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Abstract
We calculate the critical exponent of nonlinear Schrödinger (NLS) equations
with anisotropic negative fourth-order dispersion using an anisotropic
Gagliardo–Nirenberg inequality. We also prove global existence, and in some
cases uniqueness, for subcritical solutions and for critical solutions with small
L2 norm, without making use of Strichartz-type estimates for the linear operator.
At exponents equal to or above critical, the blowup profile is anisotropic.
Our results imply, in particular, that negative fourth-order temporal dispersion
arrests spatio-temporal collapse in Kerr media with anomalous time-dispersion
in one transverse dimension but not in two transverse dimensions. We also
show that a small negative anisotropic fourth-order dispersion stabilizes the
(otherwise unstable) waveguide solutions of the two-dimensional critical NLS.

Mathematics Subject Classification: 35Q55

1. Introduction

The nonlinear Schrödinger equation (NLS)

iut (x, t) + �u + κ|u|2σ u = 0, u(x, 0) = u0(x), (1)

where x = (x1, . . . , xd) and � = ∑d
i=1 ∂xixi

, arises in a variety of physical applications. Most
notably, it models the propagation of laser beams in nonlinear Kerr media. The NLS is called
focusing or defocusing when κ > 0 or κ < 0, respectively. It is well known that all solutions of
the defocusing NLS exist globally. Similarly, when κ > 0 and σd < 2, the subcritical focusing
NLS, all solutions exist globally. The focusing NLS, however, admits solutions that become
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singular in finite time when σd = 2 or σd > 2, the critical and supercritical cases, respectively.
Therefore, the critical exponent of the NLS is σ ∗

NLS = 2/d. In the critical case, a sufficient
condition for global existence is that ‖u0‖2

2 < Nc, where ‖u0‖2
2 = ∫ |u0(x)|2 dx, and Nc, the

threshold power for singularity formation, is a number that depends only on the dimension.
For more information on singularity formation in the NLS (see [7, 14, 15]).

If one replaces the Laplacian with the biharmonic operator �2 = ��, the resulting
equation is the biharmonic NLS,

iut (x, t) + ε�2u + |u|2σ u = 0. (2)

In [5] it was shown that some NLS properties, but not all, remain true for the biharmonic NLS.
Thus, all solutions of the biharmonic NLS exist globally in the defocusing case ε > 0. In the
focusing case ε < 0, all solutions exist globally provided that either σd < 4, or that σd = 4
and ‖u0‖2

2 < NB
c , where NB

c , the threshold power for singularity formation in the biharmonic
NLS, depends only on the dimension. In addition, numerical simulations suggest that when
σd � 4 the biharmonic NLS admits solutions that become singular in finite time3. Therefore,
the critical exponent of the biharmonic NLS is σ ∗

biharmonic = 4/d.
In [5] it was also shown that the conditions for global existence in the isotropic

mixed-dispersion NLS

iut (x, t) + �u + ε�2u + |u|2σ u = 0 (3)

are the same as for the biharmonic NLS, i.e. all solutions exists globally in the defocusing case
ε > 0, in the focusing case ε < 0 the critical exponent is σ ∗

mixed = 4/d, and in the critical case
σd = 4 all solutions exist globally when ‖u0‖2

2 < NB
c , where NB

c , the threshold power for
singularity formation in the biharmonic NLS, depends only on the dimension. This result is
not surprising, as global existence is determined by the highest-order derivatives. The above
result also holds for the weakly anisotropic, mixed-dispersion NLS

iut (x, t) + �u + |u|2σ u + ε

d∑
i=1

uxixixixi
= 0, (4)

which is the modified equation of the semi-discrete second-order NLS [4].
The picture becomes considerably more complex, however, when fourth-order dispersion

is truly anisotropic. Such equations arise in various applications. For example, the propagation
of ultrashort laser pulses in a medium with anomalous time-dispersion in the presence of
fourth-order time-dispersion is given, in dimensionless form4, by [21]

iut (x, y, z, t) + �u + |u|2u + εuxxxx = 0, � = ∂xx + ∂yy + ∂zz, (5)

in a bulk medium, and by

iut (x, y, t) + �u + |u|2u + εuxxxx = 0, � = ∂xx + ∂yy, (6)

in a planar waveguide geometry. Equation (6) arises also in models of propagation in fibre
arrays [1, 5].

Equations (5) and (6) are special cases of the focusing NLS with anisotropic fourth-order
dispersion

iut (x, t) + �u + |u|2σ u + ε

k∑
i=1

uxixixixi
= 0, (7)

3 Blowup of NLS solutions can be rigorously proved when σd � 2 using the variance identity [18]. No equivalent
result is known, at present, for the biharmonic NLS.
4 Here, t is the distance in direction of propagation, x is time, and y and z are spatial coordinates in the transverse
plane.
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Table 1. Critical exponent σ ∗
anisotropic as a function of d and k.

k = 0 k = 1 k = 2 k = 3

d = 2 1 4
3 2 —

d = 3 2
3

4
5 1 4

3

where 0 � k � d . In this paper we consider equation (7) in the case ε < 0. Since when ε < 0
the second-order derivatives ‘work together’ with the fourth-order ones5, one can expect the
critical exponent to be higher than σ ∗

NLS. Indeed, the main result of this paper is that the critical
exponent for singularity formation in (7) is6

σ ∗
anisotropic = 2

d − k/2
.

Therefore, 


σ ∗
anisotropic = σ ∗

NLS, k = 0,

σ ∗
NLS < σ ∗

anisotropic < σ ∗
biharmonic, 0 < k < d,

σ ∗
anisotropic = σ ∗

biharmonic, k = d.

Some specific values of the critical exponent are listed in table 1. These values show, in
particular, that a cubic nonlinearity is supercritical for collapse in equation (5), but is subcritical
for collapse in equation (6). In other words, a negative fourth-order temporal dispersion arrests
the spatio-temporal collapse of ultrashort pulses in one transverse spatial dimension, but not
in two transverse spatial dimensions.

The paper is organized as follows. In section 2 we use an anisotropic Gagliardo–Nirenberg
inequality to show that if u is a solution of (7), if ε < 0, and if either σ < σ ∗

anisotropic or
σ = σ ∗

anisotropic and ‖u0‖2
2 is sufficiently small, then for all time

‖u‖2
H

(2,1)

(k,d−k)

� c, (8)

where

‖u‖2
H

(2,1)

(k,d−k)

= ‖u‖2
2 + ‖∇u‖2

2 − ε

k∑
i=1

‖uxixi
‖2

2. (9)

In theorem 2 we use this estimate to prove the existence of weak solutions to (7) in the
anisotropic Sobolev space H

(2,1)

(k,d−k) equipped with the norm (9). Uniqueness of the weak
solution of theorem 2 is proved for some special cases in theorem 3. In section 3 we
use asymptotic analysis to show that a small negative fourth-order dispersion stabilizes the
(otherwise unstable) waveguide solutions of the critical NLS. Simulation results are presented
in section 4.

We recall that the local existence and uniqueness theory for the isotropic NLS in R
d [10,11]

and for the isotropic biharmonic NLS and the mixed-dispersion NLS (3) in R
d [2] is based on

propagation estimates for the linear portion of the equation. In this paper we use a different
approach which follows the proofs of [12, 16] for nonlinear wave equations and for smooth
solutions of a variety of equations, respectively. This approach had the advantage that it does
not require estimates of the linear portion of the equation. However, this approach gives
uniqueness only in some cases. Our proof of global existence and uniqueness is also valid

5 That is, the corresponding terms in the Hamiltonian (11) have the same sign.
6 To be precise, we prove global existence for σ < σ ∗

anisotropic. As in the isotropic case (the biharmonic NLS), at
present there is numerical evidence, but no rigorous proof, that there exist blowup solutions for σ � σ ∗

anisotropic.
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for periodic domains, as well as for the isotropic biharmonic NLS (2) for d � 3, for both the
focusing and the defocusing case.

2. Critical exponent

Solutions of (7) conserve both the power and Hamiltonian, i.e.

‖u‖2
2 ≡ ‖u0‖2

2, H(t) = H(0), (10)

where

H = ‖∇u‖2
2 − ε

k∑
i=1

‖uxixi
‖2

2 − 1

2σ + 2
‖u‖2σ+2

2σ+2. (11)

Since ε < 0, both derivative terms in (11) have the same sign. Provided that σ is not too large,
the conserved Hamiltonian (11) can be used to derive an a priori bound for ‖u‖2

H
(2,1)

(k,d−k)

. To do
that, we need the following anisotropic Sobolev inequality.

Lemma 1. Suppose that


0 � σ < ∞, d − k

2
� 2,

0 � σ � 2

d − k/2 − 2
, d − k

2
> 2.

(12)

Then there is a constant Cd,k,σ such that

‖u‖2σ+2
2σ+2 � Cd,k,σ‖u‖2−σ(d−k/2−2)

2

k∏
i=1

‖uxixi
‖σ/2

2

d∏
i=k+1

‖uxi
‖σ

2 (13)

and the embedding of the anisotropic Sobolev space equipped with the norm ‖u‖2
H

(2,1)

(k,d−k)

into
L2σ+2 is compact.

Lemma 1 is a special case of estimate (12) on p 325 in [3]. Still, a fairly simple and direct
proof can be given.

Proof. In proving (13) we may assume that u belongs to C∞
0 , because that space is dense in

both H
(2,1)

(k,d−k) and L2σ+2. Then

|u(x)|p = p

∫ xi

−∞
|u|p−2uuxi

dxi � p

∫ ∞

−∞
|u|p−1|uxi

| dxi

� p

[∫ ∞

−∞
|u|2(p−1) dxi

]1/2 [∫ ∞

−∞
|uxi

|2 dxi

]1/2

. (14)

Similarly,

|u|q � q

∫ ∞

−∞
|u|q−1|uxi

| dxi = q

∫ ∞

−∞
|u|q−r−1[|u|r |uxi

|] dxi

� c

[∫ ∞

−∞
|u|2(q−r−1) dxi

]1/2 [∫ ∞

−∞
(|u|2ru)xi

uxi
dxi

]1/2

= c

[∫ ∞

−∞
|u|2(q−r−1) dxi

]1/2 [
−

∫ ∞

−∞
|u|2ruuxixi

dxi

]1/2

� c

[∫ ∞

−∞
|u|2(q−r−1) dxi

]1/2 [∫ ∞

−∞
|u|4r+2 dxi

]1/4 [∫ ∞

−∞
u2

xixi
dxi

]1/4

, (15)
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where r is an arbitrary number between zero, inclusive, and q − 1, noninclusive, that will be
chosen shortly; it is easy to check that the chosen value indeed lies in the required interval.

Take the product of (15) over 1 � i � k times the product of (14) over k + 1 � i � d to
obtain

|u|kq+(d−k)p � c

k∏
i=1

[∫ ∞

−∞
|u|2(q−r−1) dxi

]1/2 [∫ ∞

−∞
|u|4r+2 dxi

]1/4 [∫ ∞

−∞
u2

xixi
dxi

]1/4

×
d∏

i=k+1

[∫ ∞

−∞
|u|2(p−1) dxi

]1/2 [∫ ∞

−∞
|uxi

|2 dxi

]1/2

. (16)

We would now like to integrate (16) over all the xi and use the many-factor Hölder inequality∫ ∏
f

αi

i �
∏

[
∫

fi]αi to replace integrals over products on the right-hand side of the result by
products of integrals, so that each factor on the right becomes some power of an integral over
all the xi . Now the sum of powers in each of (14) and (15) equals one, and for any variable xi

there are d − 1 factors that must be included in the product, because one factor was already
integrated over that variable, so the sum of powers inside the integral with respect to any xi

equals d − 1. Since the many-factor Hölder inequality is valid only when the αi sum to 1, we
must therefore raise (16) to the power 1/(d − 1) before integrating over all the xi to obtain

‖u‖kq+(d−k)p

(kq+(d−k)p)/(d−1) � ‖u‖k(q−r−1)

2(q−r−1)‖u‖k(2r+1)/2
2(2r+1) ‖u‖(d−k)(p−1)

2(p−1)

k∏
i=1

‖uxixi
‖1/2

2

d∏
i=k+1

‖uxi
‖2, (17)

where for notational convenience we have raised the result back to the d − 1 power.
The d + 1 powers of the norms appearing on the right-hand side of (13) can be uniquely

determined by the condition that the estimate be invariant when any of the d + 1 independent
and dependent variables are rescaled by a multiplicative constant, while estimate (17), since it
is valid, is necessarily also invariant under such rescaling.

Since the right-hand side of (17) involves Lsi norms whereas the right-hand side of (13)
involves an L2 norm, we use interpolation inequalities for Lp norms to estimate the Lsi

norms on the right-hand side of (17) in terms of the L2 and the L2σ+2 norms. Therefore,
we should have that 2σ + 2 = (kq + (d − k)p)/(d − 1) and that for all three Lsi norms we
have 2 � si � 2σ +2, so that the interpolation inequality is valid. For a given σ , the maximum
of the three si is minimized when they are all equal, and making that choice determines p, q,
r , and s as functions of σ , d , and k. Straightforward calculations yield the formulae

p = 2(r + 1), q = 3r + 2, r = σ(d − 1) − 1

d + k/2
,

s

2
− 1 = 2r.

The above condition on s is equivalent to 0 � s/2 − 1 � σ , which reduces to σ � 1/(d − 1)

and (d − k/2 − 2)σ � 2. The latter is equivalent to (12). The former can be weakened to
σ � 0 by noting that (13) holds trivially for σ = 0, hence we can use interpolation inequalities
for L2σ+2 for 0 < σ < 1/(d − 1) to interpolate between the L2 norm (i.e. σ = 0) and the
L2d/(d−1) norm (i.e. σ = 1/(d − 1)).

Finally, the compactness of the embedding follows from standard compactness and
interpolation arguments: if un is a sequence uniformly bounded in H

(2,1)

(k,d−k), then by the
compactness of H 1 in L2 some subsequence converges in L2. Applying (13) to differences
um − un restricted to that subsequence shows that the subsequence is Cauchy in L2σ+2. �

Theorem 1. Let u be a solution of (7) such that ‖u0‖2
H

(2,1)

(k,d−k)

< ∞, let ε < 0, and let either

0 < σ < σ ∗
anisotropic, or σ = σ ∗

anisotropic and ‖u0‖2 be sufficiently small. Then, (8) holds for
all time.
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Proof. Note first that the assumption σ � σ ∗
anisotropic implies that (12) holds. By (10), (11),

and (13),

‖u‖2
H 1 − ε

k∑
i=1

‖uxixi
‖2

2 = ‖u0‖2
2 + H(0) +

1

σ + 1
‖u‖2σ+2

2σ+2

� ‖u0‖2
2 + H(0) + κ

k∏
i=1

‖uxixi
‖σ/2

2

d∏
i=k+1

‖uxi
‖σ

2 ,

where

κ = Cd,k,σ

σ + 1
‖u0‖2−σ(d−k/2−2)

2 .

By Young’s inequality,
k∏

i=1

‖uxixi
‖σ/2

2

d∏
i=k+1

‖uxi
‖σ

2 � 1

2d − k

k∑
i=1

‖uxixi
‖σ(d−k/2)

2 +
2

2d − k

d∑
i=k+1

‖uxi
‖σ(d−k/2)

2 .

Therefore,

‖u‖2
H 1 − ε

k∑
i=1

‖uxixi
‖2

2 � ‖u0‖2
2 + H(0) +

2κ

2d − k

(
k∑

i=1

‖uxixi
‖σ(d−k/2)

2 +
d∑

i=k+1

‖uxi
‖σ(d−k/2)

2

)
.

We thus see that the right-hand side is bounded if either σ(d − k/2) < 2 or if σ(d − k/2) = 2
and 2κ/(2d − k) < 1. �

2.1. Existence and uniqueness results

Theorem 2. Under the conditions of theorem 1, there exists a global-in-time weak solution
to (7).

Proof. Let Jε be a symmetric mollifier, i.e. a convolution operator whose kernel is
(1/εd)φ(x/ε), where φ is a smooth, compactly supported, nonnegative function whose integral
equals one, and which is symmetric in the sense that φ(−x) = φ(x). Then (e.g. [16]) Jε is a
symmetric operator that is continuous for fixed ε from any Lp space to any Sobolev space, is
uniformly bounded in ε on Lp and Sobolev spaces, and tends to the identity as ε → 0.

We will obtain solutions to (7) as limits of solutions to the mollified equation

iut + Jε

[
|Jεu|2σ Jεu + �(Jεu) + ε

k∑
i=1

(Jεu)xixixixi

]
= 0. (18)

Here u should really be denoted uε but the subscript will henceforth be omitted for notational
simplicity. Thanks to the smoothing property of the mollifier, (18) may be viewed as an
ODE on L2. The placement of the mollifiers in (18) has been chosen so that the solutions of
that equation will inherit the conservation of power and Hamiltonian: multiplying (18) by the
factor −iū and adding iu times the conjugate of (18), then integrating over space and using
the symmetry of Jε to transfer the outer occurrence of that operator from the term appearing
in (18) to the above-mentioned factors, and integrating by parts as for the NLS equation yields
the conservation of ‖u‖2

2. This ensures that the solutions to (18) exist for all time, since the
only way for an ODE solution not to exist globally is for its norm to become infinite in finite
time. Multiplying by ūt instead and following the rest of this procedure yields the conservation
of the Hamiltonian

H = ‖∇(Jεu)‖2
2 − ε

k∑
i=1

‖(Jεu)xixi
‖2

2 − 1

2σ + 2
‖Jεu‖2σ+2

2σ+2.
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The subcriticality or criticality with small power means that these bounds imply the
uniform boundedness of Jεuε in the H

(2,1)

(k,d−k) and L2σ+2 norms. Given these uniform bounds,
the convergence of some sequence of the Jεuε to a solution u of (7) can be obtained by a
standard compactness argument. (In fact, the situation here is even simpler than that treated
in [14, p 22], which includes the defocusing case with large σ .)

First, for some sequence of values of ε tending to zero, uε tends weak-∗ in L∞(L2)

and Jεuε converges weak-∗ in L∞(H
(2,1)

(k,d−k)) to the same limit u, which suffices to take the
weak limit of the linear terms. Furthermore, since σ � σ ∗

anisotropic, condition (12) holds, so the

embedding of the anisotropic Sobolev spaceH
(2,1)

(k,d−k) intoL2σ+2 is compact. Since equation (18)
plus its conserved quantities show that ∂t (Jεuε) is uniformly bounded in L∞(H−s) for s

sufficiently large, the Lions–Aubin compactness theorem (e.g. [17, theorem III.2.1]) shows
that some subsequence of the Jεuε converges in L

p

loc(L
2σ+2) for 1 < p < ∞, which yields the

convergence of the nonlinear term in (18) to the corresponding term in (7). �
In general, the weak solution obtained in theorem 2 is not known to be unique. That

uniqueness can, however, be proven in some special cases.

Theorem 3. Let

d = 1, k = 0, 1 or d = 2, k = 1, 2 or d = 3, k = 3. (19)

Then, the weak solution constructed in theorem 2 is unique.

Proof. By Parseval’s theorem, the boundedness of the power and Hamiltonian imply in the
subcritical or critical cases that ‖w(κ)û(κ)‖L2 < ∞, where w(κ) = (1 + |κ|2 +

∑k
i=1 κ4

i )1/2.
In addition, w(κ)−1 belongs to L2 if and only if (19) holds. The standard argument
‖û‖L1 = ‖w−1 · wû‖L1 � ‖w−1‖1/2

L2 ‖wû‖1/2
L2 therefore shows that the Fourier transform of

u lies in L1, and hence that u itself belongs to L∞. Since the nonlinear terms in (7) are not
differentiated, this amount of smoothness is formally sufficient to obtain uniqueness: if u1 and
u2 are two solutions then their difference u = u2 − u1 satisfies

iut (x, t) + |u2|2σ u + [|u1 + u|2σ − |u1|2σ ]u1 − �u + ε

k∑
i=1

uxixixixi
= 0. (20)

Applying formally to this equation the procedure used to obtain the conservation of power for
(7) yields

d

dt
‖u‖2

2 � c

∫
[|u1| + |u2|]2σ |u|2 � c‖u‖2

2. (21)

This differential inequality implies that ‖u(t)‖2
2 � ‖u(0)‖2

2ect so that if u = 0 initially then it
remains zero for all time.

Since the uj are only weak solutions, this formal calculation requires justification, which
can be achieved by applying the mollifier Jε to (20) and applying the procedure used to
obtain the conservation of power for (18). After using the boundedness of Jε and u, we obtain
the modified estimate (d/dt)‖Jεu‖2

2 � c‖u‖2
2. Integrating this equation over time and only

then taking ε to zero yields ‖u(t)‖2
2 � ‖u(0)‖2

2 + c
∫ t

0 ‖u(s)‖2
2 ds, which is equivalent to the

differential inequality (21) obtained formally. �

Remark. When d − k/2 � 2, i.e. the first alternative in (12), lemma 1 ensures that u is in
Lp for all 0 � p < ∞. However, it is well known that an L∞ bound does not always follow,
which is why the cases for which we prove uniqueness (i.e. that u is in L∞) only form a proper
subset of d − k/2 � 2.



1816 G Fibich et al

3. Critical NLS

We now analyse the effect of small negative one-dimensional fourth-order dispersion on
two-dimensional critical self-focusing, i.e.

iut (x, y, t) + �u + |u|2u + εuxxxx = 0. (22)

When ε = 0, equation (22) is the critical focusing NLS, which can admit blowup solutions.
We have proved that the addition of negative fourth-order dispersion arrests the collapse.
Our proof, however, does not provide any insight as to the dynamics of the globally existing
solutions. To do that, we can use modulation theory [7, 8], which is an asymptotic theory for
analysing the effects of small perturbations on self-focusing in the critical NLS

iut (x, y, t) + �u + |u|2u = 0. (23)

Modulation theory is based on the observation that as the solution undergoes self-focusing,
the solution core rearranges itself as modulated ground state, i.e.

|u| ∼ 1

L(t)
R

(
r

L(t)

)
, (24)

where r =
√

x2 + y2 and R(r) is the ground-state solution of

R′′(r) +
1

r
R′ − R + R3 = 0, R′(0) = 0, R(∞) = 0. (25)

Therefore, self-focusing dynamics is described by the modulation variable L(t). In particular,
L → 0 and L → ∞ correspond to singularity formation and to complete defocusing,
respectively. Application of modulation theory to (22) leads to the following ODE for L(t) [7]:

−L3Ltt = β0 +
9εNc

4M

1

L2
,

where Nc = ‖R‖2
2 ≈ 2π × 1.86 is the threshold power for singularity formation in the

NLS (23), and M = (1/4)‖rR‖2
2 ≈ 2π × 0.55. Let us consider an initial condition for

which the solution of the NLS (23) becomes singular. This solution has input power above
critical, i.e. ‖u0‖2

2 > Nc, which in modulation theory variables amounts to β0 > 0. Hence, by
proposition 4.3 in [7], when ε < 0 the beam width L(t) does not shrink to zero (i.e. the NLS
solution does not become singular), but rather undergoes nearly periodic focusing defocusing
oscillations.

In most NLS equations the ground-state waveguide solutions are modulationally stable
if and only if the NLS is focusing and subcritical7. Therefore, we can expect the waveguide
solutions of (6) to be stable. To see that, let us consider waveguide solutions of (6) of the form

u(x, y, t) = eiλtQλ(x, y).

In the following lemma we prove the generic condition for stability of waveguides [13, 20].

Lemma 2. Let ε < 0 and let λ 
 −1/ε. Then, (d/dλ)‖Qλ‖2
2 > 0.

Proof. Qλ satisfies

−λQλ + �Qλ + Q3
λ + εQλ,xxxx = 0.

Let

Qλ = λ1/2Q(λ1/2x, λ1/2y), δ = λε.

7 Notable exceptions are the critical NLS on bounded domains [6] and the critical NLS with inhomogeneous
nonlinearity [9].
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Then

−Q + �Q + Q3 + δQxxxx = 0, 0 < −δ 
 1.

Expand Q(x, y) = R(r) + δh(x, y) + O(δ2), where R is the solution of (25). Then h satisfies

(3R2 − 1)h(x, y) + �h = −Rxxxx.

The equation for h can be rewritten using polar coordinates (x, y) = (r cos θ, r sin θ) as

(3R2 − 1)h(r, θ) + hrr +
1

r
hr +

1

r2
hθθ = −R′′′′ cos4 θ − 6

r
R′′′ sin2 θ cos2 θ

−3

(
R′′

r2
− R′

r3

)
(sin4 θ − 4 sin2 θ cos2 θ). (26)

Note that the terms on the right-hand side are not singular at the origin. Indeed, by
L’Hôpital’s rule and using the fact that R is even in r ,

lim
r→0

R′′′

r
= R′′′′(0), lim

r→0

(
R′′

r2
− R′

r3

)
= 1

3
R′′′′(0).

Let h(r, θ) = f0(r) + f1(r) cos(2θ) + f2(r) cos(4θ). Using the trigonometric identities

cos4 θ ≡ 3
8 + 1

2 cos(2θ) + 1
8 cos(4θ), sin2 θ cos2 θ ≡ 1

8 − 1
8 cos(4θ),

sin4 θ − 4 sin2 θ cos2 θ ≡ − 1
8 − 1

2 cos(2θ) + 5
8 cos(4θ),

we get that f0, f1, f2 satisfy the three decoupled ODEs

(3R2 − 1)f0 + f0,rr +
1

r
f0,r = −3

8
R′′′′ − 3

4

R′′′

r
+

3

8

(
R′′

r2
− R′

r3

)
,

(
3R2 − 1 − 4

r2

)
f1 + f1,rr +

1

r
f1,r = −1

2
R′′′′ +

3

2

(
R′′

r2
− R′

r3

)
,

(
3R2 − 1 − 16

r2

)
f2 + f2,rr +

1

r
f2,r = −1

8
R′′′′ +

3

4

R′′′

r
− 15

8

(
R′′

r2
− R′

r3

)
,

subject to the boundary conditions

dfj

dr
(0) = 0, lim

r→∞ fj (r) = 0, j = 0, 1, 2.

To finish the proof, note that

‖Qλ‖2
2 = ‖Q‖2

2 = ‖R‖2
2 + 2δ

∫
Rh dx dy + O(δ2) = Nc + 2δ

∫
Rf0 dx dy + O(δ2).

The equation for f0 can be solved using a shooting method, where one searches for the value
of f0(0). Numerical calculation gives that f0(0) ≈ 2.8084 and that

∫
Rf0r dr ≈ −2.14.

Therefore, when ε < 0,

d

dλ
‖Qλ‖2

2 ≈ 2ε · (−2π × 2.14) > 0. �

For completeness, the profiles of f0, f1, and f2 and a contour plot of h are given in figure 1.
Note that no shooting is needed for f1 and f2, since f1(0) = f2(0) = 0.
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Figure 1. (a) f0, f1, and f2 as a function of r . (b) Contour plot of h(x, y).

4. Simulations

We solve the two-dimensional NLS with anisotropic negative fourth-order dispersion,

iut (x, y, t) + |u|2σ u + �u + εuxxxx = 0, ε < 0, (27)

using finite differences in space and fourth-order Runge–Kutta in time. As pointed out in [4],
the approximation of the Laplacian with a finite difference scheme adds numerical high-order
dispersion to the computed solution. Therefore, one has to make sure that the numerical high-
order dispersion does not corrupt the computed solution by conducting grid-convergence tests.
We use Dirichlet boundary conditions at the boundary of the computational domain. Because
of the strong radiation due to the fourth-order dispersion, one has to take a sufficiently large
domain in the x direction (see section 8 in [5]) and to verify that reflections from the boundaries
do not corrupt the solution. We use radially symmetric initial condition u0 = c exp(−x2 −y2).
The value of c is chosen so that the initial condition has 1.5 times the critical power for collapse,
i.e. ‖u0‖2

2 = 1.5Nc. Similar results were observed with other initial conditions.
The solution of the unperturbed critical NLS (i.e. when σ = 1 and ε = 0) with this

initial condition becomes singular in a finite time (see dashed line in figure 2(a)). The addition
of one-dimensional fourth-order dispersion changes the critical exponent from σ ∗

NLS = 1 to
σ ∗

anisotropic = 4
3 (see theorem 1). Indeed, collapse is arrested when σ = 1 and ε < 0 (figure 2(a)).

The subsequent focusing–defocusing oscillations agree with the predictions of the asymptotic
analysis in section 3.

When σ is equal to or above the critical exponent σ ∗
anisotropic = 4

3 , the solution becomes
singular (figures 2(b) and (c)). In these cases the blowup profile near the singularity is
anisotropic, and its level sets are roughly ellipses which are more elongated along the x-axis
(figures 3 and 4). The last observation can be motivated using the following hand-waving
argument. Assume that near the singularity

|u| ∼ 1

L
1/2
x (t)L

1/2
y (t)

Q

(
x

Lx(t)
,

y

Ly(t)

)
, where Lx, Ly → 0.

Since the balance in equation (27) is between the highest-order derivatives in x and in y, it
follows that L4

x ∼ L2
y , hence that Lx � Ly .
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Figure 2. Solution of equation (27) with ε = −0.1. (a) σ = 1 (dashed line is ε = 0), (b) σ = 4
3 ,

and (c) σ = 2.
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Figure 3. Intensity contours corresponding to the solution shown in figure 2(b). In all four plots
the outermost contour is |u| = 8. Subsequent contour levels are 9, 11, 15, 32, and 71 (when
applicable).

5. Final remarks

There are many issues related to the NLS with anisotropic fourth-order dispersion which have
not been considered in this paper. For example, we did not calculate the threshold input power
in the critical case σ = σ ∗

anisotropic, or equivalently, the optimal constant Cd,k,σ . Recall that in
the case of the isotropic NLS (1), Weinstein [19] calculated the corresponding optimal constant
using a variational formulation. This calculation showed that the threshold power Nc is equal
to the power of the ground-state waveguide solution of the NLS. Proving a similar result for the
(isotropic) biharmonic NLS is, however, considerably harder, as its waveguide solutions are
not positive [5]. Clearly, extending this result to equation (7) is even harder, as its waveguide
solutions are also not radially symmetric.

The dynamics of equation (7) is quite different when ε > 0. In the isotropic case,
equation (3), ε > 0 is the defocusing case, hence its solutions exist globally. Indeed, in this



1820 G Fibich et al

–0.6 0.6
–0.6

0.6

y

|u(t = 0)|

–0.6 0.6
–0.6

0.6

y

|u(t = 0.008)|

–0.6 0.6
–0.6

0.6

x

y

|u(t = 0.011)|

–0.6 0.6
–0.6

0.6

x

y

|u(t = 0.012)|

Figure 4. Intensity contours corresponding to the solution shown in figure 2(c). In all four plots
outermost contour is |u| = 6. Subsequent contour levels are 8, 10, 14, 24, 28, 32, and 45 (when
applicable).

case self-focusing is initially accelerated compared with the case ε = 0, but subsequently
collapse is arrested and the solution defocuses ‘to infinity’ [5]. A similar dynamics was
observed numerically in the truly anisotropic case, equation (6) with ε > 0. In that case,
however, proof of global existence is still an open question.
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