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Carrier-envelope phase slip of ultrashort
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The carrier-envelope phase slip of an ultrashort pulse circulating in a mode-locked Ti:sapphire laser is ana-
lyzed. The laser cavity is modeled by a dispersion- and nonlinearity-managed nonlinear Schriédinger equation.
The combined contributions to the phase slip induced by nonlinear phase and nonlinear dispersion are found

to approach zero for strong dispersion maps.
well.
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Mode-locked Ti:sapphire lasers generate a regularly
spaced train of pulses separated by one cavity round-
trip time. The carrier-envelope phase slip (CEPS)
is the change from pulse-to-pulse of the phase offset
between the envelope and the carrier waves. Con-
trolling the phase slip has been the subject of recent
experimental efforts in optical frequency metrology,
carrier-envelope phase coherence, and extreme non-
linear optics.'™* In a recent seminal contribution
Haus and Ippen® studied the CEPS for classical and
dispersion-managed (DM) solitons, the latter being
waveguide solutions of a perturbed DM nonlinear
Schriodinger equation. DM solitons are a key element
to describing Ti:sapphire lasers.® In this Letter an
asymptotic theory governing the propagation of DM
and nonlinearity-managed solitons is applied to a
model of the laser. Applying multiple-scales analysis
yields a relation for the nonlinear change of the phase
velocity over one cavity round trip. In our model
we treat nonlinear dispersion (the shock term) and
third-order dispersion (TOD) as small perturbations.
They induce changes in the group velocity that are
found using conservation-law methods. The non-
linear slip induced by the combined effects is found to
approach zero as O(1/s), where s is the cavity’s map
strength. In addition, it is found that the CEPS can
be controlled by changing the average group-velocity
dispersion (GVD) and TOD in the laser. Our ana-
lytical results agree with numerical simulations and
display the explicit dependence of the phase slip on
physical parameters.

Typically, the electromagnetic field of a pulse is
decomposed into a rapidly oscillating carrier wave
expli(kz — wt)] = expli(1/v, — t/z)wz] that is modu-
lated by a slowly varying envelope. Here z is the
propagation direction, ¢ is time, k(w) = wn(w)/c
is the center wave number, where o is the center
frequency, n(w) is the linear index of refraction,
and ¢ is light speed in vacuum. During propaga-
tion the carrier slips through the envelope, because
the carrier propagates at phase velocity v, = w/k
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The dependence of the slip on third-order dispersion is found as
The analytical results are verified using numerical simulations.
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while the envelope propagates at group velocity
vg = 1/k/(w). Thus the linear contribution to the slip
of the carrier-envelope phase offset is given (mod 27)
by Stinear = (v, 1 — v, HwL = —c¢ lw?n/(w)L, where
L is the propagation distance. In addition, when
an intense pulse propagates in a Kerr medium (such
as sapphire) there is a nonlinear contribution to the
phase slip. To study the nonlinear slip we recall that
the propagation of the envelope is well described by
the classical nonlinear Schridinger (NLS) equation

1!
A= AL+ yARPA= —io (AP, O

where A(z, 7) is the slowly varying envelope, 7 = ¢ —
z/vg is the retarded-time frame, £’ is the GVD coeffi-
cient, v = naow/cAesr is the nonlinear coefficient, where
ne is the Kerr (nonlinear) refractive index, and A
is the effective cross-sectional area of the pulse, and
the term on the right-hand side, often called the shock
term, corresponds to nonlinear dispersion arising from
the Kerr effect. We focus on the shock term first be-
cause it becomes larger with shorter pulses. Indeed,
the shock term scales as €|A|3, where € = 27 /w7y and
7o is the pulse width. For example, at A = 800 nm and
70 = 20 fs one has w/27 = 400 THz and € = 0.13. In
addition, the shock term induces a nonlinear change
in the CEPS, a phenomenon that is consistent with
the dependence of the CEPS on pulse energy (pump
power)."* Without the shock term and when &" is a
negative constant, Eq. (1) has the soliton solution

A(z,7) = Ag sech(r/79 — T)expli¢(2)],

b (2) = y1Aol*2/2, (2)
where Aj is amplitude and 7' corresponds to a time
shift of the pulse center. Self-phase modulation is de-
scribed by ¢(z), which, in turn, induces a nonlinear

change in the phase velocity as A(1/v,) = ¢'(2)/w =
v|Agl?/2w. The timing shift corresponds to a change
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in the group velocity as A(1/vg) = T'(2)79. The nor-
malized nonlinear contribution to the CEPS was de-
fined in Ref. 5 as
— /
Sap = A(1/vp) — A(1/vg) - T'(2) 3)
A(1/vp) €d’'(2)

For classical solitons the shock term gives® T'(z) =
eylApl?2. Thus 6y, = —1, which means that for clas-
sical solitons the nonhnear change in v, ! is twice as
large that of v, !

For a regularly spaced train of pulses, such as those
emitted from a mode-locked Ti:sapphire laser, the
CEPS refers to the change of the phase offset between
carrier and envelope from pulse to pulse, which is
the phase slip that each pulse accumulates over one
cavity round trip, before being sampled at the output
coupler. The linear contribution to the CEPS is thus
Stinear = —¢ @2y, ny/(w)L,,, where the summation
is carried over all the cavity elements (crystal, prisms,
etc.). In addition, the nonlinear contribution to the
CEPS is the difference between the nonlinear phase
and the timing shifts accumulated over one cavity

round trip. In normalized form it is given by the
average of Eq. (3):
(T'(2))
ONL = 4)
MU g

where () stands for the average over one cavity
round trip. A typical Ti:sapphire laser consists of a
Ti:sapphire crystal that has a Kerr response as well
as large normal GVD and a set of prisms and (or)
mirrors especially designed to have large anomalous
GVD. Hence such lasers are well described as DM
systems,® which have been heavily studied in telecom-
munications. Let us recall some of the results of
these studies. For further analysis we normalize the
variables as 2 = z/™, T = 7/70, D(z) = —k"({)/R",
and u(z,t) = A, 1)/ VP* where P* is the character-
istic pulse peak power, {* = 1/yP* is the (average)
nonlinear length, and 2"* = 7¢2//*. After dropping
the tildes, we can describe the pulse propagation using
the perturbed NLS":
D(¢)

iu(2,t) + == un + g(0) lulPu = —ieg(?) (lulw),,

(5)

where ¢ = z/I. is the fast variable, /. is the normal-
ized (with respect to g *) optical length of the cavity,
D) =D + I,7TA(¢) is the d1spers1on map, where D
is the average dispersion and A(¢)/I. is the large and
rapidly varying dispersion with zero average path,
and the right-hand side corresponds to the shock
term. A lumped model of a cavity consists of a sym-
metric two-step dispersion map, i.e., A({) = A; > 0
for £ € {[0,%2),[1 — 92,1)} and A() = Ay < 0 for
L € [%2,1 — /), subject to A16 + As(1 — 8) = 0, with
period extension for { > 1. To model a Ti:sapphire
laser we choose 6 = 0.75 and a managed nonlinearity:
g(z) = 1in the normal GVD section and g(z) = 0 in the
anomalous GVD sectlon [see Fig. 1(a)l. It is useful to
deflne C@) = f o A({")d{" as well as to map strength

= A16/2. Classical NLS equation (1) corresponds
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tos =0 and C({) =0. Ti:sapphire systems, however,
operate in the strong DM regime, which corresponds to
large-variance GVD (s) and small average GVD (D).
The two small parameters in Eq. (5) are € (weak
nonlinear dispersion) and /. (short nonlinear length).
Let us treat the shock term perturbatively by first
considering the unperturbed model, i.e., when € = 0.
Since [, << 1 one can apply the method of mul-
tiple scales to Eq. (56). With this method it was
previously shown’ that, to leading order, 4(z, ) ~
U(w,2)exp[—ilw?C({)], where h(w) = F{h(@t)} =

[ h(t)exp(iwt)dt. A solvability condition for O(l.)
leads to the DMNLS (averaged) equation:
iﬂ—2w2f]+<J[a]>=0, (6)
0z 2

where J[i]=g({)exp[/202C (¢)]F{lul?u}. Equation (6)
is a nonlocal (integral) equation that governs the av-
eraged dynamics of the solutions of Eq. (5). Looking
for a DM soliton of the form U(z, ») = f(w)exp(idz),
where ¢ (z) = A%z/2, leads to the following equation:

A2 D ,, 2 -
—Ef(a)) -5 f + (J[fhexp(—iA?z/2)=0. (7)

Taking the inverse Fourier transform, multiplying by
(f + tft) and integrating leads to

2 D
= ([ Fin s+ tpaae) - 32 [ (g,
€))
where W = [f2dt is energy. With strong disper-

sion management f(¢) can be approximated with a
Gaussian,” which is helpful for gaining insight into
the physics, by assigning specific pulse parameters.
Thus, substituting f(t) = a(27b) /2exp(—t2/2b) into
Eq. (8) gives the result that
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Fig. 1. (a) Dispersion [D(¢{), dotted lines] and nonlinearity

maps [g(¢), dashed lines] used in (b) and (c). (b) Numeri-
cal phase [Eq.(6), solid curvel, A%2z/2 (dotted curve)
and Ag?z/2 (dashed curve). (c) Numerical timing shift
[Eq. (6), solid curve], average slope with Eq. (10) (dot-
ted curve), and with Eq. (11), below (dashed curve).
(d) Normalized CEPS (12) with A = V2, 6 = 0.75, for three
values of D.
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A2 ag% a1 -6)qx) 3D ing these results with Eq. (4) we arrive at
! _=— e = — —
@en="5 =~ A © 1 1
Snr =~ _ _ .
where T 1-V2a2(1 - 6)q(x)/37D 1 — A2s/6D
(12)
_ sinh'(x/2) 2 _ 2 )
q(x) = x (4 + x2)1/2 ’ *= b Hence 6N, approaches zero monotonically as O(1/s)

Equation (7) can be solved numerically using a
fixed-point method,” which for strong dispersion man-
agement gives the result that x grows monotonically to
7.9. Therefore, g(x) decreases monotonically to 0.51,
b ~s/3.95, and a = 1.46A[s/(1 — 0)]*/2. Equation (9)
thus shows that with strong dispersion management
the average nonlinear phase shift decreases to a
(energy-dependent) constant.

To find the timing shift induced by the shock term
we use the conservation law for timing corresponding
to Eq. (5), which, after averaging, gives us, to leading
order,

(T'(2)) = ——<A(§)Im [ f luluus* dtdz>

3¢ 4 >
+ oW <[ |w|*dt (10)

where u(z,t) = F Y f(w)exp[—iw2C(¢)/2]}. Note that
the shock term conserves energy, i.e., W = constant.
Using the Gaussian ansatz leads to

€a’(1 — 0)q(x)
V8 b

which shows that the average timing shift decreases
to a constant with strong dispersion management. We
note that the shock term induces an O(l.) phase change
as well, which, however, is negligible compared with
Eq. (9).

To verify the analytic results we solve Eq. (5)
numerically with e = 0.1, [. = 0.2, D = 0.1, s = 10,
¢ = 0.75, and initial conditions 2(0, ») = f (@), where
f(w) is the solution of Eq. (7) with D = 0.1, s = 10,
and A = /2. Figure 1(b) shows that the slope of
the numerically recovered phase (after unwrapping),
ie., ¢(z) = arg[ii(z,0)], is almost indistinguishable
from A2/2 during propagation and agrees well with
Ag2/2 calculated using Eq. (9). Figure 1(c) shows
that the averaged slope of the numerical timing shift
[T(z) = W [t|ul?] is precisely that obtained with
Eq. (10) and is in good agreement with Eq. (11). Note
that the CEPS (4) depends on the phase and timing
shifts accumulated over one round trip and hence on
the average slopes of ¢(z) and T'(z).

Remarkably, the first term on the right-hand side of
Eq. (9) times € is the same as Eq. (11). Thus, combin-

(T'(2)) =~ (11)

[see Fig. 1(d)]. This means that, unlike classical soli-
tons, the combined contributions of the nonlinear phase
and the shock term to the phase slip nearly cancel each
other with strong dispersion management. We note
that Ref. 5 obtained SNL_approaches —0.1, presumably
because a rather large D was used. Indeed, Fig. 1(d)
shows that with larger values of D the slip saturates
at larger s, whereas with smaller D the slip becomes
roughly independent of map strength, a conclusion that
may be useful for controlling the slip. The unnormal-
ized form of the shp equatlon (12) is 6NL = (¢) —

e NT")yP*L ~ —3k"L/7o%s, where k' is the aver-
age-cavity GVD and L is the cavity length. This result
is consistent with the insensitivity of the slip to pulse
energy with strong dispersion management.* In that
case, however, one should consider additional effects on
the slip. One such effect is TOD, which can be modeled
by adding [Lk / (67P*To )]us to the right-hand side of
Eq. (5), where %" is the average TOD coefficient. Us-
ing a similar analysis leads to dtop = —kaL/ T0°S.

We remark that the asymptotic methods used here
on a nonlinear DM model are different from the analy-
sis in Ref. 5, which was based on a linear DM model
with effective parameters. Our methods are accurate
and display an explicit dependence of the CEPS on
physical parameters.

To conclude, our results indicate that for stronger
dispersion management the nonlinear phase slip be-
comes insensitive to map strength and tends to zero.
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