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Multiple Filamentation of Circularly Polarized Beams
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We derive a new system of equations that describes the propagation of circularly polarized laser beams
in a Kerr medium. Analysis and simulations of this system show that multiple filamentation is suppressed
for circularly polarized beams.
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In recent years there has been a growing interest in the
propagation of laser beams whose power is many times
the threshold power Pc for self-focusing [1–5]. At such
high intensities self-focusing dynamics is considerably
more complex than at powers moderately above Pc, as
it is accompanied by additional nonlinear phenomena
such as multiple filamentation (MF), i.e., beam breakup
into several long and narrow filaments [2,6], multiphoton
ionization, and supercontinuum generation. Experiments
have revealed considerable differences in these nonlinear
phenomena between circularly and linearly polarized
beams. For example, Meyer [7] observed two-photon
induced Raman scattering with linearly polarized input
beams but not with circularly polarized ones; Zilio
et al. [3] showed that circular polarization suppresses
photoassociative ionization much more than linear po-
larization; Sandhu et al. [4] showed that supercontinuum
generation is highly suppressed with circular polarization,
and Petit et al. [5] showed that multiphoton ionization is
less efficient with circular polarization. It has been shown
theoretically that the ionization potential for circularly
polarized beams is considerably higher than for linearly
polarized beams [8]. At present, however, there is no sat-
isfactory theory that can explain all the above differences
between self-focusing of circularly and linearly polarized
beams. In this Letter we point out the key role played
by the following difference between the two polarization
states: Linear polarization breaks up the beam’s cylindri-
cal symmetry, whereas circular polarization does not. We
show that, as a result, circular polarization is more likely
to suppress MF than linear polarization. Because MF
limits the power that each filament can carry, it is possible
that our results on MF can shed light on other differences
between linear and circular polarizations. In addition, our
results suggest that it may be beneficial to use circularly
polarized beams in applications where there is a need to
suppress MF.

The propagation of intense cw laser beams in a Kerr
medium is governed by the vectorial nonlinear Helmholtz
equations [see Eqs. (2) and (3)]. Under the assumption
that the beam is linearly polarized, i.e., that its elec-
tric field �E � �E1,E2,E3� can be described by �E �
���E1�x, y, z�, 0, 0���, using the slowly varying envelope
0031-9007�02�89(1)�013901(4)$20.00
approximation E1 � A1�x, y, z�eik0z and the paraxial
approximation �A1�zz ø k0�A1�z, beam propagation is
governed by the dimensionless nonlinear Schrödinger
equation (NLS),

i�A1�z 1 D�A1 1 jA1j
2A1 � 0,

A1�x, y, z � 0� � A0
1�x, y� ,

(1)

where D� � ≠xx 1 ≠yy . In 1965 Kelley used the NLS (1)
to predict the existence of a threshold power Pc, such that
when the input beam power P�0� �

R
jA0

1�x, y�j2 dx dy is
above Pc, the beam would collapse after a finite propaga-
tion distance [9]. The existence of a threshold power was
confirmed experimentally, providing support to the validity
of the NLS model. This model was, however, less success-
ful in explaining the phenomena of MF for the following
reason. Because the NLS is isotropic in the transverse
�x,y� plane, when the input beam is cylindrically symmet-
ric, i.e., A1�x, y, z � 0� � A0

1�r� where r �
p

x2 1 y2,
then according to the NLS the beam would remain cylin-
drically symmetric during propagation. In contrast, during
MF the beam’s cylindrical symmetry completely breaks
down. Therefore, it is natural to ask what physical mecha-
nism is responsible for the breakup of cylindrical sym-
metry that leads to MF. For over 35 years the standard
(and only) explanation for MF, due to Bespalov and Ta-
lanov [10], has been that MF is initiated by random noise
in the input beam profile. In [11,12] we pointed out
that at the vectorial Helmholtz level a linearly polarized
input beam cannot be cylindrically symmetric as a vec-
torial entity, because it has a preferred direction in the
transverse plane, namely, the direction of linear polariza-
tion. We also showed that this vectorial-induced sym-
metry breaking can lead to MF even when the linearly
polarized input beams are cylindrically symmetric, i.e.,
when E1�x, y, z � 0� � E

0
1 �r� and E2�x, y, z � 0� � 0.

This raises the question whether these vectorial effects can
also lead to MF of circularly polarized input beams, since
in that case the polarization state does not induce a pre-
ferred direction.

Let us first consider an ideal circularly polarized cylin-
drically symmetric input beam, i.e., when E1�x, y, z �
0� � E 0

1�r� and E2�x, y, z � 0� � E 0
2 � 0, where
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E6 � �E1 6 iE2��
p

2 are the left �1� and right �2�
circular components. Since such an input beam has no pre-
ferred direction in the �x, y� plane, according to the vector
Helmholtz model the beam will remain cylindrically sym-
metric during propagation in an isotropic medium. Thus,
unlike cylindrically symmetric linearly polarized input
beams, circularly polarized ones would not undergo MF.
This conclusion, however, does not imply that circularly
polarized beams cannot undergo MF, because in practice
an input beam is never perfectly circularly polarized nor
is it perfectly cylindrically symmetric. Therefore, in
the following we study whether small ellipticity of the
input polarization or small imperfections in the input
beam profile can lead to MF of circularly polarized
beams.

Our starting point is the vector nonlinear Helmholtz
equations for the propagation of cw laser beams in a Kerr
medium [13]

D �E �x, y, z� 2 =�= ? �E � 1 k2
0

�E � 2
k2

0

k2
0e0n2

0

�PNL,

= ? �E � 2
1

e0n2
0

= ? �PNL ,
(2)

where �PNL is the nonlinear polarization vector, e0
is vacuum permittivity, and n0 is the linear index of
refraction. When the Kerr medium is isotropic and ho-
mogeneous, the nonlinear polarization vector is given by
[13,14]
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�PNL� �E � �
4e0n0n̄2

1 1 g
�� �E ? �E �� �E 1 g� �E ? �E � �E ��

�
4e0n0n̄2

1 1 g
��jE1j

2 1 jE2j
2 1 jE3j

2� �E

1 g�2E1E2 1 E 2
3 � �E �� , (3)

where �E � is the complex conjugate of �E , n̄2 is the Kerr
coefficient, and g is a constant whose value depends on
the physical origin of the Kerr effect [15]. Because of
the grad-div term in Eq. (2) and the vectorial Kerr relation
(3), E1 is both linearly and nonlinearly coupled to E2

and to E3.
Let us consider the case where the input beam

is nearly left-circularly polarized, i.e., E 0
2�E 0

1 �
O�´�, where ´ ø 1 is the ellipticity parameter.
We nondimensionalize the variables according to
x̃ � x�r0, ỹ � y�r0, z̃ � z�2LDF, and �E1,E2,E3� �
�2r0k0�21

p
n0�n̄2 �A1, A2, A3�eik0z , where r0 is the input

beam width and LDF � k0r2
0 is the diffraction length.

We also define A6�x, y, z� � �A1 6 iA2��
p

2. Because
´ ø 1 and f � 1�r0k0 ø 1, we can use a systematic
perturbation analysis, similar to the one in [12], to show
that over propagation distances of a few diffraction lengths

E3�E1 � O� f� and E2�E1 � O� f2, ´� . (4)

Therefore, we conclude that to leading order the beam
would remain circularly polarized during propagation. Re-
lations (4) can be used to show that to leading order the
vector nonlinear Helmholtz system (2) and (3) reduces to
the coupled �A1, A2� system
i�A1�z 1 D�A1 1
1

1 1 g
jA1j

2A1 � 2
1 1 2g

1 1 g
jA2j

2A1 2
1
4

f2�A1�zz

2
f2

2�1 1 g�
�4j=�A1j

2A1 1 �=�A1�2A�
1 1 jA1j

2D�A1 1 A2
1D�A�

1� ,

(5a)
i�A2�z 1 D�A1 1
1 1 2g

1 1 g
jA1j

2A2 � 0 , (5b)

where j=�A1j
2 � jA1,xj

2 1 jA1,yj
2 and �=�A1�2 �

A2
1,x 1 A2

1,y . The left-hand side of Eq. (5a) is the NLS
for A1. The right-hand side terms of (5a), from left to
right, correspond to the effects on A1 of the O� f4, ´2�
coupling to A2, the O� f2� nonparaxiality, and the O� f2�
coupling to A3.

We note that previous studies of circularly polarized
beams followed Close et al. [16] who neglected E3 and the
grad-div term in (2). Most studies also applied the paraxial
approximation and obtained the coupled �A1, A2� system

i�A6�z 1 D�A6 1
1

1 1 g
�jA6j

2 1 �1 1 2g�jA7j
2�A6

� 0 . (6)

Comparison with (5) shows that system (6) might lead to
wrong conclusions regarding MF and other aspects of self-
focusing of circularly polarized beams (e.g., polarization
stability, collapse, etc). For example, our analysis shows
that if ´ ø f then E3 ¿ E2, which means that in this
case (6) includes the weak effect of coupling to E2 while
neglecting the stronger effect of coupling to E3. Similarly,
solutions of (6) can collapse, whereas the O� f2� terms in
(5) arrest collapse [12,17].

Returning to the issue of MF, we note that the �A1, A2�
system (5) is isotropic in the transverse plane. Therefore,
when the left- and right-circular components of the input
beam are each cylindrically symmetric, i.e., A0

6�x, y� �
A0

6�r�, then according to (5) the beam would remain cylin-
drically symmetric during propagation (see Fig. 1a with
´ � 0.05). Indeed, our calculations show that the symme-
try breaking terms that were neglected in (5a) scale like
´f2. For comparison, when the input beam is linearly
polarized, the corresponding equation for A1 has O� f2�
symmetry breaking terms that result from the couplings
between E1 and E3 [12]. Thus, the symmetry breaking
terms in the case of nearly circularly polarized beams are
013901-2
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FIG. 1. Isointensity plots of A1�x, y, z�. (a) Equations (5) with g � 1�2, f � 0.01 and A0
6�r� � ce2r2 �1 6 e0.05i� with P�0� �

5Pc. (b) Equation (7) with g � 1�2, f � 0.05 and A0�x, y� � ce2�0.9x�22y2
with P�0� � 8.3Pc. (c) Same as (b) with A0�x, y� �

ce2x22y2 �1 1 0.1 3 noise�x, y�� with P�0� � 10Pc.
considerably weaker than the corresponding ones for linearly polarized beams. For this reason we conclude that small
ellipticity is unlikely to lead to MF of circularly polarized beams.

We now study whether imperfections in the input profile can lead to MF of circularly polarized beams. To do that,
we note that when the input beam is perfectly circularly polarized (i.e., ´ � 0) then (4) shows that E2�E1 � O� f2�.
Hence, system (5) reduces to the scalar equation

i�A1�z 1 D�A1 1
1

1 1 g
jA1j

2A1 � 2
1
4

f2�A1�zz

2
f2

2�1 1 g�
�4j=�A1j

2A1 1 �=�A1�2A�
1 1 jA1j

2D�A1 1 A2
1DA�

1� . (7)
Simulations of Eq. (7) show that MF can occur as a re-
sult of either input beam astigmatism (Fig. 1b) or input
beam noise (Fig. 1c). We recall that input beam astig-
matism and/or noise can lead to MF of linearly polar-
ized beams. However, since the effective Kerr index of
circularly polarized beams is smaller by �1 1 g� from
that of linearly polarized ones, the threshold power for
noise/astigmatism induced MF is somewhat higher for cir-
cularly polarized beams. In addition, the simulations in
[12] suggest that the threshold power for MF of linearly po-
larized beams induced by vectorial effects is considerably
lower than for noise/astigmatism induced MF. Therefore,
we conclude that the threshold power for MF of circularly
polarized beams is considerably higher than for linearly
polarized ones.

Table I summarizes the possibility of MF under various
input beam characteristics. To recap, ideal cylindrically
symmetric circularly polarized input beams will not un-

TABLE I. Possibility of MF under various input beam charac-
teristics.

Linear Circular
Polarization Polarization

Perfect polarization
state and cylindrically
symmetric profile yes (deterministic) no

Small deviation
from preferential
polarization state yes unlikely

Profile imperfections
(noise/astigmatism) yes yes
013901-3
dergo MF. Small ellipticity of the input polarization is un-
likely to lead to MF of circularly polarized beams, whereas
input beam noise/astigmatism can lead to MF. Therefore,
suppression of MF of circularly polarized beams should
focus on producing a cylindrically symmetric input beam,
rather than on producing perfect circular polarization. In
contrast, one cannot suppress MF of linearly polarized
beams by producing a clean cylindrically symmetric input
beam. Finally, circularly polarized beams are less likely to
undergo MF than linearly polarized beams.
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