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Abstract A highly accurate numerical scheme is presented for the Serre system of partial
differential equations, which models the propagation of dispersive shallow water waves in
the fully-nonlinear regime. The fully-discrete scheme utilizes the Galerkin / finite-element
method based on smooth periodic splines in space, and an explicit fourth-order Runge–Kutta
method in time. Computations compared with exact solitary and cnoidal wave solutions
show that the scheme achieves the optimal orders of accuracy in space and time. These
computations also show that the stability of this scheme does not impose very restrictive
conditions on the temporal stepsize. In addition, solitary, cnoidal, and dispersive shock waves
are studied in detail using this numerical scheme for the Serre system and compared with the
‘classical’ Boussinesq system for small-amplitude shallow water waves. The results show
that the interaction of solitary waves in the Serre system is more inelastic. The efficacy of the
numerical scheme for modeling dispersive shocks is shown by comparison with asymptotic
results. These results have application to the modeling of shallow water waves of intermediate
or large amplitude.
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1 Introduction

The propagation of waves on the free surface of an ideal irrotational fluid under the force
of gravity are governed by the Euler’s equations [42]. Solving the Euler’s equations is very
difficult, because of the free surface. There is a hierarchy of asymptotic approximations of
the Euler’s equations that do not depend on a free surface. In particular, the propagation of
waves in shallow water is governed by the Serre equations, also known as the Su–Gardner
equations or Green–Naghdi equations (cf. [25,32,37–39]), which we shall refer to as the
Serre system. In dimensionless variables it reads

ηt + ux + ε(ηu)x = 0 , (1a)

ut + ηx + εuux − σ 2

3h

[
h3(uxt + εuuxx − ε(ux )

2)
]

x = 0 , (1b)

where
h(x, t)

.= 1 + εη . (2)

Here x is the spatial variable, t is the time, u(x, t) is the depth-averaged horizontal velocity
of the fluid, εη(x, t) is the wave height above an undisturbed level of zero elevation, h(x, t) is
the total depth of the fluid with respect to a horizontal bottom (at a normalized elevation of −1
from the undisturbed water level), σ is the ratio between the typical depth d and wavelength
λ, and ε is the ratio between the typical amplitude a and bottom depth d (i.e. σ = d/λ and
ε = a/d). See sketch in Fig. 1.

The Serre system can be derived as an asymptotic approximation of the Euler’s equations
under the assumption of shallow water wates, or long wavelength or weakly dispersive regime,
i.e., σ � 1. Importantly, System (1) does not assume small amplitude waves, i.e., ε can be
large.

For small-amplitude or weakly nonlinear shallow water waves, i.e., when ε � 1, σ � 1,
and ε/σ 2 = O(1), the Serre system reduces to the ‘classical’ Boussinesq (cB) system (cf. [7]
for related equations),

ηt + ux + ε(ηu)x = 0 , (3a)

ut + ηx + εuux − σ 2

3
uxxt = 0 . (3b)

Comparing the cB and Serre systems, Eqs. (3a) and (1a) are the same. This equation is
known as the mass conservation equation. However, Eq. (1b) contains higher order nonlinear-

Fig. 1 Sketch of surface water
waves for the Serre (1) and cB (3)
systems. u is depth-averaged
horizontal velocity, εη is wave
height above an undisturbed level
(dashes), h is bottom depth, and
λ a typical wavelength
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dispersive terms compared with (3b). For this reason, the Serre system is often called fully-
nonlinear shallow-water equations. Though the two systems are similar, the small amplitude
assumption underlying the cB system appears to be too restrictive for model waves of large, or
even intermediate, amplitude. Physically, when water waves approach regions of small depth,
it is common that their amplitude increases. Therefore, the Serre system is potentially more
appropriate for the approximation of long waves in shallow water and also in the nearshore
zone.

There are many studies of the cB system and related Boussinesq-type systems. However,
there are much fewer studies of the Serre system, in part because it is considerably harder
to solve numerically. As a result, many properties of the solutions of the Serre system are
unknown or remain unclear. In particular, few numerical schemes have been developed for
the Serre system, based on either the finite difference (cf. [36]), hybrid finite-difference
finite-volume (cf. [9,12]), and pseudospectral (cf. [20]) methods. All of these methods can
be formally very accurate. However, they suffer from aliasing or spurious dissipative effects,
due to the approximation of the nonlinear terms. This is usually not a major handicap when
solving the cB system, but it becomes debilitating when solving the Serre system for large
amplitude and / or rapidly oscillating waves, as in such cases the actual error is large, even
when using a fine grid. Even worse, such schemes often fail to converge.

In this study, we design and implement a computational scheme based on the standard
Galerkin / Finite-Element Method (FEM). One of the main advantages of this method is
that it is non-dissipative. Another advantage is the sparsity of the resulting linear systems.
For this reason, as we show, the FEM scheme for (1) achieves the optimal (formal) order of
accuracy even for large amplitude solitary, cnoidal and dispersive shock waves. To achieve
this, we use cubic splines for the semi-discretization in space and the classical fourth order
Runge–Kutta (RK) method for time integration. A similar scheme was studied for a variety
of Boussinesq-like systems, cf. [18], and appears to be highly accurate and efficient in a
measure that makes the method to be ideal for the study of the dynamics of solitary waves.
However, for the Serre system, the dependence of the dispersive terms in (1b) on the unknown
function h(x, t) makes the numerical integration considerably more difficult compared with
Boussinesq-like systems. In particular, for time integration, a mass matrix needs to be
assembled at each time step. At every intermediate RK step, two linear systems based on the
mass matrices need to be solved. This is a costly computation, yet, in spite of this drawback,
the high accuracy of this scheme makes it a strong candidate for computational modeling of
the Serre system.

The paper is organized as follows. Section 2 recaps some of the analytical results for
solitary, cnoidal, and dispersive shock wave solutions of the Serre system, which serve to
validate the computational scheme. Section 3 presents the fully-discrete schemes for the
Serre and cB systems. Section 4 validates the convergence, accuracy, and numerical stability
of the method. Section 5 presents computational studies of interacting solitary waves and
dispersive shock waves.

1.1 Remarks

System (3) was originally derived (in a slightly different form) by Boussinesq [10] and it is a
special case of a class of Boussinesq-type models derived by Bona, Chen and Saut, [7]. This
system is often used for studying two-way propagation of small amplitude, long waves [34].

The Serre system (1) was originally derived from the Euler’s equations in one spatial
dimension by Serre [37,38]. It was re-derived several times later, including independently
by Su and Gardner [39]. See also the review by Barthélemy [5]. Green and Naghdi [25]
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generalized this system to two spatial dimensions with an uneven bottom, see also [36,40].
Recently, Lannes and Bonneton [30] derived and justified several asymptotic models of
surface waves including (1). It is worth mentioning that other systems of a similar ilk have
been derived, for example, with improved dispersion characteristics [30,43], with moving
bottom [29] and with surface tension [17]. In principe, all these models can be discretized by
numerical methods similar to the methods presented bellow. However, further studies will
be required to test the efficacy of the ensuing schemes.

2 Analytical Properties of the Serre System

Below we recap several analytical properties of System (1), which serve as benchmarks for
our computational scheme.

2.1 Special Solutions of the Serre System

System (1) admits solitary and cnoidal wave solutions in closed form (cf. [11,22,37,38]).
Below we recap these solutions for arbitrary ε and σ . It is convenient to express the solutions
of (1) in terms of (h, u) rather than (η, u). The two ways are equivalent in light of (2).

The two-parameter family of solitary wave solutions of (1) that travel with a constant
speed cs can then be written in the moving frame ξ = x − cs t as

hsol(ξ) = 1

σ

[
a0 + a1sech2(Ks ξ)

]
, (4a)

usol(ξ) = cs

ε

[
1 − a0

σhsol(ξ)

]
, (4b)

where

Ks =
√

3a1

4σa2
0c2

s

, cs =
√

a0 + a1

σ
,

and a0, a1 are positive (but otherwise arbitrary) constants. Choosing a0 = σ gives the solitary
waves that decay to the background average water depth. For the simulations, we choose
ε = a0 = σ = 1 and various values of the speed cs . Then a1 and Ks can be determined from
the above formulae.

Similarly, the three-parameter cnoidal wave solutions of (1) can be written as

hc(ξ) = 1

σ

[
a0 + a1dn2(Kc ξ, k)

]
, (5a)

uc(ξ) = cs

ε

[
1 − h0

σhc(ξ)

]
, (5b)

where dn denotes the Jacobi elliptic function and

h0 = a0 + a1
E(m)

K (m)
,

Kc =
√

3a1

2
√

a0(a0 + a1)(a0 + (1 − k2)a1)
,

cs =
√

a0(a0 + a1)(a0 + (1 − k2)a1)

σh2
0

.
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K (m) and E(m) denote the complete elliptic integrals of the first and second kind, respec-
tively, k ∈ [0, 1], m = k2, and a0, a1 are positive constants. Here, a0, a1 and m (or k) are
arbitrary.

It is remarkable that such closed form solutions of the Serre system have been found
and even more remarkable that such closed form solutions have not been found for the cB
system (3). Nevertheless, it has been proven that the cB system admits solitary and cnoidal
wave solutions (cf. [13,14]).

2.2 Dispersive Shock Waves

When the dispersive terms in the Serre or cB systems are neglected, the resulting non-
dispersive equations can give rise to shock waves, i.e., a discontinuous solution. When such
shocks are regularized by dissipative effects, this gives rise to classical or viscous shocks,
which are characterized by a rapid and monotonic change in the flow properties. On the other
hand, in systems where dissipation is negligible compared with dispersion, the dispersive
effects give rise to dispersive shock waves (DSWs). DSWs are characterized by an expanding
train of rapidly-oscillating waves (see sketch in Fig. 2). The leading edge of a DSW possesses
large amplitude waves, which decay to linear waves at the trailing edge. DSWs have been
studied for several decades, originally in the context of the KdV equation (cf. [6,26,41] for
some of the early works). In particular, these studies show that, using Whitham’s averaging
method, the largest-amplitude oscillation in the leading edge is well-approximated with a
solitary wave.

Recently, DSWs were studied analytically and computationally in fully-nonlinear disper-
sive shallow water systems (cf. [22–24,33]). In particular, the asymptotic dynamics of the
leading edge solitary wave of a simple DSW were studied in [22,23]. Below we recap some
of those results. We use these results to test the non-dissipativity of the numerical schemes.

Consider the Serre system (1) with ε = σ = 1. As above, writing the solution of the
Serre system in terms of h and u, a simple DSW traveling to the right is generated using the
Riemann initial data

h(x, 0) =
{

h−, for x < 0
h+, for x > 0

, u(x, 0) =
{

u−, for x < 0
u+, for x > 0

, (6)

with the compatibility condition (Riemann invariant)

u−

2
− √

h− = u+

2
− √

h+ . (7)

Fig. 2 Sketch of dispersive
shock wave (DSW, solid) and
non-dispersive shock (dashes)
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Following [22,23], we assume that the initial jump or total depth variation is small, i.e.,

0 < δ
.= h−

h+ − 1 � 1 . (8)

Then, to leading order in δ and for a large propagation time, the leading-edge of the DSW is
well approximated with a solitary wave given by (4) with a0 = 1 and amplitude (relative to
the constant elevation) and speed

asimple
1 ∼ 2δ + 1

6
δ2 , (9a)

csimple
s ∼ 1 + δ − 5

12
δ2 , (9b)

respectively.
We also consider the dam-break problem. In this case, the initial data for h(x, 0) are

the same (6). However, there is no flow at t = 0, i.e., u(x, 0) = 0. As shown in [22], this
generates two counter-propagating DSWs, one on each side of the “dam”, and two rarefaction
waves that travel towards the center. Similarly to a simple DSW, the asymptotic amplitude
and speed for the leading-edge solitary wave in each DSW is

adam
1 ∼ δ − 1

12
δ2 , (10a)

cdam
s ∼ 1 + δ

2
− 1

6
δ2 , (10b)

respectively.

2.3 Hamiltonian Conservation

A fundamental property of the Serre system is its Hamiltonian structure, cf. [28,31]. For any
solution (h, u), the energy functional (or Hamiltonian)

H(t) ≡ H[h, u] =
∞∫

−∞

[
εhu2 + εσ 2

3
h3u2

x + 1

ε
(h − 1)2

]
dx , (11)

is conserved in the sense that H(t) = H(0) for all t > 0 and up to the maximal time T of
the existence of the solution. In contrast, the cB system (3) does not possess a Hamiltonian
structure and its solutions do not conserve an energy functional [7].

3 The FEM Scheme

In this section we present a FEM for the initial-boundary value problem (IBVP) comprised of
System (1) subject to periodic boundary conditions. Here and in the computations we choose
ε = σ = 1. We make this choice in order to simulate large amplitude waves, so as to test
the scheme to its limit. For this reason, the ε and σ are dropped from the equations below. It
is also convenient to rewrite (1a) in terms of (h, u) rather than (η, u). This is done using (2)
and yields the IBVP

ht + (hu)x = 0 , (12a)

ut + hx + uux − 1

3h

[
h3(uxt + uuxx − (ux )

2)
]

x = 0 , (12b)
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∂ i
x h(a, t) = ∂ i

x h(b, t) , i = 0, 1, 2, . . . , (12c)

∂ i
x u(a, t) = ∂ i

x u(b, t) , i = 0, 1, 2, . . . , (12d)

h(x, 0) = h0(x) , (12e)

u(x, 0) = u0(x) , (12f)

where x ∈ (a, b) ⊂ R and t ∈ [0, T ]. We shall assume that (12) possesses a unique solution,
such that h and u are sufficiently smooth and, for any t ∈ [0, T ], in a suitable Sobolev space
with periodic boundary conditions, i.e.,

h(x, ·) ∈ Hs, u(x, ·) ∈ Hs+1, Hs ≡ Hs
per (a, b) ,

where s ≥ 1 (see [27] for sharper results). Here and below, ‖ · ‖s denotes the standard norm
in Hs . We also use the inner product in L2 ≡ H0, denoted by (·, ·).
3.1 Spatial Discretization

We denote the spatial grid by xi = a + i Δx , where i = 0, 1, · · · , N , Δx is the grid size,
and N ∈ N, such thatΔx = (b − a)/N . Let (h̃, ũ) be the corresponding spatially discretized
solution. The Galerkin / Finite-Element Method (FEM) seeks a weak solution of (12),
i.e., h̃(x, t) and ũ(x, t) in C1(0, T ; S), for a suitable finite-dimensional space S. We shall
consider the space of the smooth periodic splines

Sr = {φ ∈ Cr−2
per [a, b]

∣∣∣φ|[xi ,xi+1] ∈ P
r−1, 0 ≤ i ≤ N − 1} ,

where r ∈ N,

Cr
per

.= { f ∈ Cr [a, b]∣∣ f (k)(a) = f (k)(b), 0 ≤ k ≤ r} ,
and P

k are the polynomials of degree k. In particular, we shall use cubic splines, which
correspond to S4, i.e., r = 4. Henceforth, we shall denote S ≡ S4. Note that the periodic
boundary conditions (12c)–(12d) are satisfied automatically by this choice.

To state the associated weak problem, let φ ∈ S be an arbitrary test function. It turns out
to be convenient to multiply (12b) by h̃ and group together the first term in this equation with
the first term in the brackets. Using integration by parts, gives the semi-discrete problem

(h̃t , φ) + ((h̃ũ)x , φ) = 0 , (13a)

BSerre(ũt , φ; h̃) + (h̃(h̃x + ũũx ), φ)+ 1

3

(
h̃3(ũũxx − (ũx )

2), φx

)
= 0 , (13b)

where the bilinear form is defined for a fixed h̃ (and φ,ψ ∈ S) as

BSerre(ψ, φ; h̃)
.= (h̃ψ, φ)+ 1

3
(h̃3ψx , φx ) , (13c)

and the initial conditions are

h̃(x, 0) = P{h0(x)} , ũ(x, 0) = P{u0(x)} , (13d)

where P is the L2 projection onto the S defined by (Pv, φ) = (v, φ), for all φ ∈ S.
The bilinear form (13c) plays a key role in the FEM. Assuming that h is bounded as

h0 ≤ h(x, t) ≤ ∞ for some constant h0 > 0 (the so called “wet bottom” assumption), this
bilinear form is bounded and coercive. Specifically, for all φ,ψ ∈ H1, there exist c1, c2,
such that

BSerre(ψ, φ; h̃) ≤ c1‖φ‖1‖ψ‖1 , BSerre(φ, φ; h̃) ≥ c2‖φ‖2
1 , (14)
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where ‖ · ‖1 denotes the usual norm of the Sobolev space H1. (In general ‖ · ‖r denotes the
usual norm of the Sobolev space Hr and ‖·‖ the norm of the space L2.). These two properties
are of fundamental importance for the FEM scheme. In particular, it follows from (14) that
the corresponding linear systems are not singular.

3.2 Temporal Discretization

Upon choosing appropriate basis functions for S, System (13) represents a system of ordinary
differential equations (ODEs). For time integration, we employ the classical, explicit, four-
stage, fourth-order Runge–Kutta (RK) method, which is described by the following tableau:

A b
τ

=

0 0 0 0 1/6
1/2 0 0 0 1/3
0 1/2 0 0 1/3
0 0 1/2 0 1/6
0 1/2 1/2 1

. (15)

We use a uniform time-step Δt , such that Δt = T/K for a suitable K ∈ N. The temporal
grid is then tn = nΔt , where n = 0, 1, . . . , K . Given the ODE y′ = 
(t, y), one step of
this four-stage RK scheme (with yn approximating y(tn)) is

for i = 1 → 4 do
ỹi = yn + ∑i−1

j=1 ai j yn, j

yn,i = 
(tn,i , ỹi ), evaluated at tn,i ≡ tn + τiΔt
end for
yn+1 = yn +Δt

∑4
j=1 b j yn, j ,

where ai j , τi , bi are given in Table 15. Applying this scheme to (13) and denoting by Hn

and U n the fully discrete approximation in S of h(·, tn), u(·, tn), respectively, leads to Algo-
rithm 1.

Given a basis {ϕi } of S, the implementation of Algorithm 1 requires solving at each time
step the following linear systems.

1. Four linear systems with the time-independent matrix (ϕi , ϕ j );
2. Four linear systems with the time-dependent matrix BSerre(ϕi , ϕ j ; h) .

All these matrices are cyclic and symmetric due to the periodic boundary conditions. They
consist of a seven-diagonal band and two 3×3 triangular blocks on the upper right and lower
left corners. To solve these systems, we use the direct method described in [8], which is
analogous to the Sherman–Morrison–Woodbury method. To approximate the inner products,
we use the Gauss–Legendre quadrature with 5 nodes per Δx .

We note that the above algorithms are almost identical when using other standard bound-
ary conditions, such as Dirichlet or Neumann. However, the convergence and the stability
properties can be different on those cases. In the analogous case of the cB system, the con-
vergence of the FEM has optimal rates of convergence in the periodic case, [3], contrary to
the suboptimal rates characterized the problem subject to non-periodic boundary conditions,
cf. [1,2]. For more information on implementation of the Galerkin / Finite Element methods
with other boundary conditions see [35].

123



174 J Sci Comput (2014) 61:166–195

Algorithm 1 Time-marching FEM scheme for the IBVP of the Serre system (13)

H0 = P{h0}
U0 = P{u0}
for n = 0 → N − 1 do

for i = 1 → 4 do

H̃ i = Hn + ∑i−1
j=1 ai j Hn, j

Ũ i = Un + ∑i−1
j=1 ai j Un, j

(Hn,i , φ) = −((H̃ i Ũ i )x , φ), evaluated at tn,i ≡ tn + τiΔt

BSerre(U
n,i , φ; H̃ i ) = −((H̃ i (H̃ i

x + Ũ i Ũ i
x ), φ) − 1

3 (H̃
i )3(Ũ i Ũ i

xx − (Ũ i
x )

2, φx )

end for

Hn+1 = Hn + Δt
∑4

j=1 b j Hn, j

Un+1 = Un + Δt
∑4

j=1 b j Un, j

end for

3.3 FEM Scheme for the cB System

Below we briefly outline the corresponding scheme for the cB system (3). See [1,3,4] for
details. Making the transformation h(x, t) �→ 1 + η(x, t), the semi-discrete problem for the
cB system (3) is

(h̃t , φ)+ ((h̃ũ)x , φ) = 0 , (16a)

BcB(ũt , φ)+ (h̃x , φ)+ (ũũx , φ) = 0 , (16b)

where, in this case, the bilinear form is defined as

BcB(ψ, φ)
.= (ψ, φ)+ 1

3
(ψx , φx ) . (16c)

Using the notation as in Algorithm 1 and denoting the fully-discrete solution by h(x, t) →
Hn(x) and u(x, t) → U n(x), the corresponding fully-discrete algorithm based on the same
RK scheme is given by Algorithm 2.

As for the FEM scheme for the Serre problem, we employ cubic splines and the inner
products are approximated using the 5-node Gauss–Legendre quadrature. The resulting linear
systems are similar with those of Algorithm 1 and are solved using the same numerical
method. The key difference from Algorithm 1 is that all the matrices in Algorithm 2 are
time-independent. Therefore, the matrices are assembled and factorized once and for all at
t = 0.

3.4 Theoretical Considerations

For the semi-discrete problem (16), it was proven in [3] that, for appropriate initial conditions
and for small values of Δx , there is a unique semi-discrete solution, which satisfies the
estimate

max
0≤t≤T

(‖h − h̃‖ + ‖u − ũ‖) ≤ CΔxr , (17)
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Algorithm 2 Time-marching FEM scheme for the IBVP of the cB system (3)

H0 = P{h0}
U0 = P{u0}
for n = 0 → N − 1 do

for i = 1 → 4 do

H̃ i = Hn + ∑i−1
j=1 ai j Hn, j

Ũ i = Un + ∑i−1
j=1 ai j Un, j

(Hn,i , φ) = −((H̃ i Ũ i )x , φ), evaluated at tn,i ≡ tn + τiΔt

BcB(U
n,i , φ) = −(H̃ i

x , φ)− (Ũ i Ũ i
x , φ)

end for

Hn+1 = Hn + Δt
∑4

j=1 b j Hn, j

Un+1 = Un + Δt
∑4

j=1 b j Un, j

end for

where the constant C is independent ofΔx . This result also shows that the numerical solution
is stable. Furthermore, the same result is valid for the linear cB system. Since the linearization
of the cB and Serre systems is the same, it is implied that the semi-discrete solution of the
linearized Serre system is stable. No stability or convergence results are known for the
nonlinear (semi- or fully-) discrete schemes for the Serre equations.

4 Validation of the FEM Scheme for the Serre System

In this section we study the spatial and temporal accuracy and efficiency of the FEM scheme
for the Serre system, which is presented in Algorithm 1. To do so, we use various metrics of
the solitary and cnoidal wave solutions and Hamiltonian conservation (see Sect. 2).

4.1 Spatial Accuracy

To test the spatial accuracy of the scheme, we use the exact solitary wave solution (4) of the
Serre system with ε = a0 = σ = 1 and traveling with speed cs = 1.5. The spatial domain
is chosen as x ∈ [−150, 150]. This large interval ensures that the solution is practically
zero near the endpoints of the interval. To ensure that the errors incurred by the temporal
integration are negligible, we take Δt/Δx = 0.1 .

Tables 1, 2 and 3 show the normalized errors of the computed solutions evaluated at
T = 100. These errors are defined as

Es[F] .= ‖F(x, T ;Δx)− Fexact(x, T )‖s

‖Fexact(x, T )‖s
, (18)

where F = F(·;Δx) is the computed solution, i.e., either H ≈ h(x, T ) or U ≈ u(x, T ),
Fexact is the corresponding exact solitary wave solution with the same parameters (see (4a)–
(4b)), and s = 0, 1,∞ corresponds to the L2, H1, and L∞ norms, respectively.

For the calculations of the L∞ norm and related variables mentioned in the following
sections, we recover location of the peak amplitude curve of the solution h(x, t). This
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Table 1 Spatial errors and rates of convergence for a solitary wave solution using the L2 norm [Eq. (18) with
s = 2]

Δx Δt E2[H ] rate for E2[H ] E2[U ] Rate for E2[U ]

0.50 0.050 0.1970 × 10−4 – 0.5669 × 10−4 –

0.25 0.025 0.7989 × 10−6 4.6240 0.2153 × 10−5 4.7183

0.10 0.010 0.1798 × 10−7 4.1402 0.4973 × 10−7 4.1124

0.08 0.008 0.7298 × 10−8 4.0420 0.2018 × 10−7 4.0403

0.05 0.005 0.1102 × 10−8 4.0224 0.3043 × 10−8 4.0257

Table 2 Same as Table 1 using the H1 norm

Δx Δt E2[H ] Rate for E2[H ] E2[U ] Rate for E2[U ]

0.50 0.050 0.1951 × 10−3 – 0.41324 × 10−3 –

0.25 0.025 0.1873 × 10−4 3.3805 0.4261 × 10−4 3.2775

0.10 0.010 0.1111 × 10−5 3.0830 0.2601 × 10−5 3.0515

0.08 0.008 0.5660 × 10−6 3.0236 0.1327 × 10−5 3.0143

0.05 0.005 0.1374 × 10−6 3.0122 0.3230 × 10−6 3.0073

Table 3 Same as Table 1 using the L∞ norm

Δx Δt E∞[H ] Rate for E∞[H ] E∞[U ] Rate for E∞[U ]

0.50 0.050 0.4228 × 10−3 – 0.5315 × 10−4 –

0.25 0.025 0.2101 × 10−4 4.3309 0.2882 × 10−5 4.2049

0.10 0.010 0.4887 × 10−6 4.1046 0.7123 × 10−7 4.0383

0.08 0.008 0.1988 × 10−6 4.0291 0.2893 × 10−7 4.0381

0.05 0.005 0.3013 × 10−7 4.0148 0.4373 × 10−8 4.0199

curve, denoted by x∗(t), is defined via

d

dx
h(x, t)

∣∣∣∣
x=x∗(t)

= 0 . (19)

To compute x∗(t), we use Newton’s method. As an initial guess, we use the quadrature node
at which Hn(x) attains a maximum over all the quadrature nodes. This ensures that Hn(x∗) is
the global maximum. Usually, only a few iterations are needed to achieve x∗ with a tolerance
of 10−13.

Tables 1, 2 and 3 also show the corresponding calculated rates of convergence, defined as

rate for Es[F] .= ln (Es[F(·;Δxk−1)]/Es[F(·;Δxk)])
ln (Δxk−1/Δxk)

,

where Δxk is the grid size listed in row k in each table.
These tables show that the rates using the L2 and L∞ norms approach 4, whereas, the

rates using the H1 norm approaches 3. These results indicate that the FEM scheme achieves
the optimal orders of convergence. Moreover, one might expect the emergence of large errors
(in space and/or time) due to the following challenging conditions:
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1. The high-order nonlinear dispersive terms in (1).
2. The strongly nonlinear and dispersive regime (ε = σ = 1).
3. The use of an explicit RK method.

Yet, in spite of these challenging conditions, Tables 1, 2 and 3 show that the actual errors are
very small, even when using relatively large grid sizes. Hence, these results show that this
scheme is highly efficient.

4.2 Temporal Accuracy and Stability

In order to study the temporal accuracy, we use the same solitary wave solutions as above.
Here we take Δt = Δx for various values of Δx = (b − a)/N . This choice for Δt and Δx
is sufficient to estimate the temporal order of accuracy for the following reason. Since our
spatial discretization is 4th-order, we may assume that the scheme’s total error at some final
time t = T scales as

Es[F] .= ‖ f − F‖ = C ′Δx4 + CΔtr , (20)

where f = f (·, T ;Δx,Δt) stands for the computed solution, F(·, T ) stands for the exact
solution, C , C ′ are constants, and r is the temporal convergence rate. Since our schemes use
a 4th-order Runge–Kutta method, it is expected that r ≤ 4. By choosing Δx = Δt � 1 and
using (20), the total error scales as

Es[F] = ‖ f − F‖ ≈ CΔtr , (21)

Choosing two different values of Δt , i.e., Δtk−1 and Δtk , gives

Es[F(·;Δtk−1)] ≈ CΔtr
k−1 , Es[F(·;Δtk)] ≈ CΔtr

k . (22)

Taking the ratio of these two errors and solving for the temporal convergence rate, r , yields

rate for Es[F] .= ln (Es[F(·;Δtk−1)]/Es[F(·;Δtk)])
ln (Δtk−1/Δtk)

. (23)

Tables 4, 5 and 6 present the errors defined in (18) and the corresponding rates of conver-
gence, defined by (23), where Δtk is the grid size listed in row k. These tables show that the
FEM scheme achieves the optimal temporal rate of convergence in all three norms. The actual
errors are fairly small as well. Moreover, one might expect the scheme to be conditionally
stable, due to the complexity of the problem and the use of an explicit RK method. Yet, the
scheme converges in spite of these challenging conditions and the large temporal grid size
(Δt = Δx). We note that it has been proven that a similar FEM scheme is unconditionally

Table 4 Same as Table 1 for the temporal errors. N and M are the number of spatial and temporal grid points,
respectively

Δx = Δt E2[H ] Rate for E2[H ] E2[U ] Rate for E2[U ]

0.2 0.1824 × 10−1 – 0.9673 × 10−2 –

0.1 0.7114 × 10−3 4.6808 0.3759 × 10−3 4.6853

0.05 0.3055 × 10−4 4.5411 0.1669 × 10−4 4.4935

0.025 0.1496 × 10−5 4.3521 0.8296 × 10−6 4.3303

0.0125 0.8134 × 10−7 4.2011 0.4518 × 10−7 4.1986

0.00625 0.4724 × 10−8 4.1058 0.2633 × 10−8 4.1008
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Table 5 Same as Table 4 using the H1 norm

Δx = Δt E1[H ] Rate for E1[H ] E1[U ] Rate for E1[U ]

0.2 0.4138 × 10−2 – 0.1286 × 10−1 –

0.1 0.1634 × 10−3 4.6624 0.5075 × 10−3 4.6631

0.05 0.7126 × 10−5 4.5192 0.2213 × 10−4 4.5189

0.025 0.3481 × 10−6 4.3555 0.1081 × 10−5 4.3549

0.0125 0.1872 × 10−7 4.2167 0.5822 × 10−7 4.2159

0.00625 0.1082 × 10−8 4.1121 0.3371 × 10−8 4.1101

Table 6 Same as Table 4 using the L∞ norm

Δx = Δt E∞[H ] Rate for E∞[H ] E∞[U ] Rate for E∞[U ]

0.2 0.6037 × 10−2 – 0.1491 × 10−1 –

0.1 0.2386 × 10−3 4.6610 0.5889 × 10−3 4.6623

0.05 0.1041 × 10−4 4.5176 0.2569 × 10−4 4.5183

0.025 0.5106 × 10−6 4.3507 0.1256 × 10−5 4.3539

0.0125 0.2787 × 10−7 4.1953 0.6777 × 10−7 4.2126

0.00625 0.1713 × 10−8 4.0239 0.3960 × 10−8 4.0969

stable for several types of Boussinesq systems [4]. Although we do not have a proof that
this fully-discrete problem is unconditionally stable, these results show that the stability of
this scheme does not impose restrictive conditions on Δt but mild conditions of the form
Δt < C Δx are adequate for the solutions to remain stable. This property is further explored
in Sect. 4.4.

4.3 Accuracy in Shape, Phase, and Hamiltonian

The results of the spatial and temporal accuracy show that the FEM scheme is optimally
accurate in all the standard norms and also that the actual errors are very small. To further
test the accuracy of this scheme, we consider the propagation of a solitary wave as in Sect. 4.1,
while using several other norms that are pertinent to solitary waves (cf. [8]).

First, since the solitary wave’s peak amplitude remains constant during propagation, we
define the normalized peak amplitude error as

Eamp[F] .= |F(x∗(t), t)− F0|
|F0| , (24)

where x∗(t) is the curve along which the computed approximate solution F(x, t) achieves
its maximum (see Sect. 4.1) and F0 ≡ Fexact(x, 0) is the initial peak amplitude of the solitary
wave. Monitoring Eamp as a function of propagation time, we observe that it remains very
small and practically constant during propagation, i.e., Eamp[H ] ≈ 1.5066 × 10−5 and
Eamp[U ] ≈ 1.2076 × 10−5. Furthermore, recall that the exact solitary wave solution travels
with speed cs = 1.5. We recover the solitary wave’s traveling speed as

c̃s
.= x∗(t)− x∗(t − τ)

τ
, (25)
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where τ is a constant. The results using τ = 10 are such that c̃s coincides with cs within the
computed precision, i.e., double precision on a GNU Fortran compiler parallelized using
OpenMP. This serves as additional indications of the high accuracy and non-dissipativity
of this scheme. We note that the value of c̃s depends weakly on the choice of τ , which
indicates a phase error. This is further studied below.

Two other error norms that are pertinent to solitary waves are the shape and phase errors,
defined below. We define the normalized shape error as the distance in L2 between the
computed solution at time t = tn and the family of temporally-translated exact solitary
waves (with the same parameters), i.e.,

Eshape[F] .= min
τ
ζ(τ ) , ζ(τ )

.= ‖F(x, tn)− Fexact(x, τ )‖
‖Fexact(x, 0)‖ . (26)

The minimum in (26) is attained at some critical τ = τ ∗(tn). This, in turn, is used to define
the (signed) phase error as

Ephase[F] .= τ ∗ − tn . (27)

In order to find τ ∗, we use Newton’s method to solve the equation ζ ′′(τ ) = 0. The initial
guess for Newton’s method is chosen as τ 0 = tn − Δt . Having computed τ ∗, the shape
error (26) is then

Eshape[F] = ζ(τ ∗) .

These error norms are closely related to the orbit of the solitary wave. Loosely speaking, they
measure “softer” properties of the wave, which are often not well conserved using dissipative
schemes, even when the schemes are accurate in all the standard norms.

Table 7 presents the shape and phase errors as functions of propagation time, using cs =
1.5,Δx = 0.1,Δt = 0.01. We observe that both errors remain very small. Moreover, the
shape error is practically constant during the propagation.

Next, we test the conservation of the Hamiltonian (11) and define the corresponding
normalized Hamiltonian error as

EH(tn)
.=

∣∣∣∣
H[F(x, tn)] − H(0)

H(0)

∣∣∣∣ , (28)

where H[·] ≡ H(t) denotes the energy functional (11).
Table 8 shows the results using the same wave parameters and grid sizes as in Table 7 in

the time interval tn ∈ [0, 200]. These results show that the Hamiltonian is conserved within
at least 8 decimal digits of accuracy in this interval and for the specific values of Δx = 0.1
andΔt = 0.01. However, the error increases linearly with time. This is to be expected, since

Table 7 Shape and phase errors [Eqs. (26) and (27)] for a solitary wave as functions of propagation time

tn Eshape[H ] Eshape[U ] Ephase[H ] Ephase[U ]

20 0.1779 × 10−7 0.4543 × 10−7 −0.6636 × 10−8 −0.6651 × 10−8

40 0.1779 × 10−7 0.4544 × 10−7 −0.1184 × 10−7 −0.1187 × 10−7

60 0.1779 × 10−7 0.4543 × 10−7 −0.2353 × 10−7 −0.2355 × 10−7

80 0.1779 × 10−7 0.4543 × 10−7 −0.3002 × 10−7 −0.3004 × 10−7

100 0.1779 × 10−7 0.4543 × 10−7 −0.2353 × 10−7 −0.2355 × 10−7

200 0.1779 × 10−7 0.4543 × 10−7 −0.6899 × 10−7 −0.6901 × 10−7
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Table 8 Hamiltonian H
[Eq. (11)] and corresponding
error (28) for a solitary wave as
functions of the propagation time

tn H EH (t
n)

0 7.4266250954 0.3208 × 10−11

20 7.4266250944 0.1398 × 10−9

40 7.4266250933 0.2828 × 10−9

60 7.4266250922 0.4258 × 10−9

80 7.4266250912 0.5688 × 10−9

100 7.4266250901 0.7117 × 10−9

200 7.4266250848 0.1427 × 10−8

0.05 0.1 0.25 0.5
−11

−9

−7

−6

0.002 0.05 0.1 0.2
−11

−8

−5

−2

0
(a) (b)

Fig. 3 The log of the Hamiltonian error, EH (T = 200), as a function of (a) Δx and (b) Δt

the explicit RK method for this problem is non-conservative. Figure 3 presents the error in
the Hamiltonian as a function of Δx when Δt = 0.005 fixed and as a function of Δt when
the value of Δx = 0.25. We observe that the logarithm of the error EH increases linearly
with Δx and as

√
Δt .

We close this section by computing the same error norms for cnoidal waves. Specif-
ically, we consider the cnoidal wave solution (5) with (a0, a1) = (0.3, 0.1) and m ∈
{0.05, 0.1, 0.5, 0.99}. For this choice of (a0, a1), the cnoidal waves are spectrally unsta-
ble for m > 0.09 (see [11]). In these computations, we consider a domain of length equal
to one period, with very small values for Δx and Δt , i.e., N = 200 and Δt = 10−3. The
profiles of the propagation of these cnoidal waves are presented in Fig. 4. Table 9 presents
some of the error results. In all cases, the cnoidal waves propagate without significant changes
in their amplitude, speed, shape, phase, and Hamiltonian. In particular, the Hamiltonian is
conserved very well to within double precision. These results also show that the phase and
shape errors increase as m increases, especially as m approaches 1. This is expected, because
as m increases, the cnoidal wave becomes steeper and, in the limit m → 1, it approaches a
solitary wave.

4.4 Stability of the FEM Scheme

Here we perform a series of computations to study the stability of the FEM scheme. First, we
consider the propagation of a solitary wave with cs = 1.5, using five different CFL ratios,

Δt

Δx
∈ {1, 1.5, 2, 2.1, 3} . (29)
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Fig. 4 Propagation of cnoidal waves with (a0, a1) = (0.3, 0.1) for four different values of the elliptic modulus
m. Shown is the free surface elevation η(x, t) at three different propagation times (see legends). The axes are
chosen to fit a single period and the amplitude span of the waves

Table 9 Shape and phase errors for the computed solution H(x, tn) and the Hamiltonian error, EH at tn = 20,
and the conserved values of the Hamiltonian H for cnoidal waves with (a0, a1) = (0.3, 0.1), at four different
values of the elliptic modulus m

m Eshape[H ] Ephase[H ] EH H

0.05 0.1960 × 10−12 −0.5471 × 10−11 0.1005 × 10−16 0.90543930873897

0.1 0.7843 × 10−12 −0.1314 × 10−10 0.2447 × 10−17 0.90743193859945

0.5 0.2337 × 10−10 −0.9521 × 10−12 0.3954 × 10−17 0.98158535527292

0.99 0.1637 × 10−8 −0.4267 × 10−8 0.1268 × 10−16 2.1009810886027

Table 10 presents the values of the normalized shape and phase errors for the case Δt =
2Δx . For example, when Δt = 2Δx and Δx = 0.1, the solitary wave propagates without
significant changes in shape and speed. The results in the other cases are comparable except
when Δt > 2Δx , where the solution becomes unstable. The fact that the CFL ratio can
be chosen greater than 1 indicates that the FEM is very stable. This is rather surprising,
considering the use of an explicit RK method.

To further test the stability of the numerical method, we consider initial conditions repre-
senting a heap of water, i.e.,

η0(x) = Ae−x2/λ, u0(x) = 0 , (30)
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Table 10 Shape and phase errors for a solitary wave as functions of propagation time, using Δx = 0.1 and
Δt = 0.2

tn Eshape[H ] Eshape[U ] Ephase[H ] Ephase[U ]

20 0.3031 × 10−5 −0.7622 × 10−4 0.1997 × 10−4 −0.7840 × 10−4

40 0.3526 × 10−5 −0.1787 × 10−3 0.2191 × 10−4 −0.1810 × 10−3

60 0.4134 × 10−5 −0.3238 × 10−3 0.2487 × 10−4 −0.3261 × 10−3

80 0.4815 × 10−5 −0.5114 × 10−3 0.2859 × 10−4 −0.5139 × 10−3

100 0.5556 × 10−5 −0.7423 × 10−3 0.3263 × 10−4 −0.7445 × 10−3

200 0.9518 × 10−5 −0.2527 × 10−2 0.5709 × 10−4 −0.2529 × 10−2
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Fig. 5 Breakup of a Gaussian hump [Eq. (30) with initial amplitude A = 1 and width λ = 10] into two
solitary waves traveling in opposite directions and dispersive tails. Shown are the results usingΔx = 0.1 and
two different values of Δt [see legend in (e)], which are almost indistinguishable

where A and λ are constants. In all cases, the scheme is numerically stable for large values of
propagation time t and all the CFL ratios in (29). For example, Fig. 5 presents the solutions
using A = 1, λ = 10 and two CFL ratios:Δt = Δx andΔt = 2Δx (for CFL > 2 the scheme
becomes unstable). Here, the initial hump breaks up into two large solitary waves and smaller
dispersive tails. These waves and their dispersive tails travel in opposite directions. Figure 6
shows the results using A = 1 and λ = 40. In this case, the solution breaks up into pairs
or a larger number of solitary waves, which travel in opposite directions. In all cases, the
scheme is stable even when Δt = 2Δx and the difference between the solutions using the
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Fig. 6 Same as Fig. 5 using the initial width λ = 40

two time steps remains negligible. These results give further indication that the stability of
this scheme does not impose a restrictive condition on Δt , such that Δt ≤ C(Δx)r for
r > 1.

5 Numerical Experiments of Solitary Waves and DSWs

In this section we present numerical experiments illustrating the behavior of the solitary
waves and dispersive shock waves (DSWs) in the Serre and cB system. Systems (1) and (3)
are solved using Algorithm 1 and Algorithm 2, respectively. Notwithstanding the apparent
stability of both FEM schemes, we useΔt = Δx/10 in order to ensure that the errors resulting
from the time discretization are negligible even if the numerical solution is stable for larger
values of Δt .

5.1 Interactions of Solitary Waves

When solitary waves interact, they incur a phase shift. In non-integrable systems, such interac-
tions are often accompanied by the generation of small amplitude dispersive tails. Capturing
this dynamics accurately requires a highly accurate scheme. Here, we study two kinds of
interactions of solitary waves.

1. Head-on collisions of counter-propagating solitary waves.
2. Overtaking collisions of solitary waves co-propagating at different speeds.
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Fig. 7 Head-on collision of two solitary waves in the Serre (solid) and cB (dashes) systems

For the head-on collisions, we generated initial conditions using (4) for each wave with
speed cs = 1.4 and amplitude A = 0.96. The waves are initially well-separated, i.e., their
peak amplitudes are located at x = ±50. The spatial domain is x ∈ (−200, 200) and the
grid sizes are Δx = 0.1 and Δt = 0.01.

In order to make a meaningful comparison with solitary waves in the cB system, the
cB solitary waves need to travel at the same speed. Since there is no known exact closed
formula for cB solitary waves, we compute them using a fixed-point iterative scheme, in
which the wave’s speed, cs , enters as a parameter (see [19]). One upshot of this is that,
for the same cs = 1.4, the corresponding cB solitary wave has a somewhat larger ampli-
tude, i.e., A ≈ 1.14763. Moreover, the cB and Serre waves have significantly different
shapes.

Figures 7 and 8 present the solutions of the Serre and cB systems at different propagation
times. As expected, the waves collide and emerge with small dispersive tails. Figure 9 presents
the peak amplitude, and the location of the peak amplitude as functions of time, x∗(t),
computed via (19). We note that, t �→ x∗(t) is not a globally continuous function. Indeed,
Fig. 9 shows that for the Serre solution, x∗(t) is discontinuous at t ≈ 38 and t ≈ 40.5 . To
better understand this picture, Figs. 7 and 8 show that, for the Serre system, as the colliding
waves separate, the location of the peak amplitude changes abruptly between t = 38 and
t = 39, as two off-center humps grow larger than the center hump. A similar phenomenon
occurs at each peak around t = 40.5, though with less distinguishable humps.

There are several interesting similarities and differences between the results for the cB
and Serre systems.
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Fig. 8 Continuation of the results in Fig. 7. Note the three humps at t = 39. For clarity, (e) and (f) are shown
on different scales

• The dispersive tails in the Serre system are considerably larger.
• During the interaction, the peak amplitude reaches approximately the same value in both

systems, but at somewhat different times, i.e., a maximum of approximately 2.5 at t ≈ 36.7
for the Serre system and a maximum of approximately 2.547 at t ≈ 35.9 for the cB system.
Furthermore, the Serre system gives rise to the large off-center humps and associated with
the discontinuities in Fig. 9, whereas, the corresponding cB system does not have this
phenomenon.

• The collision in the Serre system lasts longer.
• The change in the wave’s long-time amplitude (sufficiently after the collision) compared

with the initial amplitude is much larger in the Serre system, i.e., it decreases by approxi-
mately 4.9 % in the Serre system, whereas, in the cB system, it decreases by only 0.061 %.
For example, the amplitude of the solitary waves after the interaction for the Serre system
is A = 0.9125 while in the case of cB system is A = 1.1469.

• The phase shift is significantly larger in the Serre system. The ensuing wave trajectories
are closer together (with respect to linear propagation) in the Serre system.

From these experiments, we conclude that solitary waves behave qualitatively the same in
the Serre and cB systems. However, quantitatively, the interaction of the solitary waves in
the Serre system is more inelastic. These results are consistent with the fact that the Serre
system contains nonlinear dispersive terms not present in the cB system. We also note that
the Hamiltonian in this experiment is conserved to within 9 decimal digits and its conserved
value was H(t) = 9.13794051 for up to T = 200.
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Fig. 9 (a) Peak amplitude of the solutions and (b) the location of the peak amplitude [see (19)] of each wave
for the head-on collision presented in Figs. 7 and 8

We note that, given our choice of ε = 1 and solitary wave amplitude of O(1), physically
speaking, these solitary waves have very large amplitudes. For this reason, cB system might
not be valid in this regime. We also compare the two systems in the small-amplitude regime,
in which both systems are valid, i.e., repeat the head-on collision experiments using small-
amplitude solitary waves with A ≈ 0.2 and cs = 1.1. (Specifically the amplitude of the
solitary waves in the case of Serre system were A = 0.21 and after the interaction the
amplitude have been reduced to the value A = 0.2098659. In the case of the cB system we
have A = 0.21774185 before the collision and A = 0.21774165 after.). In that case, the
results of the two systems are approximately the same before and after the interaction, and
we refer to Fig. 10 for details. It is worth noting that the dispersive tail generated by the Serre
system is larger compared to the respective tail generated by the cB system. The Hamiltonian
in this experiment was H = 0.6764072912 with the conserved digits shown here.

For the study of overtaking collisions, we consider two solitary waves traveling in the
positive x direction, with speeds cs,1 = 1.4 and cs,2 = 1.2, centered at x = ∓50, respectively.
The amplitudes of the solitary waves of the Serre system are A1 ≈ 0.96 and A2 ≈ 0.44; and
for the cB system A1 ≈ 1.14763 and A2 ≈ 0.475729.

Figures 11 and 12 present the solutions η(x, t) of the Serre and cB systems at differ-
ent propagation times. Given their initial positions and speed difference, the two waves (if
they were linear) should collide at t = 100/0.2 = 500. In reality, the interaction begins at
approximately t = 400 (see Fig. 11c). During the interaction, the waves appear to exchange
mass (similar dynamics has been observed in Boussinesq systems [1,21] and the Euler equa-
tions [16]). The faster wave overtakes the slower one at approximately t = 490 (see Fig. 12b).
The interaction ends at approximately t = 600.
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Fig. 10 Same as Fig. 6 using solitary waves with speed cs = 1.2 . (f) is a zoomed in version of (e)

A phase shift and a small change in amplitude (compared with the initial amplitudes)
is observed. Specifically, in the Serre system, the long-time amplitudes of the two waves
decrease by approximately 0.025 % for the larger wave and 0.0705 % for the smaller one.
In the cB system, the decrease of the amplitudes is negligible, i.e., 0.00087 and 0.0027 %,
respectively. The Hamiltonian in this experiment conserved within 8 decimal digits and it
was H = 5.7237794 up to T = 800.

Furthermore, Fig. 13 shows in detail the dispersive tails after the interaction. These tails
contain N -shaped wavelets. The generation of wavelets has been studied recently for the
cB system and other Boussinesq-like systems (cf. [1,4]), as well as for the Euler equations
(cf. [15,16]). In [19], a related system based on a Galilean invariant equation, which contains
some (but not all) of the nonlinear terms of the Serre system, showed how the wavelets depend
on the nonlinear terms.

Here, Fig. 13 shows that the signs of the wavelets in both systems are the same, but their
amplitudes differ, i.e., the wavelet is larger and travels faster in the Serre system. Moreover,
the dispersive tail is larger in the Serre system.

These results show that:

• The interaction in the Serre system is significantly stronger.
• Compared with the head-on collisions, the overtaking collision is significantly weaker in

terms of the amplitude and phase shifts and the size of the dispersive tails.
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Fig. 11 Overtaking collision of two solitary waves, (c) is zoomed in version of (b) which is the beginning of
the interaction

5.2 Dispersive Shock Waves

Here we test the ability of the FEM scheme to compute DSWs with high accuracy. In partic-
ular, we test the FEM scheme in two cases, i.e., for a simple DSW and for the dam break
problem. The rapid oscillations in DSWs make it challenging to simulate these problems
accurately. Moreover, finite-volume and other methods are prone to adding spurious dissipa-
tive effects. This can lead to viscous-DSWs, which look like DSWs, but travel more slowly
and have smaller-amplitude oscillations [22]. One of the advantages of the FEM scheme is
that it is non-dissipative, as shown below.

First, we study simple DSWs in the Serre and cB systems. The simulations are carried on
the interval x ∈ (−700, 700) with Δx = 0.1 and Δt = 0.01. We choose as initial data for h
as a step function that decays to zero as |x | → ∞, i.e.,

h(x, 0) = 1

2
η0 [1 + tanh (250 − |x |)] , (31)

where η0 = 0.4182 . The initial data for u(x, 0) is chosen as

u(x, 0) = 2
[√

h(x, 0)− 1
]
.

These initial data generate a simple DSW with (see (7) and [22,23])

h+ = 1, h− = 1 + η0, u+ = 0, u− = 2(
√

1 + η0 − 1) . (32)
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Fig. 12 Continuation of the simulation in Fig. 11, showing the overtaking

Figures 14 and 15 show the results for the Serre and cB systems, respectively. In both
systems, a simple DSW is generated, which travels to the right, and a rarefaction wave travels
to the left with a small dispersive tail.

To test the non-dissipativity of the FEM scheme, we compare the computational results
with the asymptotics of the leading edge solitary wave, whose long-time amplitude and
speed are given in Eqs. (9) with the jump [Eq. (8)] δ = η0 = 0.4182. Here, asimple

1 ≈
0.8656 and csimple

s ≈ 1.3453. Figure 16 shows the peak amplitude and speed of the solitary
wave recovered from the computations approach the corresponding asymptotic values (solid
horizontal lines). Even though δ is not much smaller than 1, it turns out that the asymptotic
values are fairly accurate. These results show that the FEM is non-dissipative even for
DSWs. We note that the Hamiltonian in these simulations is conserved to within 10 decimal
digits of accuracy and it remained H(t) = 190.4720453 even after the interaction of the
leading edge with the other parts of the solution and up to T = 400, while, Fig. 16 shows
that, in the cB system, the DSW travels significantly more slowly and with a larger amplitude.

We also consider the dam-break problem (see Sect. 2.2). Here, the initial data for h(x, 0)
are the same as (31), but u(x, 0) = 0. Figure 17 shows the results of this computation for
the Serre system, i.e., two counter-propagating DSWs and rarefaction waves. These initial
data generate a simple DSW with (32), whose leading edge solitary wave has amplitude
and speed given by (10) with δ = η0 = 0.4182 (Fig. 18). For comparison, Fig. 17d shows
the corresponding non-dispersive shallow water shock and rarefaction waves, which connect
the same flow states. Similar results are obtained for the cB system using the same initial
conditions—see Figs. 19 and 20. The discretization parameters are the same as in the previous
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Fig. 13 Same as Fig. 12, showing the dispersive tail in detail

experiment and the Hamiltonian is conserved with 10 decimal digits of accuracy and it was
H(t) = 87.27888421.

6 Summary and Conclusions

We present a fully discrete numerical scheme for the Serre system based on the standard
Galerkin / finite-element method with smooth periodic splines and on the fourth-order, four-
stage, explicit Runge–Kutta method. The computational results show that this numerical
scheme is highly accurate and stable. In particular, this scheme achieves the optimal orders
of convergence in time and space. Moreover, the actual numerical errors remain fairly small
during propagation. In addition, the stability of this scheme does not impose very restrictive
conditions on the temporal stepsize.

In addition, we perform a series of highly-accurate numerical experiments of interacting
solitary waves in the Serre and ‘classical’ Boussinesq systems. The computational results
show that the interactions of solitary waves in the Serre system are more inelastic, i.e., the
interaction is significantly longer and incurrs a larger amplitude change and larger phase
shift. This greater “inelasticity” does not affect the nonlinear stability of the solitary waves.
Furthermore, in the Serre system, the dispersive tails generated by the interacting solitary
waves have larger amplitude.
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Fig. 14 Simple DSW in the Serre system
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Fig. 15 Same as Fig. 14 in the cB system
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Fig. 16 Amplitude and speed of the leading-edge solitary wave for the simulations in Figs. 14 and 15. Also
shown are the asymptotic values for the Serre system [solid horizontal lines, Eqs. (9)]
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Fig. 17 Dam break in the Serre system. Part (d) also shows the shock and rarefaction waves for the corre-
sponding non-dispersive shallow water problem (dot-dashes)
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Fig. 18 Velocity profile of the DSW and rarefaction waves corresponding to the free surface elevation shown in
the right side of Fig. 17b. Also shown are the shock and rarefaction waves for the corresponding non-dispersive
shallow water problem (dot-dashes)
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123



194 J Sci Comput (2014) 61:166–195

10 350
0.3

0.4036

0.5
A

m
pl

itu
de

 o
f s

ol
ita

ry
 w

av
e

Serre
cB
Asymptotic value

Fig. 20 Amplitude of the leading-edge solitary waves for the simulations in Figs. 17 and 19. Also shown is
the asymptotic value for the Serre system [solid horizontal lines, Eq. (10a)]

We also use this scheme to study the generation and propagation of rapidly oscillating
dispersive shocks and rarefaction waves. The results show that this scheme can resolve the
fine details of the solutions, without inducing numerical (artificial) dissipative effects.
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