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Abstract—Quantum sensing and metrology are one of the most
broad and advanced areas of quantum information and tech-
nology. We investigate the possibility of using coupled quantum
dots for motion detection. The system consists of two coupled
vertically-stacked asymmetric quantum dots in the presence
of a tunable electric field. By measuring the system’s excited
energy levels at varying electric fields, the distance between the
dots can be extracted from photoluminescence spectral patterns.
This is modeled by an inverse eigenvalue difference problem
associated with the quantum Hamiltonian. We develop algebraic
and computational methods along with a warm-starting strategy
to solve this problem. Examples demonstrate the accuracy and
sensing resolution of this approach.

Index Terms—quantum sensing; inverse eigenvalue problems,
optimization

I. INTRODUCTION

Quantum sensing and metrology has become a broad field
as well as an emergent technology that promises to provide
unprecedented precision measurement and sensing capabili-
ties [1]–[4]. Quantum sensors utilize quantum phenomena,
such as superposition, coherence, tunneling, and entanglement,
to measure a physical quantity beyond what can be done using
classical sensors. This promises to achieve high-resolution
sensing of gravitation, acoustic waves, and electromagnetic
fields with a wide range of applications [3]–[14].

In this paper, we explore the idea of quantum sensing of
motion using semiconductor quantum dots in the presence of
a tunable electric field. We consider a system of two coupled
quantum dots, which are embedded in a dynamic environment,
such as a crystal lattice subject to strain, or pairs of colloidal
quantum dots formed on DNA origami templates [15]–[18].
Given measurements of the system’s energy levels as an ex-
ternal electric field is varied, we extract the system’s intrinsic
features and recover the distance between the quantum dots.
This paradigm can be used to detect motion, strain, and
structural deformation. In particular, this has applications to
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bioimaging [19], signal processing circuitry [20], and quantum
cellular automata for circuits [21] Our approach is to model
the system using an effective quantum Hamiltonian and use an
efficient computational technique to “read out" the Hamilto-
nian from photoluminescence (PL) measurements. This allows
to infer the interdot distance. Examples using parameters for
self-assembled InAs/GaAs quantum dots demonstrate that this
approach is sensitive enough to measure accurately distances
of a few nanometers. The prospect to generalize this approach
and its potential applications are discussed.

II. BACKGROUND

When two quantum dots are near each other they form a
coupled quantum dot (CQD) pair. CQDs have long radiative
lifetimes and enable in situ control of exchange interactions,
coherent phonon effects, and other useful features [15]. In
particular, they give rise to spatially extended states due to the
interdot tunnel coupling of electrons, holes and / or excitons.

When an electric field is applied to vertically-stacked asym-
metric pairs of quantum dots (such as InGaAs/InAs), the
PL spectral patterns exhibit crossings and anticrossings [22],
[23]. These spectra are sensitive to changes in the intradot
distance [24]. Any change of distance between the dots serves
as a proxy for their relative motion due to mechanical strain or
forces that move them within their environment. Our idea is
to leverage this sensitivity by measuring the PL spectra as an
external electric field is varied and use this data to recover the
distance between the dots. In this way, the proposed approach
can be used to detect and characterize motion.

III. FORMULATION

In this section, we formulate a general approach to recover
the distance between two quantum dots in a CQD given mea-
surements of their PL spectra for a few values of an applied
electric field. This approach entails a numerical algorithm,
which is based on modeling the discrete energy levels of a
CQD as eigenvalues of an effective quantum Hamiltonian [23],
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Fig. 1: A coupled quantum dot (CQD) system composed of
two quantum dots (white boxes) contains an exciton (electron-
hole pair) with two possible states. (a) For an intradot exciton,
denoted by 10

10X
0, both the electron (○) and hole () occupy the

same dot. (b) For an interdot exciton, denoted by 10
01X

0, the
electron and hole occupy different dots. The distances between
the electron and hole in the intradot and interdot states are r1
and r2, respectively.

[25]. The Hamiltonian’s entries are extracted from the PL
measurements using an inverse eigenvalue method [26]. The
distance between the dots is recovered from one of the
Hamiltonian terms. As an aside, the electric dipole moments,
polarizabilities and hole tunneling strength of the dots are
recovered as well, which could prove useful for extending this
approach.

We propose using an asymmetric CQD pair, containing a
neutral exciton. This setup has been shown to create electron
and hole resonances that occur at different electric field values.
This allows for a setup where one dot has a smaller direct
transition energy, with the electron being localized in one
dot when the hole levels are brought into resonance. This
results in two possible charge states. As shown in Fig. 1, the
interdot charge state occurs when the electron and hole reside
in different dots, while the intradot charge state occurs when
the electron and hole reside within the same dot.

The notation eBeT
hBhT

XQ represents a specific CQD state,
where eB and eT correspond to the number of electrons in
the bottom and top dots, respectively. Similarly, the number
of holes in the bottom and top dots is denoted by hB and hT ,
respectively. The superscript Q is the net charge, which is zero
for a neutral exciton.

The steady-state energy levels of the CQD correspond to
eigenvalues of the quantum Hamiltonian. Our CQD system is
described by a 2× 2 symmetric matrix of the form

H(F ) =

[
E1(F ) t

t E2(F )

]
. (1)

The diagonal elements of H describe quadratic deviations
from the ground state energy line. These elements are given
by

Ei(F ) = Ei(0)− piF + βiF
2, i = 1, 2 , (2)

which depends on the electric field strength F via a quadratic
Stark shift (see [27]). The constants E1(0) and E2(0) are

Fig. 2: Electric field dispersed photoluminescence (PL) spec-
trum of a CQD pair. The intradot neutral exciton transition,
10
10X

0, and the interdot neutral exciton, 10
01X

0, are two prominent
transitions. The intradot transition from a positive trion, 10

11X
+,

is also prominent, but not discussed in this work.

the eigenenergies absent the presence of an electric field. The
coefficient t is the hole tunneling strength. The quadratic term
coefficient βi corresponds to the polarizability of the ground-
state electron and hole wave functions. The coefficients of the
linear term are the electric dipole moments pi, given by

pi = eri , (3)

where e is electron charge and ri is the distance between
the electron and hole. Specifically, r2 is the interdot distance.
Due to the location of the electron and hole within separate
quantum dots, r2 well-approximates the distance between the
dots. Hence, we seek to recover r2.

Figure 2 shows experimental data of electric field dependent
PL spectra of a CQD pair, which exhibits the intradot and
interdot neutral exciton transitions. Figure 3 shows simulated
data analogous to Fig. 2. For this simulation, the diagonal
entries in the Hamiltonian, E1(F ) and E2(F ), are defined by
Eq. (2) with electric dipole moments p1 = 0.0004, p2 = −1
[10−6 e·cm], polarizabilities β1 = 0.0007, β2 = 0.0005
[C·cm2/kV], and hole tunneling strength t = 0.3 meV.
The transition between charge states occurs at approximately
F ∗ ≈ 13.5 kV/cm, where E1(F

∗) = E2(F
∗). This figure

depicts two key features: (1) as the applied electric field
F varies, the energies ξ1(F ) and ξ2(F ) transition between
the two CQD states, 10

10X
0 and 10

01X
0; and (2) the asymptotic

relationships ξ1(F ) and ξ2(F ) and the deviations from the
ground state energy levels, which are the E1(F ) and E2(F )
above. Our approach for recovering r2 is described in the next
section.

IV. NUMERICAL APPROACH

We seek to recover r2 given the energies for a set of electric
field values. Recall that r2 is obtained from p2 (see (3)). We
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Fig. 3: Simulated energy levels of the CQD’s quantum Hamil-
tonian as the applied electric field is varied. These spectra
exhibit asymptotic relationships between the eigenenergies,
ξ1(F ) and ξ2(F ), and the diagonal entries, E1(F ) and E2(F ).
For F < F ∗, ξ1(F ) → E1(F ) and ξ2(F ) → E2(F ) as F
decreases; and in contrast, for F > F ∗, ξ1(F ) → E2(F ) and
ξ2(F ) → E1(F ) as F increases.

do so by recovering all the coefficients of H(F ) in (1). Specif-
ically, we formulate our problem as follows: Given the mea-
surements of the energies {ξ1(Fk), ξ2(Fk)}Kk=1 for a small set
of applied electric field values Fk, k = 1, 2, . . . ,K, we seek to
recover the coefficients {t, E1(0), p1, β1, E2(0), p2, β2}. This
problem can be formulated as an inverse eigenvalue problem
(IEP) (see [28], [29]), which can be solved by considering the
eigenvalues of H(F ).

Note that the eigenvalues of H(Fk) are the roots of its
characteristic polynomial, i.e.,

det
(
H(Fk)− ξI2

)
= 0 (4)

for ξ ∈ {ξ1, ξ2}, where we suppress the dependence of ξ1 and
ξ2 (and of ξ, in general) on Fk for notational convenience.
Here I2 is the 2× 2 identity matrix. More explicitly, (4) can
be written as

E1(Fk)E2(Fk)− (E1(Fk) + E2(Fk))ξ + ξ2 − t2 = 0. (5)

In addition, since the eigenvalues are roots of the characteristic
polynomial, the characteristic polynomial of H(Fk) is also
given by

det
(
H(Fk)− ξ

)
= (ξ1 − ξ)(ξ2 − ξ) (6a)

= ξ1ξ2 − (ξ1 + ξ2)ξ + ξ2. (6b)

Comparing the coefficients in (5) with those in (6b), we see
that

E1(Fk)E2(Fk)− t2 = ξ1ξ2 (7a)
E1(Fk) + E2(Fk) = ξ1 + ξ2 (7b)

From (7b), we see that E2(Fk) = ξ1 + ξ2 − E1(Fk). Sub-
stituting this expression for E2(Fk) in (7a), we can define

functions whose roots are the desired coefficients. In particular,
the functions are given by

F1(t, c1;Fk) = E1(Fk)
2−E1(Fk)(ξ1+ξ2)+ξ1ξ2+t2, (8a)

F2(c2; c1, Fk) = E1(Fk) + E2(Fk)− ξ1 − ξ2, (8b)

where we denote the coefficients in E1(F ) and E2(F ) by
c1 = (E1(0), p1, β1) and c2 = (E2(0), p2, β2), respectively.

We recover the coefficients sequentially, meaning we first
find the roots of F1. Having obtained t and c1, we use these to
solve for c2 by finding the roots of F2. In other words, E1(Fk)
in (8b) is simply a scalar that can be computed using c1 from
(8a) and Fk, and consequently, the remaining dependence of
F2 is only on c2. This approach is similarly found in [26].

To find the root of F1 in (8a), we solve the following
problem, whose minima correspond to the root of the F1:

minimize
t,c1

LF (t, c1) =
K∑

k=1

[
F1(t, c1;Fk)

]2
, (9)

where F = {F1, F2, . . . , FK}. In the absence of measurement
errors, any four values of F , i.e., K = 4, are both necessary
and sufficient for solving (9) to obtain t, E1(0), p1, and
β1. Those same values of F can then be used to solve a
similar minimization problem for E2(0), p2, and β2 using
(8b). In our code, we use the trust-exact method in Python’s
scipy.optimize.minimize package.

Optimization methods for IEPs of this form require good
initial iterates to converge to a solution [30]. An existing ap-
proach to recover r2 works as follows. When the electric field
is far from the transition between charge states (see Fig. 2), ξ1
and ξ2 well approximate E1 and E2. Taking measurements at
several F values sufficiently far from the transition between
charge states, one can recover the coefficients in E1(F ) and
E2(F ), from which r2 is readily obtained. We refer to this
as the asymptotic approach. We use a similar concept for
initializing our optimization.

Given K ≥ 4 values of F , we first find the three that have
the greatest difference eigenvalue difference, |ξ2−ξ1| for use in
computing initial values for E1(0), E2(0), p1, p2, β1, and β2.
The initial values are computed using least squares. The initial
value of t can then be computed from (8a) using the previously
determined initial values. See [26] for further details.

V. NUMERICAL EXPERIMENTS

We conducted numerical experiments to test the efficacy
of the proposed approach outlined in Sec. IV using noisy
measurements. For the results shown, we used simulated
measurement values from Fig. 3. These values were created
with c1 = (0, 0.0004, 0.0007), c2 = (13.5,−1, 0.0005), and
t = 0.3.

Note that (9) is dependent upon the values F1, . . . , FK

chosen. As F becomes more distant from the intersection of
E1(F ) and E2(F ), E1(F ) → ξ1(F ) or E1(F ) → ξ2(F ) and
it becomes more difficult to recover t numerically from (8a).
This results in more iterations for the optimization function
to reach the same value (see Fig. 4) and is exacerbated by
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Fig. 4: Objective function values as functions of iterations.
Each LFi

for i = 1, 2, 3 (as defined in (9)) corresponds to
different sets of values of F , with F1 = {10, 12, 14, 16}, F2 =
{6, 8, 18, 20}, and F3 = {2, 4, 22, 24}. Note that as the values
of F become more distant from the intersection of E1(F ) and
E2(F ) (near F = 13.5), the more iterations are required for
the optimization approach to converge.

perturbations to ξ1(F ) and ξ2(F ) (see Fig. 5). Additionally,
this effect becomes more pronounced as K increases. By also
including values of F near the intersection of E1(F ) and
E2(F ), the relative contribution of t to (8a) becomes more
pronounced and t becomes easier to recover.

Measurement noise is expected in the energies. To measure
the impact of noise on the proposed approach, we introduce
perturbations at each ξi(Fk), for F ∈ [10, 12, 14, 16], as

ξ̃i(Fk) = ξi(Fk) + τi(Fk)ε, (10)

where τi(Fk) ∈ {−1, 1} is a binary random variable and
0 < ε ≪ 1 is the error size. To determine the effects of noise
on our proposed approach, we simulated noisy measurements
using (10) for different values of ε. We implemented our
method using these noisy measurements and observed the
relative error in the coefficient r̂2, as shown in Fig. 6. This
figure demonstrates an O(ε) relative error in the recovered
r2. We also observed an O(ε) relative error for the other
coefficients in the Hamiltonian. This shows that the proposed
method is both robust in the presence of noise and produces
a predictable increase in the accuracy as noise is reduced.

We also seek to compare our proposed approach to the
asymptotic approach. Using our approach, the relative error in
the recovered r2 decreases with ε down to machine precision,
while using measurements for only 4 values of F (see Fig.
6). In contrast, the traditional approach, given some set of
values of F , contains additional modelling error. This error
dependent upon how well ξ1 and ξ2 approximate E1 and
E2. For example, when applying the asymptotic approach
to simulated eigenenergy data for F ∈ [9.5, 10] ∪ [16, 16.5],
the relative error of r2 does not go below 10−2, as seen in
Fig. 3. Despite the values of F used, the modelling error
results in a lower bound in error of r2, even if there is no

Fig. 5: Objective function values LFi as functions of iterations,
with 0.02 perturbations applied to ξ1(Fk) and ξ2(Fk). The
functions LF1

, LF2
, and LF3

are as in Fig. 4.

Fig. 6: Relative error (|r2− r̂2|/|r2|) in recovering the interdot
distance r̂2 as the measurement error ε varies. Using the
traditional (“asymptotic") method, the relative error does not
decrease below 10−2. Using our approach, the relative error
scales as O(ε) down to machine precision. We observe similar
results for all other coefficients in the Hamiltonian H(F ).

measurement error and/or measurements for many values of
F when applying the asymptotic method.

To put measurement error into context, it depends on the
linewidth of the PL spectra, which, in turn, depends on the
resolution of the system as well as the fluctuations felt by
the state/transition due to charges. For intradot transitions the
linewidth is limited by instrument resolution (0.01− 0.5meV
depending on the spectrometer) or with highest resolution
by the lifetime (≈ 0.001-0.02 meV). For interdot transitions
the electronic fluctuations and dot separation determine the
linewidth (typically 0.08meV-0.5meV). These instrument res-
olutions provide an upper bound for expected noise values.

VI. DISCUSSION

Our proposed quantum sensor could recover the distance
between CQDs with high accuracy. This sensor would be
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robust in the presence of noise, including environmental and
measurement noise, and achieve the same or higher accuracy
than existing methods while requiring significantly fewer
measurements. Moreover, our method simultaneously recovers
other physical parameters, including the tunneling rate and
polarizabilities. This study is the starting point for a quantum
approach to motion sensing. In contrast to the recombination
lifetime-limited exciton, one could also consider charge and
spin states that are long lived, such the ground states of
a positive trion. Our approach can also be generalized to
include quantum coherence and interference measurements,
which would enable even greater sensitivity to motion.

Such quantum sensors can be applied to differentiate be-
tween changes in eigenenergies due to strain vs. CQD separa-
tion due to mechanical or electromagnetic forces. In the case of
strain, dot separation changes minimally, with greater changes
to the barrier height and/or the dot confinement potential.
Hence, there are observable changes in the tunnel coupling
and the energies of the states, but not their response to the
electric field (the dipole moments).

Another CQD system can be realized using colloidal quan-
tum dots that are assembled via DNA origami templates.
Here, the dot separation can change, impacting both the
tunnel coupling and dipole moments, but not the electron and
hole’s eigenenergies. Such sensors could be employed as anti-
tempering markers, or for structural health monitoring by early
detection of material fatigue and nano-/micro-fissures.

For future work we will consider more complex systems
involving more quantum dots. Consequently, this could require
more sophisticated modeling and optimization approaches.
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