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We propose a generalization of radiative transport theory to account for light propagation in luminescent random
media. This theory accounts accurately for themultiple absorption and reemission of light at different wavelengths
and for anisotropic luminescence. To test this theory, we apply it to model light propagation in luminescent solar
concentrators (LSCs). The source-iteration method is used in two spatial dimensions for LSCs based on semicon-
ductor quantum dots and aligned nanorods. The LSC performance is studied in detail, including its dependence
on particle concentration and the anisotropy of the luminescence. The computational results using this theory are
compared with Monte Carlo simulations of photon transport and found to agree qualitatively. The proposed ap-
proach offers a deterministic methodology, which can be advantageous for analytic and computational modeling.
This approach has potential for more efficient and cost-effective LSCs, as well as in other applications involving
luminescent radiation. © 2013 Optical Society of America
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1. INTRODUCTION
Radiative transport theory is a phenomenological approach
for modeling the propagation and scattering of radiation
through random media using the radiative transport equation
(RTE) [1,2]. It has been applied successfully to many prob-
lems, such as neutron scattering, atmospheric scattering of
light, and light propagation in tissue with application to medi-
cal imaging. With few exceptions (notably neutron scattering),
radiative transport theory has been traditionally applied to
elastic scattering, where the scattered radiation has the same
energy as the incident one. However, when light is absorbed
by luminescent particles and is reemitted, the reemitted wave-
length (energy) differs from the absorbed one, i.e., lumines-
cence is a form of inelastic scattering. This is the case, for
example, for light propagation in luminescent solar concentra-
tors (LSCs) and in tissue containing lumophores for lumines-
cence optical tomography. When light propagates through
such a medium, it can undergo multiple absorption and
re-emission, which is detrimental for most applications.

In this study, we propose a generalization of radiative
transport theory for modeling light propagation through a
medium that contains luminescent scatters. We call the
governing equation the luminescent RTE (LRTE). We apply
this theory to model light propagation in LSCs. The measured
data enter as parameters in the LRTE.

LSCs can capture sunlight over a large area using low-cost
materials and redirect light onto a solar photovoltaic (PV) cell
at the edge of the device [3,4] (see Fig. 1). The LSC contains
luminescent particles that absorb sunlight and re-emit it at a
longer wavelength, which can be in the PV bandgap. The main
idea behind the design of LSCs is to reduce operational cost
substantially by requiring a smaller amount of expensive PV
material. In addition, unlike PVs, LSCs can also absorb diffuse
light, thereby negating the need for any tracking mechanism.

However, despite more than 30 years of research, LSCs are
not yet commercially available, primarily due to their ineffi-
ciency (see [3–17] for recent studies of LSCs).

The development of LSCs faces several challenges. Two
major challenges are increasing the re-emission of light
(the photoluminescence quantum yield) while reducing the
self-absorption, i.e., increasing the Stokes shift between the
absorption and reemission spectra (see Fig. 2). Another chal-
lenge is decreasing the escape of light from the top surface of
the LSC. Recently, it has been proposed to use aligned
semiconductor (CdTe–CdSe) nanorods in LSCs to reduce
these losses [13]. In this study, we use the LRTE approach
to find the optimal particle concentration and the optimal
LSC geometry for LSCs based on these semiconductor nano-
particles. Direct computations of the solutions of the LRTE
are performed in two spatial dimensions using the source-
iteration method [18]. Related problems have been studied re-
cently using Monte Carlo simulations of “photon transport”
[6,12,13,19,20]. The two approaches are compared in detail
and found to agree qualitatively. In particular, they yield com-
parable optimal particle concentrations for LSC performance.
These results show the accuracy and feasibility of the ap-
proach based on the deterministic LRTE. Another advantage
of this methodology is that, as a deterministic equation, the
LRTE lends itself naturally to detailed analytic modeling.

2. LUMINESCENT RADIATIVE TRANSPORT
THEORY
The theory of radiative transfer/transport has been successful
for describing scattering of light in random media, where the
scattering is elastic, i.e., the scattered wavelength (which is
inversely proportional to photon energy) is the same as the
incident wavelength [1,2,21]. On the other hand, fluorescence
and other luminescence effects are examples of inelastic
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scattering, where the reemitted wavelength differs from the
absorbed one. By analogy, it is reasonable to assume that light
propagation in a random luminescent medium can be de-
scribed by an extension of radiative transport theory. Such
a theory would be useful in various areas of research, includ-
ing solar science (see below) and fluorescence optical tomog-
raphy [22]. However, very few studies have considered such
models. We propose a radiative transport theory to model
light propagation in luminescent media. Our approach begins
with a general formalism and focuses on modeling LSCs.

The fundamental quantity in this theory is the radiance (or
specific intensity), which is the power per projected surface
area per unit direction per unit wavelength. In elastic scatter-
ing, the wavelength dependence of the radiance is usually sup-
pressed. Here, this dependence is included explicitly and the
radiance is denoted by

I�x;Ω; λ; t�∶D × S2 ×Λ × �0; tmax� → R ≥ 0

with D ⊂ R3 the spatial domain, S2 the unit sphere of direc-
tions, and Λ the set of wavelengths participating in the proc-
esses. In general, light propagation in random luminescent
media can be described by a general LRTE,

1
c
∂I
∂t

�Ω ·∇I � μaLaI − μrLrI � 0; (1)

where c is light speed, μa and μr are absorption and reemission
constants (in �1∕cm�), respectively, and La, Lr are the
corresponding absorption and reemission operators defined

below. To model the absorption operator, we recall the
Beer–Lambert law, according to which the probability of
absorption of light after a propagation distance Δs is

Pabs�Δs; λ� � 1–10−ϵ�λ�MΔs; (2)

where ϵ�λ� is the (dimensional) extinction coefficient (in
�1∕mol cm�) andM the molar concentration of the luminescent
particles (in �mol∕L�). The absorption constant μa is propor-
tional to the molar concentration as (see also [23])

μa � ln�10�M
Z
Λ
ϵ�λ�dλ: (3)

It is convenient to define the normalized absorption spectrum:

f a�λ� �
ϵ�λ�R

Λ ϵ�λ�dλ : (4)

Thus,
R
Λ f a�λ�dλ � 1. Combining these definitions, the

Beer–Lambert law of Eq. (2) is modeled by

LaI � f a�λ�I: (5)

In general, the re-emission operator in Eq. (1) can be
written as

LrI �
Z
Λ

Z
S2
Kr�λ; λ0;Ω;Ω0�I�x;Ω0; λ0�dΩ0dλ0; (6)

where Kr�λ; λ0;Ω;Ω0� is a reemission kernel. The physical
meaning of the reemission kernel is the probability that light
that is absorbed in direction Ω0 and wavelength λ0 will be re-
emitted in direction Ω and wavelength λ. The (elastic scatter-
ing) RTE is a special case of the LRTE when the absorption
and reemission spectra “coalesce” on the same single wave-
length, i.e.,

Kr�λ; λ0;Ω;Ω0� � δ�λ − λ0�pr�Ω;Ω0�;

where δ is the Dirac delta function and pr�Ω;Ω0� is the phase
function. In that case, Eq. (1) reduces to the standard RTE:

1
c
∂I
∂t

�Ω ·∇I � −μaI � μt

Z
S2
pr�Ω;Ω0�I�x;Ω0�dΩ0;

where μt � μa � μs and μs is the scattering constant.
Let us consider light propagation in LSCs based on semi-

conductor particles. Since solar illumination on the LSC
changes very slowly, time dependence can be neglected,
leading to the time-independent LRTE:

Ω ·∇I � μaf �λ�I − μrLrI � 0: (7)

For LSCs based on semiconductor nanoparticles, such as
CdSe–CdTe, the luminescence is approximately independent
of the incident radiation [24]. To model this, we propose
the “memoryless” anisotropic reemission phase function,
pr�Ω;Ω0; g� � pr�Ω; g�δ�Ω − Ω0�, where g is an anisotropy
parameter. Unlike the usual notion of anisotropy in radiative
transport theory [2], pr�Ω; g� depends on the absolute angle Ω

Fig. 1. (Color online) Illustration of light propagation in an LSC.
Sunlight (solid arrow) is incident on the top surface, absorbed and
reemitted by fluorescent nanoparticles (small spheres), and guided
toward the PV cell on the right edge.

Fig. 2. (Color online) Normalized absorption and re-emission spec-
tra [i.e., f a�λ� and f r�λ�, respectively] corresponding to semiconductor
CdSe–CdTe nanoparticles (from [13]).
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rather than Ω · Ω0 for forward-scattering kernels. The corre-
sponding reemission operator is

LrI � pr�Ω; g�f r�λ�
Z
S2

Z
Λ
f a�λ0�IdΩ0dλ0; (8)

where f r�λ� is the normalized re-emission spectrum [i.e.,R
Λ f r�λ�dλ � 1]. In fluorescent media, the quantum yield,
QY, is the probability that a photon that is absorbed will be
re-emitted (at any wavelength). Therefore, the absorption
and re-emission constants are related by

μr � QYμa: (9)

The physical meaning of the re-emission operator of Eq. (8) is
that the total absorbed light power, i.e., the double integral on
the right-hand side of Eq. (8), is reemitted at wavelengths in
accordance with the re-emission spectrum, f r�λ�.

Recently, Yudovsky and Pilon proposed two coupled
RTEs to model fluorescence imaging [25] (see also [26–28]
for related studies within the diffusion approximation). We
also note that RTEs with general kernels of the type in
Eq. (6) have been proposed for modeling luminescence for
computer graphics applications [29–31]. The main advantage
of Eqs. (7)–(9) is that they depends only on physically meas-
urable quantities, i.e., the absorption and re-emission spectra,
the absorption constant [or, by Eq. (3), the molar concentra-
tion], and the quantum yield. Moreover, this theory allows
for modeling accurately the phenomenon of self-absorption,
i.e., light that has been reemitted can be reabsorbed. Self-
absorption is due to the overlap of the absorption and reemis-
sion spectra (Fig. 2) and sets a fundamental limitation on the
performance of LSCs.

To solve Eq. (7), the boundary conditions must be specified
in a well-posed manner. On the boundary of a LSC, the
conditions can be written as

I � Sb � RI onΓin;

Γin � f�x;Ω; λ� ∈ ∂D × S2 ×Λ;Ω · ν < 0g; (10)

where ∂D is the spatial boundary of the LSC, ν is the unit out-
ward normal, R is the reflection coefficient, and Sb is the
incident radiance. These conditions prescribe the radiance
at the spatial boundary for all directions pointing into the
domain.

Analytical solutions of Eq. (7) can only be found in special
cases. In this study, solutions of this boundary value problem
are computed using numerical methods. For simplicity, we as-
sume below that the LSC is infinite in extent in the y direction,
so that only one angular variable is needed. As we shall see,
the 2D results are qualitatively similar to 3D results for the
same setup obtained using Monte Carlo simulations [13].
Therefore, we consider a rectangular LSC, such that x and
z are the horizontal and vertical spatial variables on the LSC’s
edge surface, respectively, and φ ∈ �0; 2π� is the angular
variable (φ � 0 along the positive x axis). In this case, the
radiance I�x; z;φ; λ� is measured in units of �W∕cm sr nm�.
The LRTE [Eq. (7)] reduces to

cos φ
∂I
∂x

� sin φ
∂I
∂z

� μaf a�λ�I

− μrf r�λ�pr�φ;g�
Z

2π

0

Z
Λ
f a�λ0�Idφ0dλ0 � 0: (11)

We consider two kinds of particles: spherical CdSe–CdTe
quantum dots, which reemit isotropically (g � 0 below),
and heterojunction CdSe–CdTe nanorods. The nanorods are
assumed to absorb light isotropically and luminesce in a pre-
ferred direction orthogonal to the long axis [32]. Assuming
these nanorods can be aligned in the LSC (e.g., in a liquid
crystal matrix) with their long axes perpendicular to the
top surface, the luminescence is preferentially in the direction
parallel to the top surface. This is designed to reduce the es-
cape of light from the top surface [13] (see corresponding 3D
illustration in Fig. 3).

To model this anisotropic luminescence, we use the
Henyey–Greenstein reemission function [33] (see Fig. 4):

pr�φ; g� �
1
2π

1 − g2

1 − 2g cos 2φ� g2
: (12)

For spherical quantum dots, g � 0 and pr � �2π�−1 is iso-
tropic. In the idealized limiting case, the luminescence would
be only in the direction parallel to the top surface. This cor-
responds to g → 1 and limg→1pr�φ; g� � δ�cos 2φ − 1�. How-
ever, the nanorods cannot be perfectly aligned and cannot
luminesce exactly in this way. Therefore, a more realistic case
is to consider 0 < g < 1, which serves to model nanorods that
are not ideal in this sense. Thus, for any 0 < g < 1, Eq. (12)
describes luminescence in a cone centered about the x axis,
whose opening angle decreases monotonically as g
approaches 1 (in the 3D case this corresponds to conical
luminescence centered about the x–y plane).

Fig. 3. (Color online) Illustration of light propagation in a 3D LSC
based on anisotropic nanorods. A PV cell is located at the right edge.
Perfect mirrors are assumed to cover the bottom surface and all the
other edges.

Fig. 4. (Color online) Dependence of the reemission phase function
in Eq. (12) on the polar angle φ for isotropic quantum dots (g � 0,
dotted–dashed line) and aligned nanorods (g � 0.75, solid curve).
The nanorods luminesce preferentially along the x axis, i.e., φ � 0
and φ � π.
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We now consider a box-shaped LSC of length lx, x ∈
�−�lx∕2�; �lx∕2�� and thickness (or height) lz, z ∈ �−�lz∕2�;
�lz∕2��. The solar PV cell covers the right side x � �lx∕2�.
We assume the PV absorbs all the light that impinges on it.
This can be modeled using the “vacuum” boundary conditions:

I
�
lx
2
; z;φ; λ

�
� 0; φ ∈

�
π

2
;
3π
2

�
: (13)

The bottom surface and the left edge surface are assumed to
be covered by perfect mirrors. The associated boundary
conditions are

I
�
−
lx
2
; z;φ; λ

�
� I

�
−
lx
2
; z; π � φ; λ

�
; φ ∈

�
−
π

2
;
π

2

�
; (14)

I
�
x;−

lz
2
;φ; λ

�
� I

�
x;−

lz
2
; 2π − φ; λ

�
; φ ∈ �π; 2π�. (15)

At the top surface light is partially reflected and we use the
Fresnel reflection coefficient R�φ� for unpolarized light [34] as

I
�
x;
lz
2
;φ; λ

�
� �1 − R�φ��I

�
x;
lz
2
;φ; λ

�
� R�φ0�I

�
x;
lz
2
;φ0; λ

�
;

(16)

where φ0 � 2π − φ is the reflected angle. We assume that the
solar illumination on the top surface of the LSC is spatially
uniform and centered at normal incidence φ � 3π∕2, i.e.,

Sb�φ; λ� � f sol�λ�e−8�φ−
3π
2 �2 ; φ ∈ �π; 2π�; (17)

where f sol�λ� is the solar irradiance measured at sea level [35].
We solve the boundary value problem of Eqs. (11)–(17) us-

ing the source-iteration method [36] and an upwinding
numerical scheme [18]). The source-iteration method is an ef-
ficacious approach for solving boundary value problems that
involve large linear systems. To use it, the discretized radiance
is denoted as Ii;j;m;k, where �i; j;m; k� are the indices corre-
sponding to �x; z;φ; λ� and the number of corresponding grid
points are �Nx; Nz; Nφ; Nλ�. We seek an iterative solution as

I�x; z;φ; λ� ≈ Ii;j;m;k ≈
Xmaxiter

s�0

I�s�i;j;m;k;

where maxiter denotes the number of iterations for the solu-
tion to converge. As a stopping criterion, we use

‖I�s��x; z;φ; λ�‖∞ � max
i;j;m;k

jI�s�i;j;m;kj ≤ Δ

within a fixed tolerance of Δ � 10−5. The source-iteration
method converges rapidly after relatively few iterations.
For example, choosing the physical constants as lx � 3�cm�,
lz � 0.4�cm�, μa � 600�1∕cm�, QY � 0.95, and anisotropy
parameter g � 0.75, and the numerical grid sizes as
Nx � 48, Nz � 6, Nφ � 80, and Nλ � 14, the solution con-
verges within 250 iterations (see Fig. 5).

3. LSC PERFORMANCE METRICS
There are three kinds of loss mechanisms of light in LSCs
[5,9–11,15,17].

1. Reemission losses. Light that is absorbed is not neces-
sarily reemitted. This is captured by the quantum yield, QY.

2. Self-absorption losses. Light that is reemitted can be
reabsorbed (self-absorption). In general, light can undergo
multiple absorption and reemission events, which reduces
its intensity inside the LSC. Self-absorption is due to the over-
lap of the absorption and reemission spectra (see Fig. 2).
Thus, self-absorption is determined primarily by the quantum
yield and the absorption and reemission spectra.

3. Escape losses. Light can escape from the top surface of
the LSC.

We refer to the combination of the reemission and self-
absorption losses as “combined absorption losses.”

Our goal is to optimize the experimentally controllable LSC
design parameters, so as to minimize these losses and, there-
fore, maximize the light that reaches the PV. To this end, we
assume that the absorption and reemission spectra are fixed
as shown in Fig. 2 and that the quantum yield is fixed as
QY � 0.95. These are measured values for CdSe–CdTe semi-
conductor particles [13]. We assume that the controllable
LSC design parameters are

1. the absorption constant, μa, or, equivalently by Eq. (3),
the molar concentration of the particles;

2. the LSC size, i.e., the thickness lz and length lx; and
3. the anisotropy factor g of the aligned nanorods.

An often used LSC performance metric is the “optical effi-
ciency,”which is the ratio of the spectral power at a particular
wavelength collected by the PV cell to the solar spectral
power at a particular wavelength that is incident on the top
surface, i.e.,

ηpv�λ� �
Φpv�λ�
Φsol�λ�

; (18)

where

Φpv�λ� �
Z lz

2

−
lz
2

Z π
2

−π
2

I
�
lx
2
; z;φ; λ

�
dφdz;

Φpv denotes the spectral power at a particular wavelength at
the PV edge in �W∕nm�. Φsol is the solar spectral power at a
particular wavelength at the LSC’s top surface in �W∕nm�, and

Fig. 5. (Color online) Convergence of the LRTE solution as a
function of iteration number (loglog plot).

816 J. Opt. Soc. Am. A / Vol. 30, No. 5 / May 2013 D. Şahin and B. Ilan



Φsol�λ� � lx

Z
2π

π
Sb�φ; λ�dφ:

Using Eq. (17),

Φsol�λ� � Clx f sol�λ�; C ≈ 0.62:

We define the wavelength-averaged optical efficiency,

η̄pv �
R
Λ ηpv�λ�dλR
Λ Φsol�λ�dλ

; (19)

and wavelength-averaged losses due to escape from the top
surface,

η̄top �
R
Λ Φtop�λ�dλR
Λ Φsol�λ�dλ

; (20)

where the spectral power at a particular wavelength that
escapes from the LSC is

Φtop�λ� �
Z lx

2

−
lx
2

Z
π

0
�1 − R�φ��I

�
x;
lz
2
;φ; λ

�
dφdx; (21)

where �1 − R�φ�� is the fraction of the reemitted light that is
transmitted outside the LSC [3]. Since light is either collected
by the PV, escapes from the top surface, or combined absorp-
tion losses, the wavelength-averaged combined absorption
loss is

η̄abs � 1 − η̄pv − η̄top: (22)

Finally, as discussed in Subsection 4.A.3, another useful met-
ric for the LSC performance is the LSC optical gain [13]:

Γ̄ � η̄pv × G; G ≐
Atop

Apv
≐

lx
lz
; (23)

where G is often called the geometric gain factor, Atop is the
top surface area, and Apv is the area covered by the PV cell.

4. COMPUTATIONAL RESULTS
To make detailed computations for the semiconductor LSC
performance, we solve the boundary value problem in
Eqs. (11)–(17) for particular LSC design parameters, i.e.,
QY � 0.95 and lz � 0.4�cm�. The refractive index of the LSC
waveguide is taken as nLSC � 1.7. From Snell’s law, light is
captured in the LSC whenever the reemitted polar angle is
greater than 36°. We seek the optimal design parameters
mentioned above, i.e., μa and G.

A. Optimal LSC Design Parameters
1. Optimal Absorption Constant
To optimize the LSC design parameters, at first we seek the
optimal absorption constant, μa. Here we use g � 0.75.
Figure 6 shows the wavelength-averaged optical efficiency
and loss mechanisms as functions of μa. At low particle con-
centrations (μa < 100�1∕cm�), much of the incident light is lost
due to top loss. Since the light is incident at normal angle,
most of the light escapes from the LSC’s top surface. At
low particle concentration, as seen in Fig. 6, a small amount
of light is either collected or lost due to self-absorption.

It is well known that numerical solutions of the RTE tend to
have different characteristics for weak scattering media and

localized sources [36]. This is due, in part, to the angular dis-
cretization leading to the “ray effects” [37], in the weakly scat-
tering regime, i.e., for small μa, and when the source is
collimated. In this regime, the source-iteration method be-
comes highly sensitive to the angular discretization. The
ray effects are implicitly included in the combined absorption
loss [Eq. (22)]. This explains why the absorption loss does not
vanish at low particle concentrations. On the other hand, ray
effects are mitigated in the strongly scattering regime, i.e., for
large μa. In the intermediate regime, Fig. 6 shows that the op-
tical efficiency has a maximum value, maxμa�η̄pv� ≈ 0.3, ob-
tained at μopt ≈ 600�1∕cm�. At this optimal value, the
absorption losses are somewhat large and the escape from
the top surface is quite small. Hence, the optimal absorption
constant is obtained from a balance between these competing
loss mechanisms.

2. Effect of Anisotropy
We now seek to study the effect of anisotropy of the lumines-
cence on the LSC performance. We use the previously given
LSC dimensions, μa � 600, and vary the anisotropy factor, g,
in the reemission function [Eq. (12)]. Figure 7 shows that the
LSC performance increases monotonically with g. In particu-
lar, in the ideal case of g � 1, when light is reemitted only in
the �x directions, the LSC optical gain is 30% greater than
using isotropic quantum dots. This suggests that aligning
the nanorods can have a significant impact on the LSC
performance.

3. Optimal LSC Length
To optimize the LSC’s length using the concept of geometric
gain factor [see Eq. (23)], the idea is to make the area covered

Fig. 6. (Color online) Wavelength-averaged optical efficiency
[Eq. (19) (solid)], the averaged escape losses from the top surface
[Eq. (20), dots], and the combined absorption losses [Eq. (22),
dashes], as functions of the absorption constant, μa (in �1∕cm�) using
aligned nanorods (g � 0.75).

Fig. 7. (Color online) Wavelength-averaged optical efficiency (left
axis) and LSC optical gain (right axis) as functions of the anisotropy
factor.
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by the PV cell constant, while the top surface area is varied. To
do this, we use μa � 600�1∕cm�, the anisotropy factor
g � 0.75, and vary the length lx, while fixing the thickness
at lz � 0.4�cm�. The results in Fig. 8 show that the optical ef-
ficiency decreases as the length lx increases. This makes
sense, because as lx increases, light has to travel a longer dis-
tance to reach the PV, thus increasing the losses due to escape
from the top surface and self-absorption. However, the optical
efficiency is not the right metric for predicting the LSC’s
performance, because it is based on power rather than power
density.

Figure 9 shows that the optimal geometric gain factor is
Gopt ≈ 27, which corresponds to lx ≤ 10.8�cm�. Thus, the opti-
mal LSC design is fairly thin (in z) and long (in x). Further-
more, the maximal LSC optical gain is Γ̄max ≈ 4. While this
is an idealized 2D scenario, it is nonetheless encouraging
for using aligned nanorods.

5. MONTE CARLO METHOD FOR LIGHT
PROPAGATION IN LSCS
A. Method
Monte Carlo (MC) simulations for photon transport are a
common tool for studying light propagation in random media.
They have been extensively used to model light propagation in
several multiphysics problems [19,38]. One of the recent ap-
plication areas is LSCs [5,6,12,13]. To compare with the above
LRTE results, we use a 2D version of the MC algorithm in [13].
We assume that light is normally incident on the top surface,
use the “particles” as above, i.e., same absorption and reemis-
sion spectra, QY � 0.95, g � 0.75, and use the same boundary
conditions as above.

Briefly, to obtain accurate results, a photon packet of 107

photons (or discrete particles), whose wavelengths are

sampled from the solar spectrum, are incident on the top sur-
face uniformly in x. Each photon is tracked until either col-
lected at the PV or lost. The probability of absorption is
calculated using Eq. (2). Specifically, in order to accelerate
the MC computations [5,6,13], the probability that a photon
entering the LSC at normal incidence is initially absorbed is
computed as

ξ ≤ Pabs�2lz; λi�; (24)

where λi is the incident wavelength and ξ is a uniform random
variable in (0, 1). When Eq. (24) is not satisfied, the incident
photon is assumed not to be captured inside the LSC. If a pho-
ton is initially captured in the LSC, its reemission probability is
the quantum yield, QY. If reemitted, the photon’s wavelength,
direction, and position are updated as follows. The reemitted
wavelength is sampled from f r�λ�. The direction of the reemit-
ted photon is found from the accumulated distribution
function Θ obtained from Eq. (12), i.e.,

P�φ; g� � 1
2π

8<
:
Θ�φ; g�; φ ∈ �0; π∕2�;
π � Θ�φ; g�; φ ∈ �π∕2; 3π∕2�;
2π � Θ�φ; g�; φ ∈ �3π∕2; 2π�;

(25)

where

Θ�φ; g� � tan−1�~g tan φ�; ~g � 1 − g
1� g

:

Inverting Eq. (25), the reemission angle is computed as

φ �
8<
:
tan−1�~g tan�2πξ��; ξ ∈ �0; 1∕4�;
tan−1�~g tan�π�2ξ − 1���; ξ ∈ �1∕4; 3∕4�;
tan−1�~g tan�2π�ξ − 1���; ξ ∈ �3∕4; 1�;

where ξ is a uniformly random variable in (0, 1). The photon’s
position is then updated using

x0 � x� Δs cos φ; z0 � z� Δs sin φ;

where Δs is found by inverting the Beer–Lambert law [Eq. (2)]
as

Δs � −
1

ϵ�λ�M log10 ξ;

where ξ is a random variable uniformly distributed in (0, 1). If
the photon reaches the PV cell at x � �lx∕2�, it is assumed to
be collected. The LSC performance metrics are computed
similarly to Eqs. (18)–(23) (see [13] for further details of this
algorithm).

B. Comparison of LRTE and Monte Carlo Approaches
Using the MC method outlined above and the same LSC size
lx � 3�cm� lz � 0.4�cm� and anisotropy factor g � 0.75, the
wavelength-averaged optical efficiency [Eq. (19)] is computed
while varying the absorption constant, μa. To compare
the results with the LRTE computations, we use Eq. (3).
Figure 10 shows that the optimal absorption constants are
almost the same using the LRTE and MC approaches
(Mopt ≈ 2.6 × 10−6�mol∕L�, μopt ≈ 600). Furthermore, the maxi-
mal optical efficiency is also approximately the same as found
using the LRTE approach, i.e., η̄pv ≈ 0.3. This shows the con-
sistency between the deterministic LRTE and the statistical
MC approaches.

Fig. 8. (Color online) Wavelength-averaged optical efficiency
with μa � 600 and g � 0.75 as a function of the geometric gain factor
G � �lx∕lz� with lz � 0.4�cm�.

Fig. 9. (Color online) LSC optical gain for the same parameters as in
Fig. 8.
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C. Discussion
We do not make the claim that the deterministic approach is
better than the statistical one. However, they complement
each other. The MC approach is conceptually simpler, easier
to code, and has certain numerical advantages when dealing
with highly collimated sources, a weak scattering regime, and
in many dimensions. On the other hand, deterministic compu-
tational techniques for the standard RTE are quite efficient
and are also commonly used in the literature to model real-
world problems [18,39]. While the LRTE has an additional
dimension compared with the standard RTE, this study shows
that the LRTE can be solved computationally by adapting
existing numerical methods. The agreement between the ap-
proaches serves to validate each other (see [40] for a rigorous
comparison between these approaches). Another benefit of
the LRTE is that it is amenable to further analytical modeling,
i.e., rigorous mathematical techniques and asymptotics.
Further studies are required to make this approach more real-
istic, i.e., model a 3D LSC, include polarization effects, etc.

6. CONCLUSIONS
This study highlights the role of radiative transport theory in
modeling light propagation in luminescent media. In particu-
lar, we have developed a deterministic approach using the
LRTE [Eq. (7)] that takes into account accurately absorption,
self-absorption, and anisotropic luminescence. Using the
LRTE in two spatial dimensions, the optimal LSC design
parameters are computed and the results using aligned nano-
rods are encouraging for the LSC technology. This yields ac-
curate and insightful results for designing LSCs. Furthermore,
the LRTE approach can be extended to model other multidi-
mensional problems involving luminescence radiation.
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