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Onset of transverse instabilities of confined dark solitons
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We investigate propagating dark soliton solutions of the two-dimensional defocusing nonlinear Schrödinger
or Gross-Pitaevskii (NLS-GP) equation that are transversely confined to propagate in an infinitely long channel.
Families of single, vortex, and multilobed solitons are computed using a spectrally accurate numerical scheme. The
multilobed solitons are unstable to small transverse perturbations. However, the single-lobed solitons are stable if
they are sufficiently confined along the transverse direction, which explains their effective one-dimensional
dynamics. The emergence of a transverse modulational instability is characterized in terms of a spectral
bifurcation. The critical confinement width for this bifurcation is found to coincide with the existence of a
propagating vortex solution and the onset of a “snaking” instability in the dark soliton dynamics that, in turn, give
rise to vortex or multivortex excitations. These results shed light on the superfluidic hydrodynamics of dispersive
shock waves in Bose-Einstein condensates and nonlinear optics.
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I. INTRODUCTION

Solitary waves are ubiquitous in nonlinear dispersive
systems. Isolated solitary waves are often either elevation
or depression waves, also called bright or dark solitons,
respectively. Dark solitons, also known as kink solitons,
require a nonvanishing background and their mathematical
study has been extensive (cf. [1–3]). Experimentally, temporal
and spatial dark solitons have been observed in optical fibers
[4–6] and waveguide arrays [7], surface water waves [8,9],
plasmas [10], and Bose-Einstein condensates (BECs) [11,12].
Dark solitons are one-dimensional objects that can naturally
be extended to higher dimensions as planar dark solitons. In
experiments, the transverse direction is spatially confined. For
example, by use of an appropriately shaped electromagnetic
potential, a BEC can be confined into a “pancake” or “cigar”
shape, yielding effective two-dimensional or one-dimensional
dynamics, respectively. Moreover, it has been observed
experimentally that these effectively one-dimensional BEC
dynamics are stable when sufficiently confined [11,12] and
unstable otherwise [13,14]. This raises the question: what is the
threshold confinement width for effectively lower-dimensional
dynamics of dark solitons in nonlinear wave systems?

To address this question, we consider the mean field,
superfluidic (dissipationless) dynamics of a BEC governed by
the (2+1)-dimensional defocusing nonlinear Schrödinger or
Gross-Pitaveskii (NLS-GP) equation. In one dimension, this
equation admits dark soliton solutions. In multiple dimensions,
the NLS-GP equation admits line or planar dark solitons,
which are uniform along all but the direction of propagation.
Exact propagating line dark soliton solutions can be written
explicitly and their stability has been analyzed extensively. In
particular, they are modulationally unstable to small transverse
perturbations [15].

Previous studies have obtained critical confinement thresh-
olds for stationary or “black” solitons [16,17] and propa-
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gating or “gray” solitons [18]. In the latter case for gray
solitons, the stability of approximate soliton solutions of a
(3+1)-dimensional GP equation with transverse confinement
achieved by a harmonic potential were obtained as follows. An
initial black soliton was dynamically evolved in the presence
of dissipation, leading to a reduction in amplitude and an
approximate confined gray soliton. These solutions were then
used to linearize the GP equation and the resulting equations
were evolved numerically and analyzed for amplitude growth
(instability).

In our study, the critical confinement width for (2+1)-
dimensional propagating dark solitons is computed and found
to occur at the onset of a transverse instability. Specifically,
generalized bound state (or solitary wave) solutions are
computed in a two-dimensional channel, which is confined
along the y axis and unbounded along the x axis. Along
the confined direction, either Dirichlet (impenetrable wall)
or Neumann (zero flux) boundary conditions are specified.
In the x direction, the computed bound states limit to the
one-dimensional transverse ground state with the possibility
of a phase jump from −∞ to ∞. We call the bound states
with Dirichlet boundary conditions confined dark solitons
(CDSs). Unlike line dark solitons on the unbounded domain
R2, or those satisfying Neumann boundary conditions, for
the case of impenetrable walls there are no known CDS
solutions in analytical form. The CDSs are computed using a
spectrally accurate quasi-Newton fixed-point iterative scheme.
To accurately analyze the onset of the instability, the NLS-GP
equation is linearized around the CDS. The eigenvalues of the
linearized equation are found to bifurcate from the origin at
a critical confinement width. In particular, when the domain
is sufficiently narrow, all eigenvalues are purely imaginary
(stable). As the confinement width increases, two purely imag-
inary eigenvalues coalesce at the origin and emerge as two real
(unstable) eigenvalues of opposite signs, whose corresponding
eigenvectors are antisymmetric along the transverse direction.
Dynamically, these eigenvectors induce a transverse “shear”
that breaks the bound state apart during propagation. This
phenomenon, known as a “snaking” instability, has been shown
to give rise to single and multivortex excitations [3,16]. The
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critical confinement width obtained at the bifurcation of the
discrete spectrum is computed and characterized as a function
of the soliton’s propagation speed and the type of boundary
conditions. We also observe a new bound-state solution branch
bifurcating from the CDS branch precisely at the critical
confinement width. These solutions correspond to single
propagating vortices. Using direct numerical simulations of
the (2+1)-dimensional NLS-GP equation, we show that the
critical confinement width coincides with the onset of the
transverse instability regime of CDSs. We also show that
the n-lobed CDSs, n > 1, exist only for sufficiently wide
confinement. These n-lobed CDSs are always transversely
unstable, leading to the generation of vortices.

We remark that a background flow is present naturally
in a shock wave. In particular, dark solitons are intimately
related to dispersive shock waves (DSWs), also referred to as
collisionless shock waves, dissipationless shock waves, and
undular bores [19]. A DSW connects two regions of a flow
that possess different parameters, such as density and velocity.
Unlike viscous (dissipative) shock waves, a DSW consists of
a modulated wave train of oscillations. In their seminal work,
Gurevich and Pitaevskii developed an asymptotic theory for
DSWs, which they used to show that the largest amplitude
oscillation of a DSW can be well approximated by a soliton
[20]. This work was later extended to the NLS-GP equation
where an approximate dark soliton coincides with the slowest
edge of the DSW [21]. In addition to solitons, DSWs have
been observed experimentally in the aforementioned physical
systems as well (cf. [19]). Moreover, the multidimensional
stability of DSWs has been connected to the stability of the
soliton edge [22]. Thus, the results of this study shed light on
the dynamics of dark solitons and DSWs.

II. PROBLEM FORMULATION

We consider the complex field ψ(x,t) whose dynamics
evolve according to the defocusing (repulsive) NLS-GP
equation. In dimensionless form this is

iψt + 1
2�ψ − |ψ |2ψ = 0, �

.= ∂2
xx + ∂2

yy. (1)

This equation governs the mean-field dynamics of a BEC wave
function, the electric-field dynamics of intense laser beams in
optical Kerr media, and other nonlinear wave systems. Here,
t > 0 is time, x = (x,y), where x ∈ R is the background flow
direction, and y ∈ (−Ly/2,Ly/2), which corresponds to an
infinitely long two-dimensional (2D) channel of width Ly .
In what follows, we are interested in two kinds of boundary
conditions along the transverse direction:

(i) zero-flux walls (Neumann boundary conditions),

ψy(x, ± Ly/2,t) = 0; (2a)

(ii) impenetrable walls (Dirichlet boundary conditions),

ψ(x, ± Ly/2,t) = 0. (2b)

A. Invariant quantities

It is expedient to recap some of the well-known invariances
of (1):

(i) Galilean invariance with velocity v ∈ R,

ψ ′(x ′,y,t) = ψ(x ′ − vt,y,t)ei(vx ′−v2t/2); (3)

(ii) dilation invariance with amplitude a ∈ R,

ψ ′(x ′,y ′,t ′) = aψ(ax ′,ay ′,a2t ′); (4)

(iii) phase invariance with angle θ ∈ [0,2π ),

ψ ′(x ′,y ′,t ′) = eiθψ(x ′,y ′,t ′). (5)

These invariances are useful for prescribing simplified
boundary conditions of the bound state solutions.

As described below, there are conserved quantities that
are related to these invariant quantities. However, due to the
nonvanishing boundary conditions, the conserved quantities
are nonstandard. To find them, we first need to define the
bound-state problem.

B. Bound states and background states

Given a confinement width Ly , we seek a one-parameter
family of confined dark soliton solutions of (1) in the form

ψ(x,y,t ; μ) = ucds(ξ,y; μ)e−iμt , ξ = x − ct, (6)

where the CDS profile, ucds(·), is a complex-valued bound
state, c � 0 is the soliton speed, and μ is the frequency
(also called propagation constant or chemical potential [23]).
When c = 0, the confined dark soliton is stationary (“black”).
When c > 0, the confined dark soliton is propagating (“gray”).
Inserting the ansatz (6) into (1) gives the nonlinear boundary
value problem

μucds + 1
2�ucds − ic∂xucds − |ucds|2ucds = 0, (7)

subject to either of the transverse boundary conditions (2). The
boundary conditions for the CDS along the flow direction, i.e.,
the x axis, are prescribed below.

Using (3), we may assume, by Galilean invariance (3),
that as x → ∞, the background (far field) flow is stationary.
Hence, the speed c plays no role in determining the background
flow. Therefore, we require that the bound state approaches a
background state as x → ±∞, i.e., the background boundary
condition

ucds(x,y)
x→±∞−→ ub,±(y), (8)

where ub,±(y) satisfies the associated ordinary differential
equation

1
2 u′′

b,± + μub,± − |ub,±|2ub,± = 0 (9)

and the same transverse boundary conditions (2) as u(x,y).
Here, the background state ub,±(y) is unique up to a complex
phase. In fact, the complex phase of u(x,y) varies along the x

direction and can approach different values as x → −∞ and
x → +∞. For convenience, we also define

ub(y)
.= |ub,±(y)|.

In addition, using (4), we can normalize the density of the
background state along the axis of symmetry as

ub(0) = 1. (10)

Physically, the background state corresponds to a dispersive
(inviscid) generalization of Poiseuille or pipe flow for a
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compressible fluid. We note that the corresponding boundary
value problem for the one-dimensional NLS-GP equation was
studied in [24]. We seek solutions of (9) subject to (2a) or (2b)
with the smallest eigenvalue μ, i.e., the ground state solutions.

C. Particle number

We consider the initial value problem (1), subject to either
of the transverse boundary conditions (2) and the background
boundary condition

ψ(x,y,t)
x→±∞−→ ub,±(y)e−iμt , (11)

where ub,± is the background state defined above. We call a
solution of this problem a confined dark soliton (CDS). As we
shall see, CDS solutions decay rapidly to the background state.
Therefore, we define the particle number (in analogy with its
interpretation in BECs) as

N [ψ] =
∫ ∞

−∞

∫ Ly/2

−Ly/2

[
u2

b(y) − |ψ(x,y,t)|2] dy dx. (12)

This quantity is finite and positive for CDSs. That this quantity
is conserved in time follows from taking its time derivative,
using (1), integration by parts, and the boundary conditions.

III. LINE DARK SOLITON WITH ZERO-FLUX WALLS

For the case of zero-flux walls (2a), the background
is simply constant regardless of the confinement width. It
follows from (10), (9), and (7) that μ = 1 and ub(y) ≡ 1.
Therefore, the exact solution takes the form of a line dark
soliton uniform in y, i.e.,

ψ(x,y,t ; c) = {ic + ν tanh[ν(x − ct)]}e−it ,

ν2 + c2 = 1, 0 � c < 1,
(13)

up to an overall phase. It is well known that this dark soliton so-
lution exhibits an instability for sufficiently long wave-number
perturbations in the transverse direction [15]. It follows from
the critical transverse wave number (see [15]) that, in this case,
the solution with zero-flux walls is transversely unstable when

Ly > Lcr(c) = π√
−1 − c2 + 2

√
1 − c2 + c4

. (14)

It follows that for dark solitons with zero-flux walls, as the
speed increases from 0 to 1, Lcr(c) increases monotonically
from π to ∞. Loosely speaking, this means that, as the speed
increases, the smaller amplitude line dark soliton becomes
more stable to transverse perturbations. This feature has been
observed for transverse harmonic potential confinement in
(3+1) dimensions [18] and we will see similar behavior for
the impenetrable wall boundary condition in what follows.

IV. CDS WITH IMPENETRABLE WALLS

In many physical systems, transverse boundary conditions
can be well approximated by impenetrable walls (Dirichlet
boundary conditions) (2b). In this case, there is no exact
analytic CDS solution and there are no known exact conditions
for stability analogous to (14). However, these CDS solutions
can be computed. To do so, it is helpful to obtain approximate
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FIG. 1. Normalized background states [Eq. (15)] and their salient
features. (a) Multiple transverse profiles for different widths Ly . (b)
Elliptic parameter m [Eq. (16)]. (c) Frequency μ [Eq. (15)]. (d)
Maximum approximate CDS speed [Eq. (25)].

analytical solutions as follows. This is achieved below in two
steps: first we find the background states and then use them
to construct approximate CDSs by an approximate “nonlinear
separation of variables,” a technique well known in the BEC
community [3].

There is a one-parameter family of solutions of the
background state (9) with boundary conditions (2b) that can
be expressed in terms of a Jacobi elliptic function as

ub(y; Ly) = sn [κ(y + Ly/2),m],

κ = 1√
m

, μ = 1 + m

2m
. (15)

The elliptic parameter 0 < m(Ly) < 1 is determined from the
boundary conditions according to

Ly = 2
√

mK(m), (16)

where K(m) is the complete elliptic integral of the first kind.
Thus, given Ly , we compute m using (16) and find μ, κ , and ub

using (15). Figure 1 depicts several such background states as
well as the elliptic parameter, frequency, and maximal velocity
(see below) for varying confinement widths. In particular,
Fig. 1(c) shows that as the confinement width increases, the
frequency converges rapidly to its unconfined value, which
is the same as that of Neumann (constant flux) transverse
boundary conditions, i.e., limLy→∞ μ = 1. Note that in this
limit, formally, m → 1 and sn(·; m) → tanh(·). However, this
is a singular limit and, in fact, the limiting ub is constant along
the y direction.

In addition, it can be shown from (15) that∫ Ly/2

−Ly/2
u2

b(y) dy = 2√
m

[K(m) − E(m)], (17)
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where E(m) is the complete elliptic integral of the second
kind. These relations are useful for the subsequent analysis
and computations.

A. Approximate analytical CDS with impenetrable walls

Because the NLS-GP equation is nonlinear, strictly speak-
ing, linear methods for partial differential equations, such as
the method of separation of variables, do not apply for this
equation. In spite of this, it is shown below that one can obtain
an approximate separable solution, which, in turn, is found
to be fairly accurate and useful. Such an approach has been
shown to work well for a variety of transverse configurations,
including tight harmonic confinement [3]. Intuitively, for
sufficiently tight confinement, the energy to excite transverse
dynamics is large and one expects the transverse direction to
be “frozen.”

Thus, we seek a solution of (1) and (2b) in the separable
form

ψ(x,y,t ; c,Ly) = ub(y; Ly)ψ̃(x,t ; c), (18)

where ub is the background solution (15). Inserting this ansatz
into (1), multiplying by ub, and integrating over y, yields

i
∂ψ̃

∂t
+ 1

2

∂2ψ̃

∂x2
− α|ψ̃ |2ψ̃ = 0, (19)

where the nonlinear coefficient is determined through the
confinement width Ly as

α(Ly) =
∫ K(m)

0 sn4(y,m) dy∫ K(m)
0 sn2(y,m) dy

= 1

3

[
1 + 2

m
+ E(m)

E(m) − K(m)

]
. (20)

It follows from (20) that

lim
Ly→0

α = lim
m→0

α = 3
4 . (21)

The physical meaning of α is an effective nonlinear coupling
constant (or scattering length in BECs). In the unconfined case
[Eq. (13)], ν2 + c2 = α2 = 1. In the confined case, α < 1, i.e.,
there is a reduced speed that a dark soliton can have due to
the confinement, which has been observed experimentally in
BECs [12].

Equation (19) admits dark soliton solutions, which are
scaled versions of (13), that we use in order to construct a
family of approximate CDS solutions propagating with speed
c as

ψapprox.(x,y,t) = ub(y)
ic + ν tanh[νξ ]√

α
e−iμt ,

(22)
ν =

√
α − c2, μ = α, 0 � c <

√
α,

where ξ = x − ct . We note that the approximate CDS (22)
does not satisfy the NLS-GP equation exactly, though it does
satisfy the boundary conditions (2b), (8), and (10). The far-field
behavior

lim
x→±∞ ψapprox.(x,0,t) = ic ± ν√

α
e−iμt (23)

implies the phase jump

�φ = π − 2 tan−1(c/
√

α − c2) (24)

as the dark soliton is traversed. Furthermore, it follows from
(22) that for a given confinement width Ly there is a maximal
speed given by

cmax(Ly) = √
α(Ly). (25)

Figure 1(c) shows the variation of this maximal speed with
the confinement width. As c → cmax(Ly), the CDS (22)
approaches the uniform in-x background state ub(y). It follows
from (21) that

√
3/2 � cmax < 1.

We also find the particle number (12) for the approximate CDS
as

N [ψapprox.] = 4

α
√

m
[K(m) − E(m)]

√
α − c2. (26)

We remark that there are other approaches in the literature
to obtain approximate solutions, e.g., the Lagrangian approach
[3]. In all cases, the approximation cannot satisfy exactly
both the NLS-GP equation and the boundary conditions. The
method above was chosen because it satisfies the boundary
conditions exactly. The computations discussed below verify
the utility of this approach.

B. CDS computations

The CDS solutions with impenetrable walls are computed
using the spectrally accurate quasi-Newton iterative method
described in Appendix A. The approximate analytic CDS
described above is used as an initial guess for these iterations.
Simple continuation of the computed CDS solutions is used
for larger Ly . Figure 2 presents a comparison of cross
sections between an approximate CDS and the numerically
computed one, demonstrating good agreement for sufficiently
tight confinement. This is further confirmed in Fig. 3(a) where
the absolute error between the approximate and numerical
CDS densities for a fixed speed is shown to decrease with
decreasing Ly . Figure 3(b) gives the error for fixed width and
variable speed. In addition, Fig. 4 shows that the phase jump
across the approximate CDS is fairly accurate compared to the
numerically computed CDS for a wide range of confinement
widths and propagation speeds. This underscores the utility of
the approximate CDS.

In addition, CDS solutions can possess any number of
oscillation lobes within the central depression. Figure 5
presents examples of gray (propagating) solitons with speed
c = 0.5 for varying confinement widths, which possess one,
two, and three lobes. The maximal possible number of lobes
depends on c and Ly . The entire family of one-lobe CDSs can
be computed using a continuation method in Ly—these CDSs
bifurcate from the uniform background state ub(y). For n > 1,
we find that an n-lobed CDS exists if the confinement width
Ly is above a critical value, Ln

th(c). When the Newton solver
is initialized with the approximate (one-lobe) CDS (22) for
Ln

th(c) < Ly < Ln+1
th (c), the iteration converges to an n-lobe

CDS. Continuation along each n-lobe branch enables the
numerical determination of Ln

th(c). For example, L2
th(0.5) ≈
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FIG. 2. Comparison of approximate (dashed) and exact (solid)
CDS cross sections for c = 0.5. (a),(b) Longitudinal cross sections
along y = 0 with transverse confinement widths Ly = 4 and Ly =
8, respectively. (c),(d) Transverse cross sections along ξ = 0 with
transverse confinement widths Ly = 4 and Ly = 8, respectively.

12.8 and L3
th(0.5) ≈ 21.8. We interpret these lobed solutions

as “nonlinear excited states” of the channel.

C. Bifurcation of CDS families and vortex solitons

To better understand the properties of the different CDS
families, Fig. 6 depicts the particle number N for the one-,
two-, and three-lobed CDSs as well as for the vortex. The one-
lobed CDSs bifurcate from the uniform background state for
which N [ub] = 0, whereas, the n-lobed CDS bifurcates from
a suitably close approximate CDS (dashed red curve) with a
sufficiently large particle number. Some of the contour plots
accompanying Fig. 6 depict the vector field u = ∇φ, where
ψ = |ψ |eiφ . The phase gradient u corresponds to a velocity
in the hydrodynamic interpretation of Eq. (1), revealing the
fluidlike nature of NLS-GP dynamics [19].
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FIG. 3. Maximum absolute error in density |ψ |2 between approx-
imate and numerical CDSs. (a) Fixed c = 0.25, variable width Ly .
(b) Fixed Ly = 6, variable speed c. The dotted vertical line separates
unstable and stable CDS solutions (see Sec. V).
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FIG. 4. Dependence of the phase jump across the CDS solution as
(a) the confinement width Ly is varied with fixed CDS speed c = 0.25
and (b) as the speed c is varied with fixed width Ly = 6. These plots
show deviation from the approximate CDS phase jump (dashed) for
large Ly . The dotted vertical line separates unstable and stable CDS
solutions (see Sec. V).

In addition, our CDS computations reveal solitonic vortices.
Vortices have been known and studied extensively for many
years. In most cases, vortices arise in pairs of opposite
circulation such that their total angular momentum vanishes.
However, single solitonic vortices have been predicted and
studied theoretically (cf. [16,25–32]). Our study here focuses
on two-dimensional vortices that have been studied extensively
in BECs (see, e.g., [3] and references therein). We note that
the three-dimensional counterpart, a vortex line, has been
fairly elusive yet has been observed recently in Fermi gases
[33,34] and BECs [35]. In addition to the aforementioned lobed
CDSs, Fig. 6 presents the particle number for solitonic vortex
solutions with varying confinement widths. We note that the
particle number of solitonic vortices is equal to or lower than

-5 50
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-10 -5 0 5 10
0

0.5

1

FIG. 5. Cross sections along (a) the longitudinal direction for
y = 0 and (b) along the transverse direction with ξ = 0 of single-
lobed (solid black), double-lobed (dashed red), and triple-lobed (dash-
dotted green) CDSs with propagation speed c = 0.5 and a range of
confinement widths Ly .
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CDS solutions are stable (see Sec. V). The critical width corresponds to the minimal Ly such that the solitonic vortex exists. The vector fields
overlaying some contour plots represent the phase gradient ∇(arg ψ), a hydrodynamic velocity.
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FIG. 7. Phase diagram depicting the conserved quantity N and
contour plots of one-lobed CDS and vortex solutions with variable
speeds c and several confinement widths Ly . Filled circles correspond
to the crossover from unstable (dashed curves) to stable (solid curves)
CDS solutions (see Sec. V). The vector fields overlaying some contour
plots represent the phase gradient ∇(arg ψ), a hydrodynamic velocity.

that for the one-lobed CDS. This suggests that solitonic vor-
tices should be persistent structures, even for wide channels.

In addition, Fig. 7 presents the particle numbers for
one-lobe CDSs and vortex solitons with varying propagation
speeds. In this figure, the stable and unstable modes are

FIG. 8. A portion around the complex origin of the linearized
spectra of a CDS with speed c = 0.5 and confinement widths (a) Ly =
6.4 and (b) Ly = 6.6. Two stable (purely imaginary) eigenvalues
[denoted by 	 in (a) and almost indistinguishable] coalesce at the
origin and emerge as unstable (real) eigenvalues [denoted by × in
(b)]. Contour plots of the intensity (c) and phase (d) of one of the
unstable eigenfunctions.

013609-6



ONSET OF TRANSVERSE INSTABILITIES OF CONFINED . . . PHYSICAL REVIEW A 94, 013609 (2016)

0 0.9 1
c

0
3.14

5.5

22

Lcr unstable

stable

CDS
Line dark solitons

FIG. 9. Critical confinement widths as functions of propagation
speed, Lcr(c), for line dark solitons with constant-flux walls (dashed)
and CDSs with impenetrable walls (solid). For Ly > Lcr(c) the
solutions are unstable.

distinguished by different curve types. We now describe the
stability properties of these solutions.

V. STABILITY ANALYSIS AND DIRECT NUMERICAL
SIMULATIONS

As mentioned in Sec. III, the critical confinement width
for transverse stability of line dark solitons with zero-flux
walls (Neumann boundary conditions) is given analytically by
Eq. (14). However, there is no such simple expression for CDSs
with impenetrable walls (Dirichlet boundary conditions). Here
we investigate the linear (spectral) transverse stability of the
CDSs.

In Appendix B the linearized NLS-GP equation around
a CDS solution is derived (also termed the Bogoliubov–de
Gennes equations in BEC studies). We compute the spectrum
of the linearized equation for varying confinement width Ly .
For a given soliton speed c, when the domain is sufficiently

narrow, the spectrum of the linearized operator consists of
purely imaginary (stable) discretized eigenvalues and continu-
ous spectrum (radiation modes). When the confinement width
reaches a critical value, Ly = Lcr(c), two purely imaginary
eigenvalues coalesce at the origin. For Ly > Lcr(c), these
eigenvalues emerge as two real (unstable) eigenvalues of
opposite signs, whose corresponding eigenvectors are anti-
symmetric along the transverse direction. Figures 8(a) and 8(b)
depict this bifurcation when c = 0.5 for which Lcr ≈ 6.55.
Figures 8(c) and 8(d) show the intensity and complex phase
of one of the unstable eigenfunctions. Whereas the intensity is
symmetric, the complex phase is odd in both x and y, which
gives rise to the “snaking” instability observed in the dynamics.

Our computations of the linearized spectrum reveal that the
one-lobed CDSs are stable when they are sufficiently confined,
i.e., for Ly < Lcr(c), where Lcr(c) is the critical confinement
width. Note that the background solution ub(y) is linearly
stable. Figure 9 presents a plot of the critical confinement width
Lcr(c) for both Neumann and Dirichlet boundary conditions.
In general, we find that

Lcr(c) � Lcr(0) ≈ 5.5, 0 � c < 1. (27)

The result by [16] for black solitons was that Lcr(0) ≈ 6, which
is close to the value we obtain using spectral analysis.

The inset of Fig. 6 shows that the solitonic vortex solution
branch bifurcates from the one-lobe CDS solution branch
precisely at Lcr. We can therefore interpret the onset of the
one-lobe CDS instability as precisely the confinement width
at which a lower particle number solitonic vortex solution
appears. This interpretation can also be corroborated by
dynamical evolution of the one-lobe CDS described below.

In Fig. 7 above, the stable and unstable modes were
distinguished by different curve types. For a given confinement
width, the modes become unstable when their particles number

FIG. 10. Stable and unstable dynamics for initially perturbed one-lobed CDS solutions of speed c = 0.25 evolved according to NLS
equation (1). (a) Stable dynamics for Ly = 5. (b) Unstable dynamics leading to a single vortex for Ly = 6. (c) One-lobe CDS decay into two
vortices resulting from the wider channel Ly = 10. The mean zero noise variance is σ = 10−4. Note that Lcr(0.25) ≈ 5.68 so the instability
transition is accurately resolved. The vector fields overlaying some contour plots represent the phase gradient ∇(arg ψ), a hydrodynamic
velocity.
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increases beyond a critical threshold. In general, the multilobed
CDSs are all unstable.

Finally, to test the linear stability theory, we carry out
direct numerical simulations of the NLS-GP equation (1)
with impenetrable walls and initial conditions that correspond
to a CDS with a small amount of “noise.” The numerical
method is explained in Appendix C. Figure 10 presents
some of the results, which show that Lcr(c), obtained from
spectral analysis, is indeed the critical confinement width for
nonlinear stability. Moreover, these simulations reveal that,
when Ly > Lcr, the CDS undergoes a snaking instability and
can break up into a single solitonic vortex as in Fig. 10(b) or
counterpropagating solitonic vortex pairs as in Fig. 10(c).

VI. CONCLUSIONS

The critical confinement widths for stabilizing propagating
dark solitons in the defocusing or repulsive NLS-GP equation
were obtained using spectral analysis and verified by direct
computations. The results show that (i) for a given confinement
width, the faster the solitons propagate, the more stable they
become; (ii) impenetrable walls are more stabilizing than
zero flux boundaries. These results generalize upon previous
studies for black (nonpropagating) dark solitons and gray
(propagating) dark solitons. As part of this analysis, we also
analytically obtained approximate confined dark solitons with
impenetrable walls. This approximation was used to show that
confined dark solitons have a reduced speed compared with
the unconfined case, which is consistent with and may help to
explain experimental observations in BECs.

APPENDIX A: COMPUTING THE CDS

We compute CDS bound-state solutions of (7) and (2b)
using a spectrally accurate quasi-Newton approach [36]. It is
convenient to break up (7) into its real and imaginary parts by
taking ucds = u + iv where u, v are real valued,

F (u,v) = 1
2�u + cvξ − (u2 + v2 − μ)u = 0,

(A1)
G(u,v) = 1

2�v − cuξ − (u2 + v2 − μ)v = 0.

We seek solutions that rapidly asymptote to the uniform
background state

u2(ξ,y) + v2(ξ,y) → ub(y)2, |ξ | → ∞. (A2)

The far-field density normalization (10) determines the chem-
ical potential μ to be its background value (A4).

We solve Eq. (A1) using discrete cosine and sine transforms
achieving rapid (spectral) convergence. For completeness,
we include a discussion of these transforms in the following
subsection.

Discrete transforms

In order to evaluate Eq. (7) on a finite grid with spectral ac-
curacy, we introduce the half grid points on [−Lξ,y/2,Lξ,y/2],

ξi = −Lξ

2
+ 2i − 1

2
�ξ, �ξ = Lξ

Nξ

, i = 1,2, . . . ,Nξ ,

yj = −Ly

2
+ 2j − 1

2
�y, �y = Ly

Ny

, j = 1,2, . . . ,Ny.

(A3)

The truncation of R to ξ ∈ (−Lξ/2,Lξ/2) is achieved by
employing Neumann boundary conditions,

uξ (±Lξ/2,y) = 0, vξ (±Lξ/2,y) = 0, (A4)

which are natural for dark solitons that rapidly decay to
differing constant values for x → ±∞. To evaluate derivatives
and simultaneously satisfy the boundary conditions, we ap-
proximate the solution with a truncated cosine series expansion
in ξ and a truncated sine series expansion in y,

u(ξ,y) ≈ 2

(NξNy)1/2

×
Nx∑
n=1

′ Ny∑
m=1

ûn,m cos

(
π (ξ + Lξ/2)(n − 1)

Lξ

)

× sin

(
π (y + Ly/2)(m − 1)

Ly

)
,

(A5)

v(ξ,y) ≈ 2

(NξNy)1/2

×
Nx∑
n=1

′ Ny∑
m=1

v̂n,m cos

(
π (ξ + Lξ/2)(n − 1)

Lξ

)

× sin

(
π (y + Ly/2)(m − 1)

Ly

)
.

The prime on the first summation implies that whenever
n = 1, the coefficient should be divided by

√
2. The Fourier

coefficients are computed using fast cosine and sine trans-
forms (DCT-II and DST-II) [37] from the discrete function
values at the half grid points. The fast transforms are
implemented by appropriate pre- and postprocessing of the
FFT.

Derivatives are approximated according to

uξ ≈ S−1
kξ

{−kξCξ {ucds}}, (A6)

uξξ ≈ C−1
kξ

{−k2
ξCξ {ucds}

}
, (A7)

uyy ≈ S−1
ky

{−k2
ySy{ucds}

}
, (A8)

where the notation Cξ refers to a DCT in ξ and S−1
kξ

refers to
an inverse DST in kξ , etc. The discrete wave numbers are

kξ,y ∈ π

Lξ,y

{0,1, . . . ,Nξ,y}. (A9)

We use a black-box Newton solver on a preconditioned
version of Eq. (A1), seeking u, v such that L−1F(u,v) = 0.
The preconditioner we use is

L =
[
a − μ − 1

2� −c∂ξ

c∂ξ a − μ − 1
2�

]
,

L−1 =
[(

a − μ − 1

2
�

)2

+ c2∂ξξ

]−1

×
[
a − μ − 1

2� −c∂ξ

c∂ξ a − μ − 1
2�

]
, (A10)
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where a > 0 is an acceleration parameter. The preconditioner is applied efficiently using the DCST,

L−1F =

⎡
⎢⎢⎣
S−1

ky
C−1

kξ

{
a−μ+ 1

2 (k2
ξ +k2

y )

(a−μ+ 1
2 (k2

ξ +k2
y ))2−c2k2

ξ

SyCξ {F }
}

+ S−1
ky

S−1
kξ

{ −ckξ

(a−μ+ 1
2 (k2

ξ +k2
y ))2−c2k2

ξ

SyCξ {G}
}

S−1
ky

C−1
kξ

{
a−μ+ 1

2 (k2
ξ +k2

y )

(a−μ+ 1
2 (k2

ξ +k2
y ))2−c2k2

ξ

SyCξ {G}
}

− S−1
ky

S−1
kξ

{ −ckξ

(a−μ+ 1
2 (k2

ξ +k2
y ))2−c2k2

ξ

SyCξ {F }
}
⎤
⎥⎥⎦. (A11)

The stopping (convergence) criteria for Newton’s method
is an l2 norm of the residual less than 10−13. An example
convergence plot is presented in Fig. 11. The reference “exact”
solution is computed on a large (Lx = 60), very fine grid
(� = 0.1). The black soliton (c = 0) exhibits the strongest
localization and requires Lx ≈ 40 to achieve the highest
accuracy. The gray soliton with c = 0.5 is broader than the
dark soliton and hence requires a slightly longer channel width
Lx ≈ 50 to achieve the highest accuracy. For both the black
and gray solitons a grid spacing of �x = �y = 0.15 achieves
an absolute accuracy of 10−13. For all calculations in this study,
we used Lx = 40 and grid spacing � = 0.2, ensuring absolute
errors below 10−10.

APPENDIX B: LINEARIZATION

Given a stationary solution of (1) via Eq. (7), its lineariza-
tion is of interest for Newton solver implementations and for
computing spectral stability. Inserting the ansatz

ψ(x,y,t) = {u(ξ,y) + εf (ξ,y)e�t

+ i[v(ξ,y) + εg(ξ,y)e�t ]}e−iμt , (B1)

into Eq. (1) with u, v a solution of (A1) F (u,v) = G(u,v) = 0
and keeping only O(ε) terms results in the linearization

�

[
f

g

]
=

[
0 −1
1 0

]
J (u,v)

[
f

g

]
, (B2)
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FIG. 11. Typical convergence of Newton calculations with c =
0.5, Ly = 7 with varying grid spacing (�ξ,y in the legend) and
longitudinal length Lx .

where J = ∂[F,G]/∂[u,v] is the Jacobian of the nonlinear
system (7),

J (u,v) =
[

1
2� − (3u2 + v2 − μ) c∂ξ − 2uv

−c∂ξ − 2uv 1
2� − (u2 + 3v2 − μ)

]
.

(B3)

Note that J is self-adjoint.

APPENDIX C: DYNAMICAL EVOLUTION

In this section we present a numerical scheme to efficiently
solve the NLS-GP equation (1) for the case of a channel with
impenetrable walls (2b). We use a split-step pseudospectral
method.

We consider (1) in the reference frame moving with the
background flow of velocity c in the x direction

iψt = − 1
2 (ψxx + ψyy) + icψx + |ψ |2ψ,

ψ(x,y,0) = ψ0(x,y), ψ(x, ± Ly/2,t) = 0.
(C1)

The far-field behavior (8) implies nonhomogeneous Dirichlet
boundary conditions for ψ . However, for splitting methods,
it is typically advantageous to use homogeneous boundary
conditions. To this end, we introduce Neumann boundary
conditions in the x direction as

ψx(±Lx/2,y,t) = 0. (C2)

If we assume sufficient localization in the x direction, the
condition (C2) is consistent with the background state 8 for
sufficiently large Lx .

The standard split-step method is comprised of two steps
as follows:

nonlinear step: iψt = |ψ |2ψ, ψ(x,y,0) = ψ0(x,y)
(C3)

and

linear step: iψt = − 1
2 (ψxx + ψyy) + icψx,

ψ(x,y,0) = ψ0(x,y), ψ(x, ± Ly/2,t) = 0, (C4)

ψx(±Lx/2,y,t) = 0,

The nonlinear step is an ODE, which can be solved exactly as

ψ(x,y,t) = e−i|ψ0(x,y)|2tψ0(x,y). (C5)

The linear step can be solved with spectral accuracy as

ψ(x,y,t) = eit�/2ψ0(x + ct,y)

= C−1
kx

S−1
ky

{
e−it(k2

x+k2
y )/2CxSy{ψ0(· + ct,·)}}.

(C6)
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where trigonometric interpolation is used in order
to evaluate ψ0(x + ct,y). The solutions of these
two problems are then chained together in order

to achieve second-order accuracy in time by taking
successive half nonlinear, full linear, and half nonlinear
steps.
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