier initial pulse. In this case,
the central trajectory does a rather poor job of predicting the
escape-rate profile.

Considering now the Schrödinger evolution in the second
column, the quantum density again clearly tracks the classi-
cal density, with interference fringes visible once the wave
packet spreads out. Looking at the Schrödinger escape-rate
plot, it roughly follows the classical plot, though quantum
effects have reduced the clear peak aligned with the central
trajectory.

Considering now the Gross-Pitaevskii evolution in the
third column, we again see the expected narrowing of the
pulse. In particular, in the Gross-Pitaevskii escape-rate plot,
considerable flux has been shifted �compared to the
Schrödinger plot� from the initial pulse to the �now promi-
nent� pulse aligned with the central trajectory. Though we do
not see focusing to a single pulse, as in Fig. 4, we do see that
the focusing nonlinearity causes the state to more faithfully
track the central trajectory.

The primary objective of this paper is to investigate the
behavior of the escape-rate plots as � is varied over a suc-
cession of angles. We thus run the preceding simulations
over a large sampling of launch angles between 0 and � and
then aggregate each of these escape-rate plots into a single
escape-time plot in Fig. 6. First, we consider the escape rate
for a classical ensemble shown in Fig. 6�a�. The sharp thin
curve plots the time for the central trajectory to escape, as in
Fig. 2. The shading records the escape rate at time t for an
initial state launched at angle �. Thus, for a specific launch
angle, say �=2.04 marked by the vertical line, we can read
off the escape rate as a function of time by simply moving up
the vertical line and noting the intensity of the shading,
which recovers the classical escape-rate plot in Fig. 5.

Notice that the shading �i.e., the escaping flux� closely
follows the bottoms of each of the icicles. That is, the bottom
of each icicle is blurred into a cloud, which covers a wider
angular interval than the associated icicles. This blurring is a
reflection of the fact that, due to the extended nature of an
initial state launched at a given angle, such a state will be
influenced by its neighboring icicles. This association be-
tween icicles and the blurred clouds is particularly evident
for the wide icicles in the central zone of the plot. The shad-
ing obviously cannot resolve the detailed structure of the
narrowest icicles. Nevertheless, the shading clearly records
the basic self-similar structure of the main sequence of
icicles.

Looking again at the two prominent pulses appearing in
the classical escape-rate plot at the bottom of the first column

FIG. 7. �Color online� The escape-time plots computed for
�=0.004 08 and g /gcr=0 ,−0.9. �b� is identical to �a�, except that
the icicles are omitted to better visualize the clouds associated with
the narrower icicles.
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in Fig. 5, the large initial pulse can now be interpreted as
arising from the cloud associated with the rightmost icicle in
Fig. 6�a�. The large size of the initial pulse is now seen to be
due to the large width of the rightmost icicle. The second
pulse, aligned with the central trajectory, is due to the icicle
whose bottom is at about t=5.5. Since this icicle is much
narrower, its cloud is less prominent and the corresponding
pulse is smaller.

We next compare the classical escape-time plot to the
Schrödinger �g=0� plot in Fig. 6�c�. The bottoms of the wid-
est icicles are again clearly blurred into clouds, following the
basic classical structure. However, these clouds now have
interference fringes superposed. Though the fringes compli-
cate the correlation between icicles and shading, especially at
later times, the connection can still be made for the four or
five widest icicles.

We next compare the focusing �g=−0.9gcr� Gross-
Pitaevskii escape-time plot in Fig. 6�b� to the Schrödinger
plot. The Gross-Pitaevskii plot shows a remarkable shrinking
of the clouds, greatly enhancing the correlation between the
shading and the icicles. �The interference fringes are corre-
spondingly also suppressed.� This correlation is also clearer
than in the classical data Fig. 6�a�. Thus, we come to our
main conclusion. The focusing nonlinearity, due to its reduc-
tion in dispersion, significantly enhances the ability of quan-
tum wave packets to resolve the underlying classical fractal
structure in the escape dynamics.

For comparison, we also present the escape-time plots for
several defocusing nonlinearities �g /gcr=1 ,10,50� in Figs.
6�d�–6�f�. There is little difference between the g=0 and g
=gcr data, showing that moderate defocusing does not de-
stroy the resolution. However, at g=10gcr, and certainly at
g=50gcr, only the two largest icicles on the left and right are
readily resolved.

V. DECREASING THE EFFECTIVE
PLANCK’S CONSTANT

As mentioned in Sec. II, we can adjust the effective size
of Planck’s constant, while keeping the underlying �scaled�
classical dynamics fixed, by adjusting the laser intensity
and/or the physical size of the trap. By decreasing the effec-
tive Planck’s constant, we become sensitive to finer-scale
structure in the classical phase space, which provides another

strategy, mentioned in Ref. �42�, to increase the resolution of
the fractal structure. Figures 7�a� and 7�b� show the escape-
time plot for g=−0.9gcr and for �=0.004 08, a factor of 5
smaller than in Fig. 6�c�. We show the escape data both with
and without the icicles superposed, so that the smaller clouds
are not obscured by the icicles. The correlation between the
icicles and clouds has clearly improved significantly by this
modest reduction in �. As � is decreased further, we would
resolve more and more of the fine-scale structure, ultimately
limited by experimental concerns. Reference �42� argued that
� on the order of 10−5 should be physically achievable �with
87Rb�.

Finally, Fig. 7�c� includes the focusing nonlinearity for
the smaller �, showing a marked enhancement of the icicle
resolution, both compared to Figs. 6�b� and 7�b�.

VI. CONCLUSIONS

Building on Ref. �42�, we considered the escape of a
Bose-Einstein-condensed atomic ensemble from a chaotic
double-Gaussian trap, as a function of the direction of the
average momentum. The key advance here is to compute the
impact of interference and atom-atom interactions on the res-
olution of the underlying classical fractal. Though interfer-
ence complicates the fractal resolution somewhat, it is still
clearly visible, especially for smaller �. Attractive atom-atom
interactions, however, can significantly enhance the fractal
resolution.

Thus, we find two strategies for enhancing the fractal res-
olution. The first, discussed in Ref. �42�, is simply to reduce
the size of the state in phase space by decreasing the effec-
tive value of �. This may be achieved either by increasing
the size or the depth of the trap. The second, highlighted
here, is to reduce the dispersion of the packet by increasing
an attractive atom-atom interaction. This second strategy is
limited by the fact that the interaction must remain subcriti-
cal to wave-packet collapse.
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