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Radiance backscattered by a strongly scattering
medium in the high spatial frequency limit
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We study the radiative transfer of a spatially modulated plane wave incident on a half-space composed of a uni-
formly scattering and absorbing medium. For spatial frequencies that are large compared to the scattering
coefficient, we find that first-order scattering governs the leading behavior of the radiance backscattered by the
medium. The first-order scattering approximation reveals a specific curve on the backscattered hemisphere where
the radiance is concentrated. Along this curve, the radiance assumes a particularly simple expression that is directly
proportional to the phase function. These results are inherent to the radiative transfer equation at large spatial fre-
quency and do not have a strong dependence on any particular optical property. Consequently, these results provide
the means by which spatial frequency domain imaging technologies can directly measure the phase function of a
sample. Numerical simulations using the discrete ordinate method along with the source integration interpolation
method validate these theoretical findings. ©2022Optica PublishingGroup
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1. INTRODUCTION

The emergence and development of spatial frequency domain
imaging (SFDI) over the past 15 years has made a powerful tool
for wide-field imaging of functional and morphological prop-
erties of biological tissues broadly available [1–3]. SFDI’s use of
illumination at multiple spatial frequencies enables the inter-
rogation of turbid samples with varying depth sensitivity and
access to structural and compositional information over meso-
scopic and macroscopic scales [4,5]. Soon after the emergence
of SFDI, investigators began to examine the use of high spatial
frequencies to probe the structural morphology of superficial
tissues [6,7]. It was understood intuitively that illumination
using high spatial frequencies is related to probing tissues using
short source-detector separations [8,9], thereby providing sen-
sitivity to metrics related to the angular distribution of single
scattering [10]. This notion has been used to extract morpho-
logical biomarkers suitable for discrimination between tissue
types [6,7,11]. Thus the use of high-frequency illumination
with SFDI, coupled with angularly resolved detection, may
represent an alternate experimental approach to goniometry
[12], angle-resolved low coherence interferometry [13–15], and
angular domain scattering interferometric microscopy [16] as a
means of providing detailed morphological characterization of
samples.

SFDI represents a measurement taken in the spatial Fourier
domain. Coincidentally, Fourier transform methods have
been used extensively to study three-dimensional radiative
transfer. Typically, Fourier transform methods are used for

problems with planar boundaries, e.g., plane-parallel slabs
and half-spaces, where Fourier transforms are applied on the
coordinates parallel to the planar boundaries. For example,
taking the Fourier transform of the radiative transfer equation
(RTE) is an elementary step in studying the searchlight problem
[17–20]. Chang and Ishimaru [21] solve the RTE for beams
by Fourier transforming the problem to the spatial frequency
domain, solving the transformed problem, and inverse Fourier
transforming that solution back to the spatial domain. This
approach was used later by Kim and Moscoso within their
Chebyshev spectral method for beams [22], and to study beams
in forward-peaked scattering media [23]. Fourier transform
methods are also used in the method of rotated reference frames
to study three-dimensional radiative transfer [24]. Machida
[25] has applied this method of rotated reference frames to
study SFDI problems. Fourier transform methods also play a
fundamental role in the spherical harmonics expansion method
utilizing Fourier decomposition (SHEFN) method of Gardner
et al. [26]. Using this approach, the transformed problem for a
fixed spatial frequency closely relates to the underlying radiative
transfer formulation of the SFDI problem.

When solving the RTE in the spatial frequency domain,
analysis of the high spatial frequency limit is problematic
because the solution oscillates rapidly as a function of depth.
Resolving these highly oscillatory solutions becomes a compu-
tational challenge because they lead to additional restrictions
to the angular resolution, since spatial and angular variables are
coupled in radiative transfer. Nevertheless, Chang and Ishimaru
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[21] state that “the high-frequency components do not con-
tribute to the final solution of the complete beam wave problem
except when the medium has a small equivalent optical thick-
ness.” They then utilize the first-order scattering approximation
to obtain the solution at high spatial frequencies.

Although this approach used by Chang and Ishimaru appears
to be effective, it is not well known. Moreover, Chang and
Ishimaru neither provide a rigorous theoretical framework that
justifies the use of the first-order scattering approximation,
nor do they define what precisely is meant by a “small equiva-
lent optical thickness.” Here we give an elementary dominant
balance argument that justifies the first-order scattering approxi-
mation for high spatial frequencies and give a precise meaning
for the small equivalent optical thickness described by Chang
and Ishimaru.

The first-order scattering approximation reveals the backscat-
tered radiance to be proportional to the phase function on the
backscattered hemisphere. Additionally, our analysis of first-
order scattering identifies an explicit curve on the backscattered
hemisphere where the radiance is highly concentrated. For an
index-matched boundary, this curve depends only on the angle
of incidence and no other optical properties. The value of the
radiance on this curve is proportional to the phase function. For
an index-mismatched boundary, this curve is mapped according
to Snell’s law, which depends on the relative refractive index.
The value of the radiance on this curve is modified by the Fresnel
transmission coefficient. This explicit curve provides valuable
insight into the specific angular locations where the radiant
power of the backscattered light is most concentrated and there-
fore may inform the design of the configuration of angularly
resolved SFDI measurements at high spatial frequencies.

The remainder of this paper is as follows. We discuss the
RTE in the spatial frequency domain in Section 2. Using an
elementary dominant balance argument, we show that the
leading behavior of the backscattered radiance in the high
spatial frequency limit is governed by first-order scattering. In
Section 3, we analyze the first-order scattering approximation
for the backscattered radiance and identify the curve on which
the radiance is concentrated. We show several numerical results
in Section 4 that validate this theory. Section 5 contains our
conclusions. Appendix A describes the product quadrature
rule that we employ in the discrete ordinate method (DOM)
used to compute the numerical results in Section 4. Appendix B
describes the integration of the source function interpolation
method used to compute the numerical results in Section 4.

2. RADIATIVE TRANSFER IN THE SPATIAL
FREQUENCY DOMAIN

Consider a plane wave that is spatially modulated along the x
direction with spatial frequency fx incident on the half-space
z> 0 in direction ŝ0, a vector on the x z plane. The half-space
is composed of a uniform absorbing and scattering medium
with absorption coefficient µa and scattering coefficient µs .
The radiance L gives the power flowing in direction ŝ at position
r. For this problem, L satisfies the following boundary value
problem for the RTE,

ŝ · ∇L +µa L +µs L =µs

∫
4π

p(ŝ · ŝ′)L(ŝ′, r)dŝ′ in z> 0,

(1a)

L |z=0 = δ(ŝ− ŝ0)(L0 + L1 cos(2π fx x + φ))

+ R[L] on ŝ · ẑ> 0, (1b)

with φ denoting a spatial phase shift. Here, L0 and L1 are the
DC and AC components, respectively, of the spatially mod-
ulated plane wave. Additionally, we require that L→ 0 as
z→+∞. The reflection operation, R[L], in Eq. (1b) takes
into account any reflections due to a refractive index mismatch
on the boundary. In the integral term in Eq. (1a), p denotes
the scattering phase function, and integration is taken over the
entire unit sphere. We assume that p is spherically symmetric, so
p = p(ŝ · ŝ′).

In what follows, we study the behavior of L due to L1

only, and we assume that L1 = 1. In other words, we assume
that we can demodulate the DC and AC components of
the radiance, which is done effectively in practice (e.g., see
[27]). In light of boundary condition [Eq. (1b)], we write
L = Re[I (µ, ϕ, z)e i(2π fx x+φ)

], where µ= cos θ is the cosine
of the polar angle θ and ϕ is the azimuthal angle. The complex
radiance I satisfies the one-dimensional RTE,

µ∂z I +µa I =−i2π fx

√
1−µ2 cos ϕ I

−µs

[
I −

∫ 2π

0

∫ 1

−1
p(µ, µ′, ϕ − ϕ′)I (µ′, ϕ′, z)dµ′dϕ′

]
,

(2a)

subject to

I (µ, ϕ, 0)= δ(µ−µ0)δ(ϕ)+ R[I ] on 0<µ≤ 1 and

0≤ ϕ ≤ 2π,
(2b)

with incident directionµ0 = ŝ0 · ẑ. Additionally, we require that
I→ 0 as z→+∞. We have written the arguments of p in (2a)
to reflect that

p(ŝ · ŝ′)= p
[
µµ′ +

√
(1−µ2)(1−µ′2) cos(ϕ − ϕ′)

]
= p(µ, µ′, ϕ − ϕ′). (3)

In principle, demodulation methods used to separate DC and
AC components of the radiance can also be used to determine
the real and imaginary parts of the complex radiance used
above [27].

We now utilize the method of dominant balance to study this
problem. There are three inverse length scales in Eq. (2a): µa ,
fx , and µs . Let us assume that the medium is strongly scatter-
ing, i.e., µa �µs , and consider the case where µa is fixed and
is the smallest inverse length scale. It follows that there are two
different scaling regimes to consider: fx �µs and fx �µs .
When fx �µs , the leading behavior of I is governed by the
diffusion approximation. This result is well understood and
has been extensively used to analyze SFDI data acquired at low
spatial frequencies [3]. In contrast, when fx �µs , we neglect
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the term in Eq. (2a) multiplied by µs and find that the leading
behavior of I satisfies

µ∂z I +µa I + i2π fx

√
1−µ2 cos ϕ I = 0, (4a)

subject to

I (µ, ϕ, 0)= δ(µ−µ0)δ(ϕ)

+ R[I ] on 0<µ≤ 1 and 0≤ ϕ ≤ 2π, (4b)

from which we determine that, to leading order,

I ∼ δ(µ−µ0)δ(ϕ) exp
(
−µa z/µ− i2π fx

√
1−µ2 cos ϕz/µ

)
.

(5)
As 0<µ0 ≤ 1, this result has no contribution on the backscat-
tered hemisphere corresponding to−1≤µ< 0. To determine
the leading behavior of the backscattered radiance, we use
Eq. (2a) and seek a correction Ĩ satisfying

µ∂z Ĩ +µa Ĩ + i2π fx

√
1−µ2 cos ϕ Ĩ

=−µs I +µs

∫ 2π

0

∫ 1

−1
p(µ, µ′, ϕ − ϕ′)I (µ′, ϕ′, z)dµ′dϕ′,

(6a)

subject to

Ĩ (µ, ϕ, 0)= R[ Ĩ ] on 0<µ≤ 1 and− π ≤ ϕ ≤ π . (6b)

Substituting Eq. (5) into the right-hand side of Eq. (6a) yields

µ∂z Ĩ +µa Ĩ + i2π fx

√
1−µ2 cos ϕ Ĩ =−µs δ(µ−µ0)δ(ϕ)

× exp
(
−µa z/µ− i2π fx

√
1−µ2 cos ϕz/µ

)
+µs p(µ, µ0, ϕ) exp

(
−µa z/µ0 − i2π fx

√
1−µ2

0z/µ0

)
.

(7)

This is the governing equation for the first-order scattering
approximation. There are two terms in the right-hand side of
Eq. (7). The first term only contributes to the forward hemi-
sphere. The second term contributes to both the forward and
backward hemispheres. We denote the portions of Ĩ on the
forward and backward hemispheres by Ĩ+ and Ĩ−, respectively.
Solving for Ĩ− using the method discussed by Ishimaru ([28],
Section 8-2), we find that

Ĩ− =
µs

2π fx

µ0 p(µ, µ0, ϕ) exp
(
−µa z/µ0 − i2π fx

√
1−µ2

0z/µ0

)
α(µ0 −µ)+ i

(
µ0

√
1−µ2 cos ϕ −µ

√
1−µ2

0

) ,

− 1≤µ< 0, 0≤ ϕ ≤ 2π,
(8)

with α =µa/(2π fx ). This result gives the leading behavior of
the radiance on the backscattered hemisphere. The reflection

operation R[I ] does not come into this calculation until we seek
a correction to the radiance on the forward hemisphere.

The first-order scattering approximation is typically applied
to problems in optically thin domains or when the albedo is
relatively small ([28], Section 8-2). For those problems, first-
order scattering can be thought of as a correction to Beer’s law
[29]. For example, first-order scattering has been applied to
the aforementioned searchlight problem [18]. For optically
thin domains, Florescu et al. [30] have provided an explicit
method for solving the inverse problem that uses an extension
of the Radon transform. Here, we find that first-order scattering
governs the leading behavior of the radiance even though the
domain is unbounded and strongly scattering. The analysis
given above shows that first-order scattering arises in the high
spatial frequency limit because that limit introduces an inverse
length scale that is larger than the scattering coefficient.

We remark here that this derivation of the first-order scatter-
ing approximation actually does not require that µa �µs . We
have discussed this particular case, since it connects with what
has been done in SFDI using the diffusion approximation. In
fact, the key balance required here is that µs � fx . Thus, the
result describing the high spatial frequency behavior governed
by first-order scattering applies also when there is substantial
absorption in the medium.

One can develop a rigorous perturbation analysis for this
problem through the scaling: z̃= fx z. The asymptotic
expansion of the solution will then be a power series of the
form,

I ∼
∞∑

n=0

(
µs

fx

)n

In,
µs

fx
� 1. (9)

The form of this power series indicates that small values of
the nondimensional parameter µs / fx correspond to small
values of the “effective optical thickness” discussed by Chang
and Ishimaru [21]. More specifically, when probing a system
with a high spatial frequency, i.e., fx �µs , we are effectively
interrogating a small optical thickness.

3. RADIANCE EXITING THE HALF-SPACE

Evaluating Eq. (8) on z= 0+ (just inside the medium in the
backward hemisphere), we find that

I (µ, ϕ, 0+)∼
µs

2π fx

µ0 p(µ, µ0, ϕ)

α(µ0 −µ)+ i
(
µ0

√
1−µ2 cos ϕ −µ

√
1−µ2

0

) ,
− 1≤µ< 0, 0≤ ϕ ≤ 2π . (10)

This leading behavior is proportional to the phase function
evaluated over the backscattered hemisphere with incident
direction µ0. For an index-matched boundary, Eq. (10) also is
the radiance just outside the medium. For an index-mismatched
medium, one needs to apply Snell’s law and the Fresnel trans-
mission coefficient to obtain the radiance just outside the
medium. We discuss these details in Section 4.D.
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Fig. 1. Sketch of the curve θ∗(ϕ) given in Eq. (12) (solid,
dark-blue curve). For ŝ0 = sin θ0 x̂ + cos θ0 ẑ, the curve θ∗(ϕ) for
π/2≤ ϕ ≤ 3π/2 follows along the portion of the great circle on
the backscattered hemisphere that lies on the plane, x cos θ0 −

z sin θ0 = 0, and contains the direction vectors± ŷ and−ŝ0.

Inspecting Eq. (10) and assuming that the phase function
p does not vary rapidly, we observe that the radiance achieves
its peak values when the absolute value of the denominator is
smallest. This, in turn, happens when the imaginary part of
the denominator is smallest. In fact, the imaginary part of this
leading behavior can be made to be identically zero when

tan θ cos ϕ = tan θ0. (11)

Here, 0≤ θ0 <π/2, π/2< θ ≤ π , and 0≤ ϕ ≤ 2π .
Equation (11) is the intersection of the plane x cos θ0 −

z sin θ0 = 0 with the unit sphere. It follows that Eq. (11) is
satisfied on the curve

θ∗(ϕ)= π + tan−1

(
tan θ0

cos ϕ

)
, π/2≤ ϕ ≤ 3π/2. (12)

Equation (12) gives an explicit curve parameterized by the
azimuthal angle π/2≤ ϕ ≤ 3π/2 on the backward hemi-
sphere where the backscattered radiance is peaked. A sketch of
this curve is shown in Fig. 1. For ŝ0 = sin θ0 x̂ + cos θ0 ẑ, the
curve θ∗(ϕ) follows along the portion of the great circle that
intersects with the plane x cos θ0 − z sin θ0 = 0. Let ŝ∗(ϕ) for
π/2≤ ϕ ≤ 3π/2 denote the direction vector that traces this
curve. As ϕ increases from ϕ = π/2 to π , this direction vector
goes from ŝ∗(π/2)= ŷ to s ∗(π)=−ŝ0, and as ϕ increases
fromπ to 3π/2, this direction vector goes from ŝ∗(π)=−ŝ0 to
ŝ∗(3π/2)=− ŷ .

In Fig. 2, we plot several curves for

µ∗(ϕ)= cos θ∗(ϕ)=−

[
1+

(
tan θ0

cos ϕ

)2
]−1/2

(13)

for different values of µ0 = cos θ0. Depending on the value
of µ0, we find that these curves cover different ranges of the
backscattering hemisphere. When µ0 = 1 (normal inci-
dence), it only corresponds to µ∗ =−1. When µ0 < 1,
we find that these curves cover a broad range of the interval
−1<µ∗ < 0. In general, when µ0 < 1, µ∗ varies across the

Fig. 2. Plots of the curve µ∗(ϕ) given in Eq. (9) for π/2≤ ϕ ≤
3π/2 for different values of the incident directionµ0.

range−µ0 ≤µ
∗ < 0. Therefore, with the exception of normal

incidence, the larger (more grazing) the angle of incidence θ0,
the shorter the range forµ∗.

The angular curve given in Eq. (12) depends only on the angle
of incidence θ0, so it can be readily computed for a given experi-
mental setup. Along this curve, Eq. (10) reduces to

I (µ∗, ϕ, 0+)≈
µ0µs p (µ∗(ϕ), µ0, ϕ)

µa (µ0 −µ∗(ϕ))
, π/2≤ ϕ ≤ 3π/2.

(14)
Here, we have resubstituted α =µa/(2π fx ). This leading
behavior for the radiance along µ∗ is purely real. Importantly,
it is independent of the spatial frequency fx . Measuring the
radiance along this angular curve corresponds to sampling the
scattering phase function p(µ∗, µ0, ϕ). Note that along this
angular curve, we have −1≤ cos2< 0, where cos2= ŝ0 · ŝ

∗

is the cosine of the scattering angle. Thus, for a spherically
symmetric phase function, measurement of the radiance
along this curve samples the phase function over the backward
hemisphere.

4. NUMERICAL RESULTS

In what follows we show results using the DOM to compute
solutions of Eq. (2a) with Eq. (2b). Here we have used the
Henyey–Greenstein scattering phase function,

p(ŝ · ŝ′; g )=
1

4π

1− g 2(
1+ g 2 − 2g ŝ · ŝ′

)3/2 , (15)

where 0≤ g < 1 is the anisotropy parameter. This DOM
implementation uses the product quadrature rule explained in
Appendix A. For the results shown here, we have used N = 32
to set the order of the quadrature rule, which effectively sets the
truncation of the expansion of the phase function in spheri-
cal harmonics. The resulting computations give qualitatively
accurate results for the distribution of the radiance over the
backscattered hemisphere. The extent to which these solutions
are quantitatively accurate depends strongly on the anisotropy
factor. For a sharply forward-peaked scattering corresponding
to g ∼ 1, one needs a substantially higher-order computation
to adequately resolve the underlying spectrum of the prob-
lem. To further verify these results, we compared them with
computations using N = 64 and saw no appreciable difference
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Fig. 3. Plots of the absolute value of the radiance normalized by its maximum value (log10-scale) exiting the half-space with an index-matched
boundary over the backscattered hemisphere for different values of fx and g : (a) fx = 1µs and g = 0.8, (b) fx = 3µs and g = 0.8, (c) fx = 10µs and
g = 0.8, (d) fx = 1µs and g = 0, (e) fx = 3µs and g = 0, (f ) fx = 10µs and g = 0. The dotted red curves are plots of µ∗(ϕ). Here, θ0 = 20◦ and
µa = 0.01µs .

in the overall behavior of the radiance oer the backscattered
hemisphere.

The results from the DOM computation produce the
radiance only over the quadrature points. To interpolate
that solution over a fine mesh of 101× 101 points sampling
−1≤µ< 0 and 0≤ ϕ ≤ 2π , we have used the integration of
source function method discussed in Appendix B. The codes
used here to produce these results are available on a GitHub
repository [31].

A. Index-Matched Boundary

We first consider the radiance exiting a half-space with an
index-matched boundary. In Fig. 3, we show the absolute value
of the radiance plotted on a log10-scale over −1≤µ< 0 and
0≤ ϕ ≤ 2π for (a) fx = 1µs , (b) 3µs , and (c) 10µs . Here, the
angle of incidence is θ0 = 20◦, and the absorption coefficient
is µa = 0.01µs . The top row of plots is for anisotropy factor
g = 0.8, and the bottom row of plots is for anisotropy factor
g = 0.

For reference, we have plotted µ∗(ϕ) as a dotted red curve
in each of the plots in Fig. 3. In these results, we observe that
increases in fx result in the increased concentration of the
absolute value of the radiance concentrates along µ∗(ϕ). We
find that the radiance along this curve becomes more than an
order of magnitude larger as compared to distal locations on the
hemisphere. Moreover, we find that the width of the concentra-
tion of radiance along this curve decreases. These results show
that increases in fx act to move the radiance distribution closer
to that predicted by the first-order scattering approximation,
namely, that the radiance is significantly larger alongµ∗(ϕ) than
elsewhere on the backscattered hemisphere. We expect some
minor qualitative differences between the g = 0.8 and g = 0
results but the overall behavior to remain the same. The results
shown in Fig. 3 show that this is indeed the case. Although the
magnitude and width of the concentration of radiance around
µ∗(ϕ) is slightly different for the two cases, we still observe the

same behavior of the onset of concentration of radiance on this
curve as fx increases.

The theory presented here indicates that the concentration of
radiance about µ∗(ϕ) does not strongly depend on the optical
properties, especially the phase function. The results shown in
Fig. 3 confirm this.

B. Comparison with First-Order Scattering

The results from above indicate, as the theory shows, that the
first-order scattering approximation becomes better as fx

increases. In Fig. 4(a), we show plots of the radiance alongµ∗(ϕ)
for π/2≤ ϕ ≤ π (half of the curve) for different values of fx .
Here, the angle of incidence is θ0 = 20◦, the anisotropy factor
is g = 0, and the absorption coefficient is µa = 0.01µs . The
result from the first-order scattering approximation is plotted as
a dashed black curve.

As expected, we find that the radiance along µ∗(ϕ) begins
to approach the radiance given by the first-order scattering
approximation evaluated on µ∗(ϕ) as fx increases. According
to Eq. (14), the radiance along µ∗(ϕ) is directly proportional
to the scattering phase function. Even for moderate values of
fx , we observe that the radiance along µ∗(ϕ) exhibits the same
behavior as the first-order scattering approximation.

In Fig. 4(b), we plot the first-order scattering approximation
given by Eq. (14) for the radiance along µ∗ for g = 0, 0.4, and
0.8. These results show how g affects the behavior of the radi-
ance alongµ∗. By sampling the radiance at various points on this
curve, we obtain the ability to recover quantitative information
about the phase function. It is for this reason that we expect
measurements along this curve to provide valuable insight into
the scattering phase function of a medium.

C. Localization of the Backscattered Radiance

The results above show that the backscattered radiance is
localized along the angular curve [Eq. (12)]. In particular, the
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Fig. 4. (a) Comparison of the radiance along µ∗(ϕ) for π/2≤ ϕ ≤ π with the first-order scattering approximation for various values of fx with
θ0 = 20◦, g = 0, andµa = 0.01µs . (b) First-order scattering approximation for the radiance onµ∗ with θ0 = 20◦,µa = 0.01µs , and different values
of the anisotropy factor.

Fig. 5. Plots of the backscattered radiance (log10 axis) exiting the half-space along the azimuth ϕ = π with an index-matched boundary for a
medium with g = 0.8,µa = 0.01µs for the four spatial frequencies: fx =µa (solid blue), fx = 2µa (red dashes), fx = 5µa (dot-dashes, green), and
fx = 10µa (black dots). The incident angles and correspondingµ∗ are provided over each plot.

radiance appears to be narrow in the direction normal to this
curve. In light of this, we study how the width of the radiance
near the curve scales with the frequency fx . Figure 5 shows the
radiance on ϕ = π as a function of µ (which is always normal
to µ∗), i.e., |I (µ, π)|, for a given incident angle and for sev-
eral fx values. These plots show qualitatively that the radiance
attains its maximum on µ∗, and its width about this maximum
decreases as the spatial frequency increases.

In addition, Fig. 6 shows the widths of the radiance near
the angular curve, which are recovered as the full width at half-
maximum (FWHM) of |I | along the azimuth ϕ = π . The best
power-law fits to the recovered widths are also plotted. Those
show that the width of the angular curve decreases approxi-
mately as µa/ fx . Moreover, this scaling occurs across the range
of the incident angles. These results can be understood from the
first-order scattering approximation, (10), asα ∝µa/ fx .

D. Index-Mismatched Boundary

The radiance IT exiting the medium across an index-
mismatched boundary with relative refractive index n > 1 is
given by

IT(µout, ϕ, 0)= T(µout)I (µ, ϕ, 0), (16)

with

µout =− cos
[
sin−1

(
n
√

1−µ2
)]
,

− 1≤µ<−µc =−
√

1− n−2 (17)

Fig. 6. FWHM of |I (µ, π)| (log− log axes) for spatial frequencies
in the range 1≤ fx/µa ≤ 10, for the three incident angles specified in
the legend. The legend also provides the best power law fits.

denoting the refracted directions, and

T(µout)=
µout

2n3µ

[(
2nµ

µ+ nµout

)2

+

(
2nµ

nµ+µout

)2
]
(18)

denoting the Fresnel transmission coefficient for unpolarized
light. Using Eq. (17), we find that

µ∗out(ϕ)=− cos
[
sin−1

(
n
√

1−µ∗2(ϕ)
)]
, −1≤µ∗ <−µc

(19)

is the refraction ofµ∗(ϕ) on the backscattered hemisphere exit-
ing the medium. This result can also be expressed as
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Fig. 7. Plots of µ∗(ϕ) (solid, blue) and the corresponding refracted
angular curve, µ∗out (red dashes), for a medium with a relative refrac-
tive index n = 1.4 for two incident angles. (a) θ0 = 20◦(µ0 ≈ 0.94);
(b) θ0 = 40◦(µ0 ≈ 0.75).

µ∗out(ϕ)=−

√√√√1−
n2

1+ cos2 ϕ
tan2 θ0

, |ϕ − π |<ϕc

= cos−1
(√

n2 − 1 tan θ0

)
. (20)

Note that the backscattered radiation is negligible when the
incident angle is greater than the critical angle for total internal
reflection,

θc = cos−1(µc )= sin−1(1/n). (21)

When θ0 > θc , to leading order all the radiation gets trapped
inside the medium.

Figure 7 shows µ∗ and the corresponding refracted angular
curve, µ∗out as a function of π/2≤ ϕ ≤ 3π/2, for a medium
with a relative refractive index n = 1.4 (θc ≈ 45.5◦) for two
incident directions, θ0 = 20◦ and 40◦. Compared with an
index-matched boundary, the refracted angular curve has a
narrower range of latitudes.

In Fig. 8, we show results of the absolute value of the radiance
in a log10-scale exiting a half-space across a index-mismatched
boundary for different spatial frequencies. The relative refractive
index is n = 1.4. Additionally, we have set θ0 = 20◦, g = 0.8,
and µa = 0.01µs . For reference, we have plotted µ∗out as a
dotted red curve in these plots.

These plots show the effect of transmitting across an index-
mismatched boundary. Although the concentration of radiance
along µ∗out(ϕ) is wider in comparison to the index-matched
results shown in Fig. 3, we see that relative magnitude of the
radiance in a neighborhood about µ∗out is uniformly much
larger along the whole length ofµ∗out. This difference in relative

magnitude is due to the Fresnel transmission coefficient given
in Eq. (18). Nonetheless, we observe the same overall behav-
ior of the radiance here as with the index-matched case—the
concentration of radiance tends to tighten around µ∗out as fx

increases.

5. CONCLUSIONS

We have studied radiative transfer in the spatial frequency
domain. When the spatial frequencies are much larger than the
scattering coefficient, we have shown that the leading behavior
of the radiance backscattered by a medium is governed by the
first-order scattering approximation. Upon studying the first-
order scattering approximation, we have found a curve on the
backscattered hemisphere, which we have denoted by µ∗(ϕ),
on which the radiance is concentrated for large spatial frequen-
cies. These results are inherent in radiative transfer and do not
directly depend on specific optical properties of the medium.

Our numerical results confirm this theory. They show that
as spatial frequency increases beyond the scattering coefficient,
the radiance exiting the medium concentrates along µ∗. The
radiance magnitude along µ∗ increases as compared to regions
away from µ∗, and the “width” of the radiance about µ∗ is
proportional toµa/ fx .

When considering the radiance exiting the medium across an
index-mismatched boundary, we find that this radiance is con-
centrated about the mapping due to refraction of µ∗ to µ∗out by
Snell’s law. Although the width of the resulting exiting radiance
appears to be wider than that for an index-matched medium, the
relative magnitude across the length ofµ∗out is more uniform due
to the Fresnel transmission coefficient.

The first-order scattering approximation provides valuable
insight into the radiance backscattered by a medium at large spa-
tial frequencies. Specifically, we find that the radiance is directly
proportional to the scattering phase function. This theoretical
result supports earlier studies that sought to determine quantita-
tive information about the scattering phase function from large
spatial frequency measurements. Additionally, we have shown
that the radiance alongµ∗ provides direct access to the scattering
phase function.

These theoretical results suggest opportunities for novel mea-
surements of backscattering by a multiple scattering medium.
To the extent that one can measure the radiance on or near µ∗,
one may potentially maximize information content in measure-
ments over a narrow dynamic range. Doing so may have direct
use in maximizing signal over noise, for example. Knowing
that these measurements are directly proportional to the phase

Fig. 8. Plots of the radiance normalized by its maximum value (log10 axis) exiting the half-space with an index-mismatched boundary over the
backscattered hemisphere for different values of fx : (a) fx = 1µs , (b) fx = 3µs , and (c) fx = 10µs . The dotted red curves are plots ofµ∗out(ϕ). Here,
θ0 = 20◦, g = 0.8, andµa = 0.01µs . The relative refractive index is n = 1.4.
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function also opens up opportunities for recovering related
quantitative information from these measurements.

APPENDIX A: DOM WITH PRODUCT
QUADRATURE RULE

To solve Eq. (2a) subject to Eq. (2b), we write I = I0 + Id with

I0 = δ(µ−µ0)δ(ϕ) exp
(
−µt z/µ− i2π fx

√
1−µ2 cos ϕz/µ

)
,

(A1)
whereµt =µa +µs , and Id satisfying

µ∂z Id + i2π fx

√
1−µ2 cos ϕ Id +µt Id

=µs

∫ π

−π

∫ 1

−1
p(µ, µ′, ϕ − ϕ′)Id (µ

′, ϕ′, z)dµ′dϕ′

+µs p(µ, µ0, ϕ) exp

(
−µt z/µ0 − i2π fx

√
1−µ2

0z/µ0

)
,

(A2)

subject to the boundary condition

Id (µ, ϕ, 0)= r F (µ)Id (−µ, ϕ, 0) on 0<µ≤ 1 and

− π ≤ ϕ ≤ π . (A3)

Here,

r F (µ)=

{
1
2

(
nµ−µ̃
nµ+µ̃

)2
+

1
2

(
nµ̃−µ
nµ̃+µ

)2
µc <µ≤ 1,

1 0<µ≤µc

(A4)

is the Fresnel reflection coefficient taking into account reflec-
tions by the refractive index mismatch on the boundary with
µc =

√
1− n−2 and µ̃= (1− n2(1−µ2))1/2.

We compute Id using a DOM that uses a product quadrature
rule for Henyey–Greenstein scattering. It is well known that the
Henyey–Greenstein scattering law [Eq. (15)] has the following
expansion in spherical harmonics:

1

4π

1− g 2(
1+ g 2 − 2g ŝ · ŝ′

)3/2 =

∞∑
n=0

g n
n∑

m=−n

Ynm(ŝ)Y ∗nm(ŝ
′
).

(A5)
It follows that for any sufficiently smooth functionψ(ŝ),

J [ψ](ŝ)=
∫

4π

1

4π

1− g 2(
1+ g 2 − 2g ŝ · ŝ′

)3/2ψ(ŝ
′
)dŝ′

=

∞∑
n=0

g n
n∑

m=−n

Ynm(ŝ)
∫

4π
Y ∗nm(ŝ

′
)ψ(ŝ′)dŝ′. (A6)

By truncating this series beyond the first N terms, we introduce
the following approximation:

J [ψ](ŝ)≈J N
[ψ](ŝ)=

N∑
n=0

g n
n∑

m=−n

Ynm(ŝ)
∫

4π
Y ∗nm(ŝ

′
)ψ(ŝ′)dŝ′.

(A7)
We compute the integral in the expression above using the prod-
uct Gauss quadrature rule [32], which takes the form

∫
4π

Y ∗nm(ŝ
′
)ψ(ŝ′)dŝ′ ≈

π

N

2N∑
j=1

N∑
i=1

wi Y ∗nm(µi , ϕ j )ψ(µi , ϕ j ),

(A8)
withµi andwi for i = 1, · · · , N denoting the N-point Gauss–
Legendre quadrature points and weights, respectively, and ϕ j =

( j − 1)π/N for j = 1, · · · , 2N.
The sums in Eq. (A8) can be written as a matrix-vector prod-

uct, where the vector has entries corresponding to ψ(µi , ϕ j )

for i = 1, · · · , N and j = 1, · · · , 2N. It follows that the
evaluation of Eq. (A7) with the integral replaced by Eq. (A8) and
evaluated on these quadrature points is a matrix-vector product.
A MATLAB code that implements this method and produces
this matrix is available for download [31]. Let J N denote this
matrix. By evaluating Eq. (A2) on these quadrature points,
we obtain the following system of linear ordinary differential
equations:

A∂zId (z)+ i2π fx BId (z)+µt Id (z)=µs J NId (z)

+ f(z) exp

(
−µt z/µ0 − i2π fx

√
1−µ2

0z/µ0

)
. (A9)

Here, Id (z) corresponds to evaluating Id on the quadrature
points. The diagonal matrix A corresponds to evaluating µ on
the quadrature points, the diagonal matrix B corresponds to
evaluating

√
1−µ2 cos ϕ on the quadrature points, and f(z)

corresponds to evaluating µs p(µ, µ0, ϕ) on the quadrature
points. Additionally, we evaluate Eq. (A3) on the quadrature
points and obtain

3+Id (0)= RF3−Id (0). (A10)

Here, 3± restricts the entries of Id to µ >
< 0, respectively, and

RF is a diagonal matrix corresponding to the evaluation of
r F (µ) on the quadrature points forµ> 0.

Using numerical linear algebra methods, one can compute
the exact solution of Eq. (A9) with Eq. (A10). The result will be
Id (z), which gives the radiance on the quadrature points.

APPENDIX B: INTEGRATION OF SOURCE
FUNCTION INTERPOLATION METHOD

Let us rewrite Eq. (A2) as

µ∂z Id +

(
µt + i2π fx

√
1−µ2 cos ϕ

)
Id =µs S1 +µs S2,

(B1)
with

S1(µ, ϕ, z)=
∫ π

−π

∫ 1

−1
p(µ, µ′, ϕ − ϕ′)I (µ′, ϕ′, z)dµ′dϕ′,

(B2)
and

S2(µ, ϕ, z)= p(µ, µ0, ϕ)

× exp

(
−µt z/µ0 − i2π fx

√
1−µ2

0z/µ0

)
.

(B3)
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Suppose we have used the DOM to solve the RTE, yielding
Id (z), whose entries correspond to

[Id (z)]ij ≈ I (µi , ϕ j , z), i = 1, · · · , N, j = 1, · · · , 2N,
(B4)

with µi for i = 1, · · · , N denoting the N-point Gauss–
Legendre quadrature points and ϕ j = ( j − 1)π/N for
j = 1, · · · , 2N. Let

S N
1 (µ, ϕ, z)=

π

M

2N∑
j=1

N∑
i=1

wi p(µ, µi , ϕ − ϕ j )[Id (z)]ij.

(B5)
Using S N

1 , we compute the approximation,

Id (µ, ϕ, 0)≈
µs

µ

∫
∞

0
e (µt+i2π fx

√
1−µ2 cos ϕ)z′/µ

×
[
S N

1 (µ, ϕ, z′)+ S2(µ, ϕ, z′)
]

dz′, (B6)

on−1≤µ< 0 and−π ≤ ϕ ≤ π . Integration in the expression
above can be performed analytically. This result can then be used
to interpolate the solution over the backscattered hemisphere.
This integration of source function interpolation method has
been established as the most accurate method for interpolating
the radiance [33].
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