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Abstract The Raman response function and Raman nonlinear index of phosphosilicate
fibers are calculated for several P2O5 concentrations. The nonlinear index of phosphosilicate
fiber is estimated by using the Boling formula, and it is used to calculate the Raman fraction
of the nonlinear index. On the other hand, the Raman response function of the phosphosilicate
fibers is fitted to a superposition of six phase-shifted under-damped functions in order to use
it in the numerical simulation of ultra-short pulse propagation. We show through numerical
simulations that phosphosilicate fibers are a suitable medium to observe a scaling up of the
Raman self-frequency shift when compared to silica fibers.

Keywords Raman gain · Raman fraction · Raman response function ·
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1 Introduction

Stimulated Raman scattering (SRS) in optical fibers is a nonlinear effect where part of the
energy of a pump wave is transferred to another Stokes wave of lower frequency (Agrawal
2007). In some cases this effect is detrimental for the operation of optical fiber systems
(Agrawal 2007), but also can be used to amplify and generate laser light in a wide range of
wavelengths (Bertoni 1997; Dianov et al. 1997; Prabhu et al. 2000). The energy transfer rate
between pump and Stokes waves depends on several parameters, being the Raman gain char-
acteristics of the material composition the most important, in our case the core composition
(Galeener et al. 1978). Two of the core compositions that have received more attention are
SiO2–GeO2 (Germanium-doped fiber) and SiO2–P2O5(Phosphosilicate-doped fiber), mainly
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due to the higher Raman gain coefficient and higher Raman frequency shift of the generated
Stokes wave, respectively (Dianov 2002). In particular, phosphosilicate optical fibers are a
suitable medium to reduce the number of cascades in nested or chained cavity Raman fiber
lasers due to their large 1,330 cm−1 Raman shift (Dianov et al. 1997; Prabhu et al. 2000;
Demidov et al. 2003, Anzueto-Sanchez et al. 2006). In addition, early experimental demon-
strations showed that phosphosilicate fibers are also a convenient medium to generate high
energy femtosecond pulses (Gouveia-Neto 1992).

On the other hand, in the propagation of ultrashort pulses the description of the Raman
effect in terms of a Raman response function is more convenient, due to the fact that the
pulse width can be of the order of the Raman shift (Stolen et al. 1989). In other terms, if
the spectral width of the pulse exceeds a few terahertz, the high frequency components of the
pulse transfer energy to the low frequency components (Agrawal 1990), a effect referred as
Raman self-frequency shift which, is best described in terms of the Raman response function
The Raman response function describes the delayed temporal response of the nonlinearity,
which physically can be thought as arising when two coincident optical fields (the intensity
of the high frequency components of the pulse) produce an initial distortion on the mole-
cules and then a third optical field (the lower frequency components of the pulse) arrives to
realize the nonlinearity before the memory of the distortion completely fades away (Tang
and Sutherland 1997; Martínez-Rios et al. 2001). Analytical forms of the Raman response
function have been proposed in order to simplify the numerical calculations (Blow and Wood
1989; Lin and Agrawal 2006; Hollenbeck and Cantrell 2002). Blow and Wood (1989) mod-
eled the Raman response as a single damped oscillation which corresponds to a Raman gain
with a Lorentzian profile, while Lin and Agrawal (2006) proposed a function that accounts
for the anisotropic part of the Raman response, which was introduced in order to obtain
a better fit to the actual Raman gain. On the other hand, Hollenbeck and Cantrell (2002)
obtained a more accurate fitting of the Raman response function by the superposition of 13
functions, obtained by assuming an inhomogeneous distribution of damped oscillators. It is
worth to mention that the proposed Raman response functions correspond to the case of pure
silica fiber, while it is well known that the response function varies with the composition
of the core fiber being larger for GeO2 doped fibers (Rottwith and Povlsen 2005). In this
way, it will be useful to calculate the Raman contribution to the nonlinear index and have
an analytical Raman response function for phosphosilicate fibers in order to simplify the
numerical calculations, particularly for the study of ultrashort pulse propagation.

In this work we calculate the Raman contribution to the nonlinear index in phosphosilicate
fibers. In addition, we propose an alternative Raman response function which consists in the
superposition of only six under-damped phase shifted functions to fit the Raman response
of phosphosilicate fibers. The obtained fitting functions reproduce with good accuracy the
Raman gain and Raman nonlinear index spectra. By solving numerically the generalized
nonlinear Schrodinger equation we show that phosphosilicate fibers experience a higher
self-frequency shift compared to silica fiber under similar conditions.

2 Raman gain of phosphosilicate fibers

In this work we will assume that Raman gain of phosphosilicate fiber can be expressed as
the linear superposition of the Raman gain due to SiO2 and the Raman gain due to P2O5,
weighted by the molar fraction. However, instead of taking the Raman gain spectrum of
pure P2O5, we take the Raman gain of P2O5 as that extracted from a known phosphosilicate
fiber. Since in a real phosphosilicate fiber the Raman gain spectrum has contributions from
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Fig. 1 a Raman gain spectrum of a fiber doped with 9 mol% of P2O5; b calculated Raman gain spectrum
of gSi−P−O

R

several vibrational modes arising from O=P double bonds, Si–O–Si, P–O–Si and P–O–P
(Plotnichenko et al. 2002), we write the composed Raman gain in a phosphosilicate fiber as,

gSiO2−P2O5
R = XSiO2 gSiO2

R + XP2O5 gSi−P−O
R (1)

where X denotes the molar fraction, and gSiO2−P2O5
R is the Raman gain coefficient of the

phosphosilicate fiber. Written in this form, it is assumed that we can separate the sole contri-

bution from silica in a single term
(

XSiO2 gSiO2
R

)
, which is an assumption frequently found

in literature (Dianov et al. 2000). On the other hand, in the term written as XP2O5 gSi−P−O
R ,

we are assuming that this term contains the part of the Raman spectrum arising from O=P
double bonds, P–O–Si and P–O–P linkages. Thus by knowing the Raman gain spectrum of
pure silica and a phosphosilicate fiber doped with a given P2O5 concentration (9 mol% in
Fig. 1a), we can extract a Raman gain spectrum for gSi−P−O

R (Fig. 1b) and use to estimate
the Raman gain spectrum for several concentrations of P2O5. It is worth to note that the
last assumptions may not be accurate enough to be a valid generalization for all types of
phosphosilicate fibers, since the Raman gain characteristics also depend on the fabrication
process.

In the calculation of the Raman gain spectrum of phosphosilicate fibers we approximate
the peak Raman gain at 1,330 cm−1 frequency shift by the following relation, which was
obtained from published experimental values at different concentrations and wavelengths
(Kazunori et al. 1986; Dianov 2002):

gP2O5
R

(
×10−13 m

W

)
= 0.0735825

λP

(
XP2O5 − 0.239584

)
(2)

where λP is the pump wavelength. Figure 2 shows the Raman gain spectrum for P2O5 con-
centrations of 3 mol% (solid curve), 6 mol% (dashed curve), 9 mol% (dotted curve), 11 mol%
(dash-dotted curve), 14 mol% (dash-dotted-dotted curve), 17 mol% (short-dashed curve) and
20 mol% (short-dotted curve). All these curves were obtained from Fig. 1 by using relations
(1) and (2).
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Fig. 2 Normalized Raman gain spectrum for several P2O5 concentrations

3 Raman nonlinear index

The changes in the refractive index caused by the Raman effect are associated with the
real portion of the Raman susceptibility. Since usually the only data available is the Raman
gain spectrum, it is necessary to generate the Raman nonlinear index spectrum from the
Raman gain spectrum. In linear optics, the real and imaginary parts of the linear susceptibil-
ity are related through the Kramers–Kronig relations. However, it has been shown that the
Kramers–Kronig dispersion relations involving dispersive-dissipative effects are also valid
for susceptibilities of odd order such as the Raman susceptibility (Bassani and Scandolo
1991). The Kramers–Kronig dispersive relations for the parallel Raman susceptibility χRaman

can be written as

Re
{
χRaman(�

′)
} = 1

π
P

+∞∫

−∞
d�

Im
{
χRaman(�

′)
}

� − �′ (3a)

Im
{
χRaman(�

′)
} = − 1

π
P

+∞∫

−∞
d�

Re
{
χRaman(�

′)
}

� − �′ (3b)

where Re{} and Im{} stand for the real and imaginary parts of their arguments, P denotes
the principal value of the integrals, and � (=ωP − ωS) is the frequency difference between
the pump and Stokes waves, i.e., the Raman frequency shift.

The integrals in ( 3) can be considered as the convolution of the Fourier transforms of two
functions, i.e.,

Im
{
χRaman(�

′)
} = − 1

π
P

+∞∫

−∞
d�

Re
{
χRaman(�

′)
}

� − �′

= 1

π
P

{(
1

�

)
∗ Re {χRaman(�)}

}
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Since the inverse Fourier transform of the convolution of two functions is equal to the mul-
tiplication of the inverse transforms, we may write

+∞∫

−∞
d�′Im

{
χRaman(�

′)
} = 1

π
P

⎧
⎨
⎩

+∞∫

−∞
d�′

(
exp(i�′t)

�′

)

×
+∞∫

−∞
d�′Re {χRaman(�)} exp(i�′t)

⎫
⎬
⎭

where now the discontinuity is only the first integral on the right-side. Thus, for the first
integral we have

P

+∞∫

−∞
d�′

(
exp(i�′t)

�′

)
= lim

a → −∞
b → +∞

b∫

a

d�′
(

exp(i�′t)
�′

)

= lim
a → −∞
b → +∞

⎛
⎝ lim

ε→0

p−ε∫

a

d�′
(

exp(i�′t)
�′

)

+ lim
ε→0

b∫

p+ε

d�′
(

exp(i�′t)
�′

)⎞
⎠

and since p is arbitrary, we obtain

P

+∞∫

−∞
d�′

(
exp(i�′t)

�′

)
= lim

ε→0

∞∫

ε

d�′
(

exp(i�′t) − exp(−i�′t)
�′

)

= lim
ε→0

∞∫

ε

d�′
(

sin(�′t)
�′

)

= π i

By using this result into ( 3), we obtain

+∞∫

−∞
d�′Re

{
χRaman(�

′)
}

exp(i�′t) = −i

+∞∫

−∞
d�′Im

{
χRaman(�

′)
}

exp(i�′t) (4)

Thus, by performing an inverse Fourier transformation on the Raman gain spectrum followed
by a Fourier transformation, we can obtain the corresponding spectrum of the Raman non-
linear index. Figure 3 shows the Raman nonlinear spectra corresponding to the Raman gain
spectra of Fig. 2, where we have used the method of repeated Fourier transformation, and
the following relations (del Coso and Solis 2004):
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Fig. 3 Spectra of the Raman nonlinear index for several concentration of P2O5

Re
{
χRaman(�

′)
} = 4

3
n2ε0cn2,R(�)

Im
{
χRaman(�

′)
} = n2ε0cλ

3π
gR(�)

where n is the linear refractive index, ε0 is the permittivity of free space, c is the speed of
light, λ is the light wavelength, and n2,Ris the Raman nonlinear index.

4 Raman fraction

To obtain the Raman fraction of the nonlinear index used in the definition of the Raman
response function we need to know the nonlinear index (electronic plus Raman) of the
phosphosilicate fiber. In the case of pure silica, the nonlinear index can be approximated by
the following polynomial equation:

n2 (λ) = 1.000055{8.30608 − 27.79971λ + 59.66014λ2 − 69.24258λ3

+ 45.22437λ4 − 15.63666λ5 + 2.22585λ6} (5)

This equation is a polynomial fit of the PERT curve obtained by Milam (1998), who compiled
published measured values of the nonlinear index at several wavelengths. Figure 4 shows
the nonlinear index of pure silica as a function of wavelength obtained by using relation (5).
Here we assume that the nonlinear index in Fig. 4 is the sum of the electronic and Raman
contributions at cero frequency shift.

In the case of silica fibers doped with P2O5 there are not measured values of the nonlinear
index available in literature. Since this value is needed to estimate the Raman fraction, the
Boling formula will be used to calculate n2 in phosphosilicate fibers from known values of
refractive index. The Boling formula relates the nonlinear index of a given material with the
magnitude and dispersion of the linear refractive index. In particular, the nonlinear index is
related to the refractive indices at the Fraunhofer lines d, f and c, and the Abbe number vd

(Boling et al. 1978):
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Fig. 4 Nonlinear index of pure silica as a function of wavelength

Fig. 5 Nonlinear index of phosphosilicate fiber as a function of P2O5 concentration in mol%

n2[×10−20m2/W ] = 2.867 × 68 (nd − 1)
(
n2

d + 2
)2

vd

[
1.52 + (nd−1)

(
n2

d+2
)2

6nd
vd

]1/2 (6)

where n f , nd and nc are the refractive indices at λ f = 4.86 nm, λd = 587.6 nm, λc = 656.3
nm, and

vd = nd − 1

n f − nc

Figure 5 shows the nonlinear index of a phosphosilicate fiber as a function of P2O5 concen-
tration, where we have used the data for a fiber doped with 9.1 mol% to estimate the value
for pure P2O5. As in the case of the Raman gain discussed in Sect. 2, the nonlinear index of
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Fig. 6 Raman fraction as a function of P2O5 concentration

the phosphosilicate fiber may not be the linear superposition of the nonlinear index due to
pure SiO2 and pure P2O5 weighted by the molar fraction of each component. However, in
this work it is assumed that the nonlinear index of a phosphosilicate fiber can be expressed
as a linear superposition of the following form:

nSiO2−P2O5
2 = nSiO2

2 (1 − χmol%) + nP2O5
2 χmol%

The Raman fraction is defined as the ratio between the Raman nonlinear index and the total
nonlinear index, which here is taken as the value shown in Fig. 5. The Raman fraction as a
function of P2O5 concentration is shown in Fig. 6.

5 Raman response function

The Raman response function can be obtained from the Raman gain or Raman nonlinear
index spectra through a sine or cosine Fourier transform (Stolen et al. 1989). Here, we cal-
culate the Raman response function from the Raman gain spectrum by using the following
Fourier transformation (Agrawal 2007),

h R (τ ) = 4n (ωP ) c

3ωPχ(3) fR

∞∫

−∞
gR (�)e−i�τ d� (7)

which is equivalent to the Fourier sine transform due to the odd character of the Raman gain
gR(�). In addition, χ(3) is directly related to the nonlinear index by:

χ(3)

[
m2

V 2

]
= 4ε0cn2

3
n2

where n2 is in m2/W. Usually, the only known Raman data available for a given material is the
Raman gain spectrum. In the case of new materials is more convenient to use ( 7) to obtain the
Raman response function and then, if possible, we can fit the numerically obtained Raman
response function to a convenient function, so that, subsequent numerical calculations can
be simplified.
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Fig. 7 Raman response function of a pure silica fiber, and b a phosphosilicate fiber doped with 9.1 mol%
P2O5. The dot points show the values obtained directly from the Raman gain spectrum, and the solid lines
show the corresponding fitting function

Table 1 Parameters for the fitting functions of silica

i ai bi ci di

1 −1.38286 6.9826 −152.249 0.0235981

2 −2.89047 6.90464 −116.131 0.0662645

3 −23.3933 17.73 −94.064 1.28371

4 −0.68713 2.05146 −93.5428 6.17544

5 1.53569 8.54286 4.81366 2.2266

6 33.1005 59.9305 86.0343 0.701631

Table 2 Parameters for the fitting functions of phosphosilicate fiber

I ai bi ci di

1 −2.42065 3.07206 −252.906 6.32622

2 −2.50814 7.55849 −99.7629 1.6795

3 133.582 74.32972 −72.9659; 2.72893

4 −111.118 94.6436 −0.470369 1.57015

5 65.5615 12.2574 −0.00273249 0.153178

6 50.1704 122.696 180.449 1.60585

In Fig. 7 we plot the Raman response function of pure silica and a phosphosilicate fiber
doped with 9.1 mol% of P2O5, respectively, obtained from Eq.( 7). The dotted curve cor-
responds to the results obtained from the sine transform and the solid line shows the fitting
function, which in this case is a superposition of six phase-shifted under-damped functions
of the following form:

h R(τ ) =
n∑

i=1

ai exp(−biτ) sin(ciτ + di ) (8)

Increasing the number of functions will result in a higher accuracy, but as can be observed
six under-damped fitting functions give an almost perfect match. The coefficients for the
fitting function of silica are given in Table 1 and the coefficients for the phosphosilicate fiber
are given in Table 2. The fitting expressed by relation (8) is used only to provide a quali-
tative agreement with the Raman response function obtained directly from the Raman gain
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Fig. 8 Pulse profiles for 0.2 ps pump pulses propagated through a 500 m of silica fiber (solid curve),
and b 100 m of phosphosilicate fiber (solid curve). The dashed curve show the input pulse profile

spectrum, and no attempt was made to relate the coefficients to specific Raman resonances.
Our future effort will be directed to associate the known central frequencies of Raman reso-
nances (Hollenbeck and Cantrell 2002) with the coefficients ci of our fitting functions. Since
the Fourier transform of Eq.(8) can be evaluated analytically, an analytical expression for the
Raman gain in terms of the fitting coefficients may be derived.

6 Raman self-frequency shift

We can observe from the Raman gain spectra of Fig. 2 that the Raman gain of phosphosilicate
fiber at frequency shifts as low as ∼1.88 THz is of the order of the peak Raman gains at ∼14.8
and ∼40 THz, which means, for example, that the soliton self-frequency shift is enhanced
in a phosphosilicate fiber compared to the case of silica fiber. The objective of this section
is to compare the Raman self frequency shift in a pure silica fiber and a phosphosilicate
fiber assuming similar input pulse conditions and waveguide parameters. For this purpose
we solve the generalized nonlinear Schrodinger equation, given by (Agrawal 2007)
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Fig. 9 Output spectrum for 0.2 ps pump pulses propagated through a 500 m of silica fiber (solid curve), and
b 100 m of phosphosilicate fiber (solid curve). The dashed curve show the input pulse spectrum

∂ A(z, t)

∂z
+ β2

2

∂2 A(z, t)

∂t2 = iγ

(
1 + i

ω0

∂

∂t

) ⎛
⎝A(z, t)

∞∫

0

R(t ′)
∣∣A(z, t − t ′)

∣∣2
dt ′

⎞
⎠ (9)

where γ (= n2(ω0)/(cAef f (ω0)), being ω0 the central frequency of the pulse, Aef f the effec-
tive area, and c the spped of light) is the nonlinear coefficient, and A(z,t) is the slowly-varying
pulse envelope. In writting Eq. (9) we have neglected losses and the dispersion terms of order
higher than 2, i.e., only group velocity dispersion is taken into account.

For the numerical solution of Eq. (9) we consider the following expression:

∂ A(z, t)

∂z
=

(
D̂ + N̂

)
U (z, t) (10)

Equation (10) was solved by using the fourth-order Runge-Kutta method in the interaction
picture using the following algorithm (Hult 2007):
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Fig. 10 Density plot of the time evolution of the input pulse with the propagation length for a 500 m silica
fiber, and b 100 m phosphosilicate fiber

A1(z, t) = IFT

{
exp

(
h

2
D̂(ω)

)
FT {A(z, t)}

}
(11a)

K1 = IFT

{
exp

(
h

2
D̂(ω)

)
FT

{
hN̂ (A(z, t)) A(z, t)

}}
;

K2 = hN̂ (AI (z, t) + K1/2) (AI (z, t) + K1/2) (11b)

K3 = hN̂ (AI (z, t) + K2/2) (AI (z, t) + K2/2) ;

K4 = hN̂
(

IFT

{
exp

(
h

2
D̂(ω)

)
FT {AI (z, t) + K3}

})

I FT

{
exp

(
h

2
D̂(ω)

)
FT {AI (z, t) + K3}

}

A(z + h, t)= I FT

{
exp

(
h

2
D̂(ω)

)
FT

{
AI (z, t)+ K1

6
+ K2

3
+ K3

3

}}
+ K4

6
(11c)
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Fig. 11 Density plot of the spectral evolution of the input pulse with the propagation length for a 500 m silica
fiber, and b 100 m phosphosilicate fiber

where the nonlinear operator N̂ (A(z, t)) is defined as:

N̂ (A(z, t)) = 1

A(z, t)

[
i(1 − fR)

(
γ |A(z, t)|2 A(z, t) − 2iγ1

∂

∂t

{
A(z, t |2 A(z, t)

})

+ iγ A(z, t)I FT
{

h̃ R(ωω)FT
{

A(z, t)|2}
}

− γ1
∂

∂t

{
A(z, t) I FT

{
h̃ R(ωω)FT

{
A(z, t)|2}

}}]
(12)

In relations (10)–(12) FT and IFT denote the Fourier and inverse Fourier’s transforms,
respectively. In (12) h̃ R(ω) is the Fourier transform of the Raman response function defined
in this work by Eq.8 and the parameters of Tables 1 and 2, for the case of silica and phospho-
silicate fibers, respectively. The input pulse is assumed to be a secant-hyperbolyc with 1.55
μm center wavelength, 0.2 ps pulsewidth, 200 W peak power, and 215 sampling points in the
time and frequency domain were used. In addition, the convolution of the Raman response
function with the squared absolute value of the field is evaluated in the Fourier domain,
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and the time derivative appearing in the nonlinear terms is evaluated by using interpolating
functions that are then differentiated.

For the comparison of the Raman self frequency shift in silica and phosphosilicate fiber
doped with 9.1 mol% of P2O5 we assumed that in both cases the GVD parameter β2 is −20
ps2/km. The possible difference in waveguide parameters is not relevant in the comparison
since experimentally we may choose a wavelength where the dispersion characteristics are
at least of the same order. Solid lines in Figs. 8a and 9a show the time and wavelength shift
experienced by the pulse after 500 m propagation through a silica fiber. The maximum Raman
shift in this case is ∼0.12 THz. In contrast, Figs. 8b and 9b show the time and wavelength shift
after propagation through 100 m of phosphosilicate fiber, where the maximum Raman shift
is ∼2.3 THz. Figures 10 and 11 show density plots of the time and spectral evolution with
propagation distance of the input pulse in pure silica and phosphosilicate fibers, respectively.
We observe that phosphosilicate fiber scales up the self-frequency shift experienced by the
pulse compared to silica, where we would require longer lengths or higher power to obtain
a similar effect. This scaling up of the self-frequency shift with the addition of dopants such
as GeO2, with higher Raman gain, was predicted by Mitschke and Mollenauer just after this
effect was discovered (Mitschke and Mollenauer 1986). However, GeO2-doped fibers do not
have as high Raman gain as phosphosilicate fibers for small Raman frequency shifts. Hence,
phosphosilicate fiber, with a high Raman gain even for small frequency shifts, is a suitable
medium to observe this scaling up. This means that the necessary pulse widths and power
levels to observe the self-frequency shift and associated effects such as supercontinuum
generation are much lower compared to silica.

7 Conclusions

In conclusion we have calculated the Raman nonlinear index in phosphosilicate fiber as a
function of P2O5 concentration. The Raman fraction was obtained by taking the ratio between
the Raman nonlinear index and the total nonlinear index estimated from the Boling formula.
In addition we have fitted the Raman gain spectra of silica and phosphosilicate fibers to a
superposition of six under-damped phase shifted functions. The fit function of phosphosili-
cate fiber was used to demonstrate the scaling up of the Raman self-frequency shift compared
to the case of silica. Under the same pump conditions and similar waveguide characteris-
tics, the Raman self-frequency shift in 100 m of phosphosilicate fiber was 2.3 THz, while a
Raman self-frequency shift of 0.12 THz was obtained in 500 m of silica fiber. In this way,
phosphosilicate fibers are advantageous in the study of ultra-short pulse propagation dynam-
ics since the necessary pulse widths and/or power levels to observe soliton self-frequency
shift and associated phenomena such as supercontinuum generation, are much lower than in
the case of silica fibers.
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