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Abstract

Wave collapse is investigated in nonlocal nonlinear Schrödinger (NLS) systems, where a nonlocal potential is coupled to an
underlying mean term. Such systems, here referred to as NLS-Mean (NLSM) systems, are also known as Benney–Roskes or
Davey–Stewartson type and they arise in studies of shallow water waves and nonlinear optics. The role of the ground-state in
global-existence theory is elucidated. The ground-state is computed using a fixed-point method. The critical-powers for collapse
predicted by the Virial Theorem, global-existence theory, and by direct numerical simulations of the NLSM are found to be in
good agreement with each other for a wide range of parameters. The ground-state profile in the water-wave case is found to
be generically narrower along the direction of propagation, whereas in the optics case it is generically wider along the axis of
linear polarization. In addition, numerical simulations show that NLSM collapse occurs with a quasi self-similar profile that is
a modulation of the corresponding astigmatic ground-state, which is in the same spirit as in NLS collapse. It is also found that
NLSM collapse can be arrested by small nonlinear saturation.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlinear waves problems are of wide physical and mathematical interest and arise in a variety of scientific fields
such as nonlinear optics, fluid dynamics, plasma physics, etc. (cf.[7,36]). The solutions of the governing nonlinear

∗ Corresponding author. Tel.: +1 303 492 4543; +1 303 492 4066.
E-mail address:boaz@colorado.edu (B. Ilan).

0167-2789/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2005.06.001



M. Ablowitz et al. / Physica D 207 (2005) 230–253 231

waves equations often exhibit important phenomena, such as stable localized waves (e.g., solitons), self-similar
structures, chaotic dynamics and wave singularities such as shock waves (derivative discontinuities) and/or wave
collapse (i.e., blowup) where the solution tends to infinity in finite time or finite propagation distance. A prototypical
equation that arises incubicmedia, such as Kerr media in optics, is the (2+1)D focusing cubic nonlinear Schrödinger
equation (NLS),

iuz(x, y, z) + 1
2�u + |u|2u = 0, u(x, y,0) = u0(x, y), (1)

whereu is the slowly-varying envelope of the wave,z is the direction of propagation,1 (x, y) are the transverse
directions,�u ≡ uxx + uyy, andu0 is the initial conditions. Remarkably, in 1965 Kelley[23] carried out direct
numerical calculations of(1) that indicated the possibility of wave collapse. In 1970, Vlasov et al.[34] proved that
solutions of Eq.(1) satisfy the following “Virial Theorem" (also called Variance Identity)

d2

dz2

∫
(x2 + y2)|u|2 = 4H, H = 1

2

∫
(|∇u0|2 − |u0|4), (2)

where∇ ≡ (∂x, ∂y), the integrations are carried over the (x, y) plane, andH, which is a constant of motion, is the
Hamiltonian of Eq.(1). Using the Virial Theorem, Vlasov et al. concluded that the solution of the NLS can become
singular in finite distance (or time), because a positive-definite quantity could become negative for initial conditions
satisfyingH < 0 . On the other hand, Weinstein[35] showed that when the power (which is also conserved)
is sufficiently small, i.e.,N = ∫ |u0|2 = constant< Nc ≈ 1.8623π, the solution exists globally, i.e., for allz > 0.
Therefore, asufficient conditionfor collapse isH < 0 while anecessary conditionfor collapse isN > Nc. Weinstein
also found that theground-stateof the NLS plays an important role in the collapse theory. This ground-state
is a “stationary” solution of the formu = R(r) eiz, such thatR is radially-symmetric, positive, and monotonically
decaying. Papanicolaou et al.[27] studied the singularity structure near the collapse point and showed asymptotically
and numerically that collapse occurs with a (quasi) self-similar profile. The readers are referred to[30] for a
comprehensive review of related studies. Recent research by Merle and Raphael[26] further elaborated on the
collapse behavior of NLS Eq.(1) and related equations, allowing for detailed understanding of the self-similar
asymptotic profile. Furthermore, Gaeta and coworkers[24] recently carried out detailed optical experiments in
cubic media that reveal the nature of the singularity formation and showed experimentally that collapse occurs with
a self-similar profile.

On the other hand, there are considerably fewer studies of wave collapse that arises in nonlinear media, whose
governing system of equations havequadratic nonlinearities, such as water waves andχ(2) nonlinear-optical media.
Here we discuss a class of such systems, denoted as NLS-Mean (NLSM) systems, which are sometimes referred to
as Benney and Roskes[8] or Davey and Stewartson[13] type. The physical derivation of NLSM systems in water
waves and nonlinear optics is reviewed in Section2. Broadly speaking, the derivation of NLSM systems is based on
an expansion of the slowly-varying (i.e., quasi-monochromatic) wave amplitude in the first and second harmonics
of the fundamental frequency, as well as a mean term that corresponds to the zeroth harmonic. This leads to a system
of equations that describes the nonlocal-nonlinear coupling between a dynamic field that is associated with the first
harmonic (with a “cascaded” effect from the second harmonic), and a static field that is associated with the mean
term (i.e., the zeroth harmonic). For the physical models considered in this study, the general NLSM system can be
written in the following non-dimensional form,

iuz + 1
2(σ1uxx + uyy) + σ2u|u|2 − ρuφx = 0, φxx + νφyy = (|u|2)x, (3)

whereu(x, y, t) corresponds to the field associated with the first-harmonic,φ(x, y, t) corresponds to the mean
field, σ1 andσ2 are±1, andν andρ are real constants that depend on the physical parameters. It is well-known

1 In this studyzplays the role of the evolution variable (i.e., like time).
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that System(3) can admit collapse of localized waves whenσ1 = σ2 = 1 andν > 0. In that case, the governing
equations are

iuz + 1
2�u + |u|2u − ρuφx = 0, (4a)

φxx + νφyy = (|u|2)x, (4b)

whereν > 0 andρ is real, and the initial conditions areu(x, y,0) = u0(x, y), φ(x, y,0) = φ0(x, y), such that
Eq. (4b) is satisfied atz = 0, i.e.,φ0,xx + νφ0,yy = (|u0|2)x. The goal of this study is to further investigate the
collapse dynamics in the NLSM System(4).

We note that System(4) reduces to the classical NLS Eq.(1) whenρ = 0, because in that case the mean field
φ does not couple to the harmonic fieldu in Eq. (4a). In addition, whenν = 0 Eq.(4b) gives thatφx = |u|2 and,
therefore, Eq.(4a)reduces to a classical NLS Eq.(1) with the cubic term (1− ρ)|u|2u. As we shall see, in optics
ρ > 0, whereas in water wavesρ < 0. In either case, i.e., whenρ 
= 0, the NLSM System(4) is a nonlocal system
of equations. Indeed, sinceν > 0, Eq.(4b)can be solved as

φ(x, y, z) =
∫ ∞

−∞
G(x − x′, y − y′)

∂

∂x′ |u(x′, y′, z)|2 dx′ dy′,

whereG(x, y) is the usual Green’s function. For Eq.(4b)G(x, y) = (4π)−1 log(x2 + y2/ν), which corresponds to
a strongly-nonlocal functionφ. While one might have expected the strong-nonlocality in the NLSM to arrest the
collapse process, generally speaking, that is not the case for System(4). Moreover, there is a striking mathematical
similarity between collapse dynamics in the NLS and NLSM cases.

The paper is organized as follows:

(1) In Section2 NLSM systems in water waves and in nonlinear optics are discussed.
(2) In Section3 the theory of collapse and global existence in NLS and NLSM equations is reviewed. In addition,

the Hamiltonian is used to explain why collapse in the case of water waves (ρ < 0) is relatively easier to attain,
and also occurs more quickly, than in the case of nonlinear optics (ρ > 0).

(3) Using global existence theory and numerical calculations of the ground-state, in Section4 the necessary con-
dition for collapse is explored in terms of the parametersν andρ in the NLSM System(4). Using the Virial
Theorem and the Hamiltonian, a sufficient condition for collapse is found for Gaussian input beams, explic-
itly in terms ofν, ρ, and the input power. These theoretical results are found to be consistent with numerical
simulations of the NLSM System(4) and are also consistent with the numerical results of Crasovan et al.[12]
for nonlinear optics (ρ > 0). In addition, the effect of input astigmatism in the initial conditions on the critical
power for collapse is studied (Section4.1]). Furthermore, in Section4.2 it is shown that the NLSM can admit
collapse even without the cubic term [i.e., without|u|2u in Eq.(4a)].

(4) In Section5 the astigmatism of the NLSM ground-state is explored in the (ν, ρ) parameter space. It is found
that the ground-state is relatively more astigmatic for nonlinear optics (ρ > 0) than for water waves (ρ < 0). In
addition, the dependence of the astigmatism of the ground-state onν is found to be weaker than its dependence
onρ.

(5) In Section6 simulations of the NLSM System(4) show that the collapsing solution is well described by a quasi
self-similar profile that is given in terms of a modulation of the corresponding ground state, a result that is in
the same spirit as for the NLS equation and also strengthens the results of Papanicolaou et al.[28]. However,
in [28] the ground-state itself was not computed and, in turn, it was not shown numerically that the asymptotic
profile approaches the corresponding ground-state. In this study numerical simulations directly show that the
collapsing wave approaches a quasi self-similar modulation of the corresponding ground-state. To calculate the
ground-state a fixed-point algorithm is used, which has been previously applied in dispersion-managed NLS
theory (seeAppendix C).
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(6) In Section7 numerical simulations are used to show that NLSM collapse can be arrested by a small saturation
of the cubic nonlinearity, a phenomenon that can be explained using the results of Fibich and Papanicolaou[19]
for the the perturbed NLS.

2. NLSM systems in water waves and nonlinear optics

Below we review some of the main results from the derivations of NLSM systems, with an emphasis on collapse.

2.1. Water waves

In the context of free-surface gravity-capillary water waves, NLSM equations result from a weakly-nonlinear
quasi-monochromatic expansion of the velocity potential as

φ(x, y, t) ∼ ε[Ãei(kx−wt) + c.c.+ Φ̃] + ε2[Ã2e2i(kx−wt) + c.c.]+ · · · , (5)

wherex is the direction of propagation,y the transverse direction,t the time,ε � 1 a measure of the (weak)
nonlinearity,Ã, Ã2, andΦ̃ are slowly varying functions of (x, y, t), which correspond to the coefficients of the
first, second, and zeroth harmonics, respectively, “c.c.” denotes complex conjugate of the term to its left, and the
frequencyω satisfies the dispersion relationω2(κ) = (gκ + Tκ3) tanh(κh), whereg is the gravity acceleration,T
is the surface tension coefficient, andκ = √

k2 + l2, where (k, l) are the wave-numbers in the (x, y) directions,
respectively. Substituting the wave expansion(5) into the water-wave equations (i.e., Euler’s equation with a free
surface) and assuming slow modulations of the field in thex andy directions results in a nonlinearly-coupled
system forÃ and Φ̃. After non-dimensionalization, i.e., (A,Φ) = (Ã, Φ̃)k2/

√
gh, one finds the general NLSM

system[6]

iAτ + λAξξ + µAηη = χ|A|2A + χ1AΦξ, (6a)

αΦξξ + Φηη = −β(|A|2)ξ, (6b)

whereξ = εk(x − cgt), η = εly andτ = ε2√gk t are dimensionless coordinates, andcg = ∂ω/∂k is group velocity.
The coefficientsλ,µ ≥ 0,χ,χ1 ≥ 0,αandβ ≥ 0 are suitable functions ofh,T,k, cg, and the second-order dispersion
coefficients∂2ω/∂k2 and∂2ω/∂l2. We note that in the derivation of System(6) Ã2 is expressed in terms ofÃ, which
accounts for the fact thatA2 does not appear explicitly in the resulting system.2

NLSM equations were originally obtained by Benney and Roskes[8] in their study of the instability of wave
packets in water of finite depthh, without surface tension. In 1974, Davey and Stewartson[13] studied the evolution
of a 3D wave packet in water of finite depth and obtained a different, although equivalent, form of these equations.
In 1975 Ablowitz and Haberman[4] studied the integrability of systems such as(6). These integrable systems
correspond to the Benney–Roskes equations in the shallow water limit. In 1977, Djordevic and Reddekopp[14]
extended the results of Benney and Roskes to include surface tension. Subsequently, Ablowitz and Segur[6] inves-
tigated System(6) or, equivalently, System(3). They showed that the shallow water limit, i.e.,h → 0, corresponds
to σ1 → −ν = ±1, andρ → 2 in System(3). The resulting equations agreed with those obtained by Ablowitz
and Haberman[4]. Hence, the shallow-water limit of System(6) is integrable and can be obtained from an associ-
ated compatible linear scattering system. In[21] these reduced equations were linearized by the inverse scattering
transform (see also[3]).

Subsequently, Ablowitz and Segur[6] studied the NLSM System(6) in the non-integrable case. In this parameter
regime, System(6) can be transformed by a rescaling of variables to System(3) with σ1 = σ2 = 1 andν > 0, i.e.,

2 A similar observation holds in the optics case mentioned below.
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the so called focusing elliptic–elliptic case, which, physically speaking, requires sufficiently large surface tension.
They found that System(6) preserves the Hamiltonian

H =
∫ [

λ

∣∣∣∣∂A∂ξ
∣∣∣∣2 + µ

∣∣∣∣∂A∂η
∣∣∣∣2

]
− 1

2

∫ [
(−χ)|A|4 + αχ1

β
(Φξ)

2 + χ1

β
(Φη)

2
]
, (7)

where the first and second integrals correspond to the second-derivative and the nonlinear terms in Eq.(6a), respec-
tively, and the integrations are carried over the (ξ, η) plane. When, in addition to the physical requirementsµ ≥ 0,
β ≥ 0, andχ1 ≥ 0, one has thatλ > 0,−χ > 0, andα > 0, the first and second integral terms in(7) are positive and
negative-definite, respectively. This corresponds to the self-focusing regime. Clearly, in that caseH < 0 is possible
for sufficiently large initial conditions.3 Furthermore they proved that the following Virial Theorem holds

∂2

∂τ2

∫ (
ξ2

λ
+ η2

µ

)
|A|2 = 8H.

As can be seen, ifH < 0, the moment of inertia vanishes at a finite time. In that case, as for the NLS case mentioned
above, this indicates finite-distance singularity formation. We note that in the same study collapse solutions with the
self-similar profile were also investigated, i.e., with|A| ∼ L−1f ( x

L
,
y
L

), whereL = L(t) approaches zero during
the collapse.

2.2. Nonlinear optics

The electric polarization field of intense laser beams propagating in optical media an be expanded in powers of
the electric field as

P = χ(1) × E + χ(2) × E × E + χ(3) × E × E × E + · · · , (8)

whereE = (E1, E2, E3) the electric field vector andχ(j) are the susceptibility tensor coefficients of the medium.
In isotropic Kerr media, where the nonlinear response of the material depends cubically [i.e., throughχ(3) and
whenχ(2) ≡ 0] and instantaneously on the applied field, the dynamics of a quasi-monochromatic optical pulse is
governed by the NLS Eq.(1) (cf. [9,23,31]). It turns out that NLSM type equations also arise in nonlinear optics
when studying media with a non-zeroχ(2) [even whenχ(3) ≡ 0], i.e., materials that have aquadraticnonlinear
response. Such materials are anisotropic, e.g., crystals whose optical refraction has a preferred direction.

Ablowitz et al.[1,2] found, from first principles, that NLSM type equations describe the evolution of the elec-
tromagnetic field in such quadratically [i.e.,χ(2)] polarized media. Both scalar and vector (3+1)D NLS systems
were obtained. Briefly, in this derivation one assumes a quasi-monochromatic expansion of thex component of the
electromagnetic field (which is primarily linearly-polarized), with the fundamental harmonic, second-harmonic,
and a mean term as

E1 ∼ ε[Aei(kx−ωt) + c.c.]+ ε2[A2 e2i(kx−ωt) + c.c.+ φx] + · · · , (9)

whereA, A2, andφ are slowly varying functions of (x, y, t), which correspond to the first, second, and zeroth
harmonics, respectively. Using a polarization field of the form(8) in Maxwell’s equations leads to the system of
equations

[2ik∂Z + (1 − αx,1)∂XX + ∂YY − kk′′∂TT + Mx,1|A|2 + Mx,0φx]A = 0, (10a)

[(1 − αx,0)∂XX + ∂YY + sx∂TT ]φx − αy,0∂XYφy = (Nx,1∂TT − Nx,2∂XX)|A|2, (10b)

3 Note that from Eq.(6b)Φ scales as|A|2, so all the terms in the second integral of(7) scale like|A|4.
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whereαx,0, αx,1, αy,0, andsx depend on the linear polarization termχ(1); Mx,0, Nx,1, andNx,2 depend on the
nonlinear polarization termsχ(2) andχ(3); andMx,1 depends on products ofχ(2) andχ(3). Physically speaking,
the dependence ofMx,1 on χ(2) andχ(3) corresponds to the fact that the second-harmonic (i.e.,Ã2) is coupled to
the first harmonic (i.e.,̃A1), a process that is sometimes referred to as “optical rectification” or “cascaded” optical
effect. However, as in the water-wave case, here tooÃ2 is expressed in terms of̃A, which is whyA2 does not
appear explicitly in the resulting system(10). In addition, similar to the water-wave case, the term withMx,0 in
System(10a)couples the mean field to the first-harmonic field. Interestingly, when the time dependence in these
equations is neglected (∂T ≡ 0) and for media with a special symmetry class such thatαy,0 = 0, it can be seen that,
after proper rescaling, the governing system of equation is given by System(4). In [32] these equations were further
elucidated and the coefficients described in terms of the electro-optic effect.

From the point of view of perturbation analysis, it is interesting to remark that in the expansion of the field in the
case of water-waves [i.e., Eq.(5)], the mean term̃Φ appears as an O(ε) term, whereas in the in the case of optics
[i.e., Eq.(9)], the mean termφx appears as an O(ε2) term. However, the physically measurable quantity in water
waves isΦ̃x, which scales like O(ε2), becausẽΦ is slowly-varying. Therefore, the expansions in the water-wave
and optics cases are, in fact, analogous from the viewpoint of perturbation analysis.

Wave collapse in such NLSM systems was recently investigated numerically by Crasovan et al.[12]. They solved
the following normalized system of equations,

iUz + 1
2�U + |U|2U − ρUV = 0, (11a)

Vxx + νVyy = (|U|2)xx, (11b)

whereU is the normalized amplitude of the envelope of the electric field,V the normalized static field,ρ a coupling
constant that comes from the combined optical rectification and electro-optic effects, andν corresponds to the
anisotropy coefficient of the medium. They solved System(11)numerically with Gaussian initial conditions forU.
The regions of collapse were investigated for various values of the parametersρ andν. We note that System(11) is
a simple mathematical modification of the NLSM System(4). Indeed, starting with the NLSM System(4), taking
the derivative of Eq.(4b) with respect tox, and defining the new variable (potential)V = φx, one finds that the
resulting system is identical to(11).

3. Global existence, collapse, and the ground-state

We begin by briefly outlining some of the known results for the NLS and NLSM equations. Two conserved
quantities for the NLS Eq.(1) and NLSM System(4) are the power, i.e.,

N(u) =
∫

|u|2 = N(u0), (12)

where the integrations (here and below) are carried over the (x, y) plane, and the Hamiltonian, i.e.,

HNLS(u) = 1

2

∫
|∇u|2 − 1

2

∫
|u|4 = HNLS(u0),

HNLSM(u, φ) = 1

2

∫
|∇u|2 − 1

2

∫
|u|4 + ρ

2

∫
(φ2

x + νφ2
y) = HNLSM(u0, φ0), (13)

whereHNLS andHNLSM correspond to Eq.(1) and System(4), respectively, andφ in (13)is obtained from Eq.(4b).
In addition, the Virial Theorem holds (cf.[6]),

∂2

∂z2

∫
(x2 + y2)|u|2 = 4H, (14)
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whereH is the corresponding Hamiltonian, i.e., eitherHNLS orHNLSM. We are interested in the localized-decaying
case, whenuandφ vanish sufficiently rapidly at infinity to be in the Sobolev spaceH1, i.e.,

∫ |u|2 + ∫ |∇u|2 < ∞and
similarly forφ. We note that within the context of the water-wave problem (i.e.,ρ < 0), existence and well-posedness
of solutions of System(4) were studied in[22]. Singularity formation corresponds to finite-time (or finite-distance)
blowup inH1. Since theL2 norm is conserved(12), blowup inH1 amounts to limz→Zc

∫ |∇u|2 = ∞, whereZc is
the collapse distance. In fact, it is well-known in NLS and NLSM theories that when a singularity occurs, the peak
amplitude of the wave blows-up as well, i.e., limz→Zc max(x,y) |u(x, y, z)| = ∞.

WhenH < 0 it follows from the VirialTheorem (14)that the solution becomes singular in finite time. This gives
asufficient conditionfor collapse. On the other hand, anecessary conditionfor collapse can be obtained using the
associated ground-state, as reviewed below. We note that the Hamiltonian(13) is comprised of three integrals, the
first of which is positive definite, the second negative definite, and, whenν ≥ 0, the third integral is definite with a
sign that is determined byρ. Generally speaking, NLS (and NLSM) theory shows that the positive-definite terms
correspond to defocusing mechanisms, while the negative-definite terms correspond to focusing mechanisms. Thus,
it follows that whenρ > 0, i.e., in the optics case, the coupling to the mean field corresponds to a self-defocusing
mechanism, while whenρ < 0, i.e., the water-wave case, it corresponds to a self-focusing effect in addition to the
cubic term in the NLS Eq.(1). In other words, loosely speaking, one can expect that self-focusing in the water-wave
case is “easier” to attain than in the optics case (see Sections4 and 6for details).

A stationary solution of the NLSM System(4) is a solution of the formu(x, y, z) = F (x, y) eiλz andφ(x, y, z) =
G(x, y), whereF andG are real functions andλ is a positive real number. Substituting this ansatz into System(4)
gives

− λF + 1
2�F + F3 − ρFGx = 0, (15a)

Gxx + νGyy = (F2)x. (15b)

Similarly, the NLS stationary solutions, which are obtained by substitutingu = R(x, y) eiλz into the NLS Eq.(1),
satisfy

− λR + 1
2�R + R3 = 0. (16)

Theground-stateof the NLS4 can be defined as a solution inH1 of Eq. (16) for a givenλ having minimal power
of all the nontrivial solutions. The existence and uniqueness of the ground state have been proven, as also the fact
that it is radially-symmetric, positive, and monotonically decaying (see[30]). SinceR(r; λ) = √

λR(
√
λ r; 1), it

suffices to consider the caseλ = 1, for which the solution is henceforth denoted byR. Furthermore, Weinstein[35]
proved that the NLS ground-state is a minimizer of a Gagliardo-Nirenberg inequality that is associated with the
NLS Hamiltonian. To be precise, the functional

J(u) = ‖u‖2
2 ‖∇u‖2

2

‖u‖4
4

, ‖u‖pp ≡
∫

|u|p,

attains its minimum foru ∈ H1 whenu(x, y) = R(r), whereR is the ground-state of Eq.(16) andJ(R) = 2/Nc,
whereNc ≡ ∫

R2. Moreover, Weinstein proved that whenN < Nc, the NLS solution exists globally (i.e., for all
z > 0) in H1. In addition, it is not difficult to show (cf.Appendix A) that any stationary solution, in particular the
ground-state, admits a zero Hamiltonian, i.e.,HNLS(R) = 0. These results can be used to explain why the ground-
state may be considered to be on the borderline between existence and collapse. Indeed, consider the initial conditions
u0 = (1 + ε)R(r) with ε = constant. Whenε < 0 thenN < Nc and, therefore, the solution exists globally. On the
other hand, whenε > 0 thenH < 0 and, therefore, finite-distance collapse is guaranteed by the Virial Theorem

4 R, the NLS ground-state, is sometimes referred to as the Townes profile.
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(cf. [35]). We note thatN ≥ Nc is only a necessary condition for collapse, i.e., there are solutions withN > Nc that
exist globally.

Similarly to the NLS case, the ground-state of System(15) can be defined as the nontrivial solution (F,G) in
H1, such thatF has minimal power. Cipolatti[10] proved the existence of the ground-state. In the same spirit as for
the NLS, Papanicolaou et al.[28] defined the ground-state as the minimizer the associated functional5

J(u) = ‖u‖2
2 ‖∇u‖2

2∫
[|u|4 + B(u)u∗2]

, B(u) ≡ F−1

[
ρk2

x

k2
x + νk2

y

F[|u|2]

]
,

whereF andF−1 denote the Fourier Transform operator and its inverse, respectively (seeAppendix B). They
extended global existence theory to the NLSM and proved the following.

Theorem 3.1. Consider System(4) with initial conditionsu0 ∈ H1. Let F be the nontrivial minimizer ofJ(u)
above, and letNc be defined as

Nc(ν, ρ) ≡
∫

F2(x, y; ν, ρ). (17)

Then F is a positive function and, therefore, Nc > 0. In addition, if
∫ |u0|2 < Nc the solution of System(4) exists

in H1 for all z > 0.

In other words, solutions of the NLSM System(4) exist globally when their power is smaller than the power of the
corresponding ground-state.

On the other hand, since the ground-state is a stationary solution, in analogy toHNLS(R) = 0, one has also (see
Appendix A)

Proposition 3.2. Let (F,G) be a solution of System(15). Then

HNLSM(F,G) ≡ 1

2

∫
(∇F )2 − 1

2

∫
F4 + ρ

2

∫
(∇νG)2 = 0, (18)

where(∇νG)2 ≡ G2
x + νG2

y.

Therefore, it follows fromTheorem 3.1, the Virial Theorem (14), andProposition 3.2that, as in the NLS case, the
NLSM ground-state is neutrally-stable and may be considered to be on the borderline between global existence and
collapse.

4. Collapse and global-existence regions

In this section System(4) is considered with the Gaussian initial conditions

uG0 (x, y) =
√

2N

π
e−(x2+y2), (19)

whereN = N(G) is the input power ofuG0 . The collapse and global-existence regions in the NLSM System(4)
are explored in the (N, ν, ρ) parameter space using the results obtained from the VirialTheorem (14), the global-
existenceTheorem (3.1), and direct (2+1)D numerical simulations of the NLSM System(4).

5 Note that from Eq.(4b)φx = ρ−1B(u).
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The critical powerNc(ν, ρ) is calculated from the ground-state [see Eq.(17)], which is found by using a numerical
method that is explained inAppendix C. For the NLSM simulations a standard fourth order accurate Runge-Kutta
integration is used, with a fourth order accurate spatial finite-difference stencil. The computational domain is a
truncation of the (x, y) plane with Dirichlet boundary-conditions at|x| = Land|y| = L, whereL is taken sufficiently
large, so to assure that the results are independent of reflections from the outer boundaries.

Substituting the initial-conditions(19) into the NLSM Hamiltonian(13)gives (seeAppendix B)

H(uG0 , φ
G
0 ) = N −

(
1 − ρ

1 + √
ν

)
N2

2π
. (20)

It follows from (20) and the VirialTheorem (14)that for the Gaussian initial conditions(19) there is athreshold
powerfor whichH = 0, given by

NH
c (ν, ρ) ≡ 2π

1 − ρ/(1 + √
ν)
, (21)

such that whenN > NH
c thenH < 0 and, therefore, the solution collapses at finite distance. We note that this

condition makes sense only when 0< NH < ∞, which impliesρ < 1 + √
ν. Conversely, when eitherρ ≥ 1 +√

ν (no matter how largeN) or N ≤ NH
c , thenH ≥ 0, in which case collapse is not guaranteed by the Virial

Theorem.
Fig. 1compares the critical power for collapse,Nc (17), the threshold-powerNH

c (21), and the “actual” power
for collapse found from numerical simulations of the NLSM System(4), where the latter is obtained by gradually
increasing the input power (or amplitude), i.e.,N in the initial conditions(19), until the solution undergoes collapse.
This figure also shows that forν = 0.5 and−1 ≤ ρ ≤ 1, NH

c (21) is quite close toNc, which, in turn, is very
close to the numerically obtained threshold power for collapse in the NLSM System(4). For example, for the
classical NLS (i.e.,ρ = 0) the discrepancy betweenNc(R) ≈ 1.86π andNH

c (R) = 2π is approximately 7% (see
also[16]). In addition, in this entire parameter regime the discrepancy betweenNc and the numerically-obtained
threshold power is less than 2%. Furthermore, this figure shows that the change in the critical power withρ

is more pronounced forρ > 0 than forρ < 0. Similarly, Fig. 2 shows that for a wide range of the parameters,
NH

c (21) is a good approximation ofNc, which, in turn, is a good approximation of the numerically-obtained
power for collapse. Furthermore, this figure shows that the critical power is weakly-dependent onν, for either
sign ofρ.

Fig. 1. The critical power for collapse as a function ofρ for ν = 0.5 (ρ < 0 for water-waves andρ > 0 for optics).Nc is obtained from the power
of the ground-state [i.e., Eq.(17), dashes],NH

c corresponds toH = 0 [i.e., Eq.(21), dotted], and the threshold power for collapse obtained by
numerically integrating the NLSM [i.e., System(4)with (19), solid]. “GE” denotes global existence and “NLSM” denotes numerical simulations
of System(4).
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Fig. 2. Same asFig. 1with: (a)ρ = −0.2 and varyingν; (b) ρ = 0.2 and varyingν.

An alternative way of using Eq.(20) is to fixNand allowν andρ to vary. Thus, for a fixedN there is aseparatrix
curvein the (ν, ρ) plane for whichH = 0, given by

ρHc (N, ν) ≡
(

1 − 2π

N

)
(1 + √

ν), (22)

such that whenρ < ρHc thenH < 0 and collapse is guaranteed by the Virial Theorem. These separatrix curves are
depicted inFig 3, which is consistent in the case ofρ > 0 with the results of Crasovan et al.[12].

As discussed in Section3, larger (more positive) values ofρ correspond to more defocusing. In fact, the results
in this section show that whenρ < 0, or whenρ > 0 and sufficiently small, the defocusing effect induced by the
coupling to the mean field is weaker than the focusing effect induced by the cubic term in Eq.(4a). In that case,
collapse is guaranteed by the Virial Theorem for sufficiently large input power. On the other hand, whenρ > 0 and
is sufficiently large, the defocusing effect induced by the coupling to the mean field can overcome the focusing effect
induced by the cubic term in Eq.(4a). In that case, the NLSM can effectively behave as a defocusing NLS-type
equation, i.e., like Eq.(1) with a negative sign before the cubic term.

We emphasize thatH ≥ 0 does not imply GE, becauseH < 0 is only a sufficient condition for collapse, not
a necessary one. Nevertheless, owing to their explicitness and apparent accuracy, conditions(21) and (22)can
be useful for predicting for the boundary in the (N, ν, ρ) space between the regions of collapse and GE. On the

Fig. 3. The regions in the (ν, ρ) plane corresponding to collapse and global-existence (GE). Equating the power of the ground-state,Nc(ν, ρ)
[i.e., Eq.(17)], to the powerN(G) of the initial conditions(19) [dashes, denoted byN(G) = N(ν, ρ) in the legend],ρHc obtained fromH = 0
[i.e., Eq. (22), dotted, denoted byH(G) = 0 in the legend], and using numerical simulations of the NLSM [i.e., System(4), solid] for: (a)
nonlinear optics (i.e.,ρ > 0) and the initial conditions(19) with the fixed input powerN(G) = 10; (b) water waves (i.e.,ρ < 0) and the initial
conditions(19)with N(G) = 4π/3.
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other hand, the condition derived from GE theory appears to be more accurate in the following sense: the actual
(numerical) critical power appears to be slightly closer toNc than toNH

c . We note that in[16] a similar conclusion
was reached for the NLS Eq.(1) when using Gaussian as well as other types of initial conditions.

4.1. Input astigmatism

It is interesting generalize the results above to the case when the initial conditions are astigmatic. To do that,
consider the astigmatic Gaussian initial conditions

uE0 (x, y) =
√

2EN

π
e−[(Ex)2+y2], (23)

whereN is the input power andE is input ellipticity. HereE = 1 corresponds to radial symmetry, whereas 0< E < 1
andE > 1 correspond to relative elongation along thex andy axes, respectively.

Similar to Eq.(20), one arrives at (seeAppendix B)

H(uE0 , φ
E
0 ) = 1 + E2

2
N −

(
1 − ρ

1 + √
ν/E

)
EN2

2π
. (24)

Thus, denoting

NH
c (ν, ρ,E) ≡ (E + 1/E)π

1 − ρ/(1 + √
ν/E)

, (25)

it follows that whenN > NH
c thenH < 0 and, therefore, the solution collapses at finite distance. This condition

makes sense only when 0< NH < ∞, which implies thatρ < 1 + √
ν/E.

Generally speaking,NH
c increases with astigmatism. For example, let us consider the optics case with 0< ρ <

1 + √
ν/E with an input beam(23) that is “focused” along thex direction, i.e., hasE > 1. AsE increases it will

approach the valueEc = √
ν/(ρ − 1), for whichNH

c = ∞. Physically speaking, this results suggests that as the
input beam becomes narrower along thex-axis, the critical power for collapse increases, making the collapse more
difficult to attain. This conclusion is consistent with the numerical observations of Crasovan et al.[12] in the optics
case, and is in the same spirit as the results of Fibich and Ilan[17] for the NLS case (i.e.,ρ = 0).

In addition, for a given powerN, the separatrix curve in the (ν, ρ) plane for whichH = 0 is given by

ρHc (N, ν,E) ≡
[
1 − (E + 1/E)π

N

] (
1 +

√
ν

E

)
, (26)

such that whenρ < ρHc thenH < 0 and, therefore, collapse is guaranteed by the Virial Theorem.

4.2. Related NLSM-type system

Consider the NLSM System(4) without the cubic term, i.e.,

iuz + 1
2�u − ρuφx = 0, (27a)

φxx + νφyy = (|u|2)x. (27b)

One might expect that the nature of collapse in the NLSM-type System(27) would be similar to the NLSM
System(4). Indeed, the analysis of System(27) is quite similar to that in Sections3 and 4. The only difference is
that the Hamiltonian corresponding to(27) is like (13), but without the second “self-focusing” integral, that is,

H(u, φ) = 1

2

∫
|∇u|2 + ρ

2

∫
(φ2

x + νφ2
y).
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Since the VirialTheorem (14)remains unchanged, collapse is possible in System(27) wheneverρ < 0 and the
initial conditions are sufficiently large. Furthermore, substituting the initial-conditions(19) into the Hamiltonian
above gives

H(u0, φ0) = N + ρ

1 + √
ν

N2

2π
.

It follows that the threshold power for whichH = 0 is given by

NH
c (ν, ρ) ≡ −2π(1 + √

ν)

ρ
.

Thus, similar to the NLSM case, the Virial Theorem guarantees that the solution of System(27) undergoes finite-
distance collapse whenN > NH

c . To conclude, although the cubic term in the NLSM System(4) is self-focusing,
its presence is not necessary for collapse to occur. In other words, collapse can occur even in the case when the
nonlinearity is strictly and strongly nonlocal.

5. Astigmatic ground-states

Below we study how the astigmatism of the ground-state depends onρ andν. The astigmatism is recovered from
the ground-state as

e(F ) ≡
∫ |(F2)x|∫ |(F2)y| . (28)

It follows from (28) thate = 1 corresponds to a radially-symmetric ground-state, ande < 1 ande > 1 correspond
to a ground-state that is relatively wider along thex andy axes, respectively. In other words,e ≈ Ly/Lx, whereLx

andLy are the full-widths at half-max of the function.
Fig. 4(a) and (b) shows the on-axes amplitudes of the ground-state forρ = 0 (i.e., the radially-symmetricR

profile); (ν, ρ) = (0.5,−1); and (ν, ρ) = (0.5,1). The contour plots inFig. 4(c) and (d) correspond to theρ =
−1 andρ = 1 cases, respectively. These plots clearly show that the ground-states withρ 
= 0 are astigmatic. In
addition, Fig. 5 shows the 3D plots and corresponding contour plots of the ground-state for (ν, ρ) = (4,−4),
which hase ≈ 1.5 . BothF (x, y) and the corresponding mean fieldG(x, y) are clearly astigmatic. Furthermore, the
mean fieldG is strongly nonlocal (see alsoFig. 5d), as can be expected from the Poisson-type Eq.(15b) that is
solves.

Fig. 6a shows that (i) the NLS ground-state (ρ = 0) is radially-symmetric, (i.e.,e = 1); (ii) whenν = 0.5 and
ρ < 0 (water-waves)F is wider along they-axis (i.e.,e > 1); and (iii) whenν = 0.5 andρ > 0 (optics)F is wider
along thex-axis (i.e.,e < 1). We note that the parameter space explored inFigs. 1 and 6a is the same. Comparing
these two figures, one sees that asρ is changed fromρ = 0 (in either direction), the deviation from the NLS ground
state is accompanied by a significant deviation in the critical power, as well as by a deviation from radial-symmetry.
Therefore, as|Nc(ν, ρ) − Nc(ν,0)| increases withρ, so does the astigmatism of the ground-state (along thex or y
axes). On the other hand,Figs. 2 and 6b show that the critical power and the astigmatism are only weakly dependent
onν, for either sign ofρ. In addition,Fig. 6a shows that, for the same values ofν, the functionF is relatively more
astigmatic forρ > 0 (i.e., for optics) than forρ < 0 (i.e., for water waves).

In summary, one has the followinggeneric picture:

(1) The ground-state profile in the water-wave case is narrower along the direction of propagation (i.e.,e > 1),
whereas in the nonlinear optics case it is wider along the axis of linear polarization (i.e.,e < 1).
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Fig. 4. Top: The on-axes amplitudes of the ground-state (a) along they-axis and (b) along thex-axis for (ν, ρ) = (0.5,1) (dashes),ρ = 0
(solid), and (ν, ρ) = (0.5,−1) (dotted). Bottom: Contour plots ofF (x, y) for: (c) ρ = −1 (corresponding to dotted above) with astigmatism
[i.e., Eq.(28)] e ≈ 1.17; (d)ρ = 1 (corresponding to dashes above) withe ≈ 0.59.

(2) The ground-state is relatively more astigmatic for nonlinear optics (ρ > 0) than for water waves (ρ < 0).
(3) Whereas the astigmatism of the ground-state changes significantly withρ, it depends only weakly onν.

6. Quasi self-similar astigmatic collapse

Asymptotic analysis and numerical simulations strongly suggest that when collapse occurs in NLS Eq.(1),
under quite general conditions, it occurs with a quasi self-similar profile that is a modulation (up to a phase) of the
ground-state (cf.[30]), i.e.,

|u(x, y, z)| ∼ 1

L(z)
R

(
r

L(z)

)
, (29)

where (x, y) are in some region surrounding of the collapse point (which typically shrinks during the self-focusing
process),R(r) is the NLS ground-state (see Section3), andL(z) is a modulation function, such that limz→Zc L(z) = 0,
whereZc is the collapse distance (or time). In the NLS case, the ground-stateR(r) is radially-symmetric and, to the
best of our knowledge, all the NLS-collapse simulations to date have shown that collapse occurs with a radially-
symmetric profile. The quasi self-similar collapse has received much theoretical attention since the contribution
of Merle and Tsutsumi[25]. However, it is very difficult to justify(29) rigorously. Only very recently did Merle
and Raphael[26] provide a sharp result explaining this quasi self-similar behavior in the case of the NLS Eq.(1).
Furthermore, on the experimental side, Gaeta and coworkers[24] recently carried out detailed measurements in
optical Kerr media showing that the collapse process occurs with a self-similar profile, in consistency with Eq.(29).
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Fig. 5. The ground-state [i.e., solution of System(15)] for (ν, ρ) = (4,−4). (a) and (b) are 3D plot ofF (x, y) andG(x, y), respectively; (c) and
(d) are contour plots corresponding to (a) and (b), respectively.

In contrast to the NLS case, whenρ 
= 0 andν > 0 the NLSM System(4) is not rotationally invariant and
the stationary solutions of(15)are not radially symmetric. Moreover, with this choice of parameters the stationary
solutions cannot be transformed into radially-symmetric functions by any rescaling ofxandy. Therefore, the NLSM
ground-state,F (x, y), is inherently astigmatic, which makes the analysis and numerical simulations more difficult.
The asymptotic analysis of Papanicolaou et al.[28] indicates that, similar to the NLS collapse, NLSM collapse
occurs with a modulated profile, i.e.,

|u(x, y, z)| ∼ 1

L(z)
P

(
x

L(z)
,

y

L(z)
, b(z)

)
, (30)

Fig. 6. The astigmatism(28) of the ground-stateF (x, y) of System(4) for: (a) ν = 0.5 with −1 ≤ ρ ≤ 1 (i.e., same asFig. 1); (b) ρ = −0.2
(dashes) andρ = 0.2 (solid) with 0≤ ν ≤ 1 (i.e., same asFig. 2a and b, respectively).
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for certain functionsP(x, y, z), L(z), andb(z), such that asz → Zc, L(z) andb(z) approach zero andP(x, y, z)
asymptotically approaches the corresponding ground-stateF (x, y). Numerical simulations of the NLSM using
“dynamic rescaling” suggested that, indeed, the collapsing solution approaches a modulated profile. However,
in [28] the ground-state itself was not computed. Since it was not computed, it was not shown (numerically) that the
asymptotic profile approaches the corresponding ground-state. The numerical results in this section suggest that,
down to moderately small values ofL(z), the amplitude of the collapsing solution behaves as

|u(x, y, z)| ∼ 1

L(z)
F

(
x

L(z)
,

y

L(z)

)
, (31)

whereF (x, y) is the ground-state of System(4). Therefore, the results of this study strengthen those of[28],
because the collapsing wave is directly compared to the corresponding ground-state and is shown to approach a
quasi self-similar modulation of the ground-state itself.

To study NLSM collapse numerically, System(4) is solved with the Gaussian initial conditions(19). The self-
focusing dynamics are recovered from the simulations using the focusing factor,|u(0,0, z)|/u0(0,0), as a function
of the propagation distancez. The astigmatism of the solution is recovered in accordance with(28)as

e(z) =
∫ |(|u|2)x|∫ |(|u|2)y| . (32)

We begin by presenting several numerical simulations of collapse, that also serve to verify some of the results
of the previous sections. As noted in Section3, the Hamiltonian of the NLSM suggests, loosely speaking, that the
water-wave case (ρ < 0) is “more focusing” than the optics case (ρ > 0). Indeed,Fig. 7shows that when the same
initial conditions are used for all cases, collapse withρ = −1 precedes collapse withρ = 0, which, in turn precedes
collapse withρ = 1. For this figure, the input power is taken as 1.2Nc(ν = 0.5, ρ = 1) ≈ 12.2. We note that this
value ofNc is approximately twice as large asNc(R) and approximately 3.3 times larger thanNc(ν = 0.5, ρ = −1)
(seeFig. 1).

Sinceρ < 0 andρ > 0 correspond water waves and optics, respectively, and since critical power depends onρ,
a more “balanced” comparison between the water-wave and optics cases requires using the same initial conditions
with an input power chosen with respect to the corresponding critical power (which is different for water-waves
and optics). Therefore, the rest of the simulations below [i.e.,Figs. 8–13] use the input powerN = 1.2Nc(ν, ρ),
i.e., 20% above the corresponding critical power for collapse.Fig. 8a shows the dynamics of the focusing factor for
ν = 0.5 with: ρ = 0 (NLS),ρ = 1 (optics), andρ = −1 (water waves). Similarly toFig. 7, the collapse distance
with ρ > 0 is greater than withρ ≤ 0. Surprisingly, the collapse distance in theρ = 0 andρ < 0 cases is almost the

Fig. 7. (a) The focusing factor the NLSM solutions [i.e., System(4)] with ν = 0.5 and three values ofρ (see legend) using the initial conditions(19)
with the same input powerN = 1.2Nc(ν = 0.5, ρ = −1) ≈ 12.2. (b) The corresponding astigmatism(32) of the solution as a function of the
focusing factor.
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Fig. 8. Same asFig. 7, but with the input powerN = 1.2Nc(ν, ρ), i.e., 20% above the corresponding critical power.

same. Although one might have expected the collapse withρ < 0 to precede collapse withρ = 0 (as inFig. 7), this
is not the case here, becauseN(ρ = −1) is approximately 1.6 times smaller thanN(ρ = 0) (seeFig. 3). Thus, in
Fig. 8 the collapse distances of theρ = −1 andρ = 0 simulations are close, because the input power in theρ = 0
simulation is much larger than the input power in theρ = −1 one.

In addition,Fig. 8b shows the corresponding astigmatism plots. The astigmatism is plotted as a function of the
focusing factor (rather than as a function ofz) in order to “blow up” the dynamics near the collapse point, where the
interesting changes in the astigmatism are expected to occur. While the NLS solution remains radially-symmetric
(i.e.,e ≡ 1), the NLSM solutions become astigmatic during propagation. Furthermore,ρ < 0 andρ > 0 correspond

Fig. 9. Same asFig. 8with [(a) and (b)]ρ = −0.2 andν = 0 (solid),ν = 0.2 (dashes), andν = 1 (dotted, on top of the dashes); [(c) and (d)]
same as above withρ = 0.2.
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Fig. 10. Convergence of the modulated collapse profile (dashes) to the NLSM ground state (solid) along thex-axis (top) and they-axis (bottom)
with (ν, ρ) = (0.5,1). The initial conditions are(19)with N = 1.2Nc(ν, ρ).

to e > 1 ande < 1, respectively, which is consistent with inFigs. 4 and 6. As can be seen from this figure, at the
initial stage of the propagation the astigmatism of the NLSM solutions becomes large, in a direction that depends
onρ. Based on these simulations it appears that the astigmatism approaches a (more or less) constant value at the
collapse point, a value that depends onν andρ (such thate 
= 1). This is consistent with the results in[28], as well
as with the results presented below.

Figs. 7–9indicate that NLSM collapse is astigmatic, however, they do not show that the collapse process is quasi
self-similar. In order to study the self-similarity of the collapse process, in accordance with Eq.(31), the modulation
function is recovered from the solution as

L(z) = F (0,0)

|u(0,0, z)| ,

Fig. 11. Same asFig. 10with (ν, ρ) = (0.5,−1).
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Fig. 12. Same asFig. 10with (ν, ρ) = (4,−4).

whereF (x, y) is the corresponding ground-state. The rescaled amplitude of the solution of the NLSM, i.e.,
L|u(Lx̃, Lỹ, z)|, is compared withF (x̃, ỹ), whereF (x̃, ỹ) is the ground-state and (˜x, ỹ) = ( x

L
,
y
L

). In order to show
that the collapse process is, indeed, quasi self-similar with the corresponding ground-state, the rescaled amplitude
is shown to converge pointwise toF near the origin asz → Zc (i.e., near the collapse point).

Fig. 10shows that the NLSM collapse is indeed self-similar with the ground-state forν = 0.5 andρ = 1. The
rescaled on-axis amplitude is compared separately on thexandyaxes (top and bottom plots, respectively). One can
see that, as the solution is undergoing self-focusing [i.e., asL(z) approached zero], its rescaled profile approaches
that of the astigmatic ground-state near the origin.

Fig. 11shows the same picture withρ = −1, whose ground-state is somewhat less astigmatic than withρ = 1
(as mentioned above). In order to observe self-similar collapse withρ < 0 and a more astigmatic profile,Fig. 12

Fig. 13. Same asFig. 12on a semi-log plot.
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compares the solution and the ground-state withν = 4 andρ = −4. The ground-state in this latter case is clearly
astigmatic and, in turn, the collapse process is quasi self-similar with the ground-state.Fig. 13further demonstrates
the local nature of the self-similar collapse process. While the spatial region in the vicinity of the collapse point is
self-similar to the ground-state, the outer “wings” of the solution do not approach the ground-state. This phenomenon
is well-known in the NLS case as well[30], and can be understood as follows: in accordance with Eq.(31), exactly
one critical power enters the collapse region. More precisely, asz → Zc, the power ofu(x, y, z) contained in a
“ball” of radiusL(z) around the collapse point is just slightly aboveNc (cf. [25]). Since the input power is 20%
aboveNc, the residual 20% radiates into the outer wings in a process that is not self-similar with the ground-
state.

7. Collapse arrest

As mentioned in Section2.2, within the context of nonlinear optics, the self-focusing mechanism in the NLSM
is due to a quadratic effect[1,2]. However, it is well-known that collapse with an infinite amplitude does not occur
in physical situations. In reality, there are always physical mechanisms that arrests the collapse. Such mechanisms
have been studied extensively in nonlinear optics, e.g., nonlinear saturation[11,33], beam nonparaxiality[15], and
vectorial effects[18]. In order to investigate the arrest of collapse in NLSM in the optics case, we consider the
NLSM with a small nonlinear saturation of the cubic nonlinearity as

iuz + 1

2
�u + |u|2u − ρuφx

1 + ε|u|2 = 0, (33a)

φxx + νφyy = (|u|2)x, (33b)

whereε is the small nonlinear-saturation parameter.
Whenρ � 1 andε � 1 System(33) is a small perturbation of the NLS Eq.(1). In that case, the asymptotic

analysis of Fibich and Papanicolaou[19] for the perturbed NLS can be used. Their analysis is based on the asymptotic
and numerical observations that the collapsing solution in the NLS case is self-similar with the ground-state (Townes
profile), i.e., as in Eq.(29). The asymptotic analysis predicts that, to leading order, the dynamics of the focusing
factor in the solution of System(33) is given by the following ODE (see[19, 5.3–5.4])

(wz)
2 = −4H0

M

(wM − w)(w − wm)

w
, (34)

wherew(z) = L2(z), L(z) is the focusing-factor in Eq.(29), M ≈ 0.55, andH0, wM , andwm are constants that
depend only onε and the initial conditions, such thatwM > wm. It follows from this nonlinear-oscillator-type
equation that for generic initial conditions the intensity of the solution initially focuses [i.e.,L(z) decreases] untilL ∼√
wm = O(

√
ε), then defocuses [i.e.,L(z) increases] untilL ∼ √

wM , followed by focusing–defocusing oscillations,
such that

√
wm ≤ L(z) ≤ √

wM .
Fig. 14shows the on-axis amplitude of the numerical solution of System(33) for ρ = 0.5, ν = 1, ε = 0.0025,

and the initial conditions(19) with N = 1.5Nc, whereNc is the critical power corresponding toε = 0. The nu-
merical solution of System(33) agrees qualitatively with the predictions based on Eq.(34). Indeed, one sees
that collapse is arrested by the small nonlinear saturation, followed by a series of focusing–defocusing oscilla-
tions.

It should be mentioned that the physical mechanisms that arrest the collapse in water waves are not understood
to the same level as in optics, in part because of the scarce experimental results on water waves with large surface
tension.
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Fig. 14. Collapse in the NLSM [i.e., System(4) with (ν, ρ) = (1,0.5), dashes] is arrested by small nonlinear saturation [i.e., System(33) with
(ν, ρ) = (1,0.5) andε = 0.0025, solid] leading instead to focusing–defocusing oscillations.

8. Summary and final remarks

The results of this study show that nonlinear-wave systems that admit a quadratic–cubic type interaction, such as
in nonlinear optics and in nonlinear free-surface water waves, lead to the NLSM System(4). The NLSM can admit
finite-distance collapse in a certain parameter regime. The regions of collapse and global-existence is explored in a
relevant parameter space and the consistency between global existence theory, the Virial Theorem, and numerical
simulations the NLSM System(4) is established. Furthermore, numerical simulations of the NLSM show that the
collapse process occurs with a quasi self-similar profile, which is a modulation of the ground-state profile. The
ground-state profile is found using a numerical algorithm that was recently used in dispersion-managed NLS theory.
Generically, the ground-state profile is astigmatic and, therefore, the collapse profile is astigmatic as well.

These results are in the same spirit as for the NLS Eq.(1). However, NLSM theory is more difficult and not
as advanced as NLS theory. There are several remaining questions and problems. For example, it remains an open
problem to extend the sharp theoretical results on the self-similar nature of the singularity to the NLSM case. From the
numerical perspective, while our simulations indicate that NLSM collapse occurs with a self-similar ground-state,
we only resolve moderate focusing factors [i.e., O(10)] near the collapse point. Using more specialized numerical
methods (cf.[28,20]), much larger focusing factors (e.g., greater than 104) could furnish more convincing evidence
of this self-similar collapse. From the experimental perspective, self-similar collapse in quadratic–cubic type media
remains to be demonstrated in either free-surface water waves or nonlinear optics.
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Appendix A. Proof of Proposition 3.2

Following Weinstein[35], if one substitutes the stationary solution(15) into the Virial Theorem (14), one finds
that the variance, i.e., the integral on left-hand side, is independent ofz. Therefore, its second-zderivative is zero,
which implies that the right-hand side, i.e., the Hamiltonian of the stationary solution(15), is zero as well. �
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Below an alternative constructive proof is given. Multiplying Eq.(15a)byF and Eq.(15b)byG and integrating
gives

− λ

∫
F2 + 1

2

∫
(FFxx + FFyy) +

∫
F4 − ρ

∫
F2Gx = 0, (A.1a)∫

(GGxx + νGGyy) =
∫

(F2)xG. (A.1b)

Using integration by-parts (IBP) on(A.1b) gives∫
F2Gx =

∫
(∇νG)2, (A.2)

where (∇νG)2 ≡ G2
x + νG2

y. Combining(A.1b) and(A.1a) leads to

λ

∫
F2 + 1

2

∫
(∇F )2 −

∫
F4 + ρ

∫
(∇νG)2 = 0 . (A.3)

On the other hand, multiplying Eq.(15a)by (xFx + yFy) gives that

−λ

2

∫
[x(F2)x + y(F2)y] + 1

4

∫
[x(F2

x )x + y(F2
y )y] + 1

2

∫
(xFyyFx + yFxxFy)

+ 1

4

∫
[x(F4)x + y(F4)y] − ρ

2

∫
[x(F2)xGx + y(F2)yGx] = 0.

Using IBP several times on the first four terms we arrive at

λ

∫
F2 − 1

2

∫
F4 − ρ

2

∫
[x(F2)xGx + y(F2)yGx] = 0. (A.4)

Similarly, multiplying Eq.(A.1b) by (xGx + yGy) and using IBP leads to∫
[x(F2)xGx + y(F2)xGy] = 0.

Using IBP and Eq.(A.2) gives∫
[x(F2)xGx + y(F2)yGx] = −

∫
F2Gx = −

∫
(∇νG)2. (A.5)

Substituting(A.5) into (A.4) we obtain that

λ

∫
F2 − 1

2

∫
F4 + ρ

2

∫
(∇νG)2 = 0.

Subtracting from Eq.(A.3) gives Eq.(18). �

Appendix B. Derivation of the Hamiltonians (20) and (24)

The derivation of Eq.(24) is outlined below. Substituting the astigmatic Gaussian initial conditions(23) into the
first two terms of the Hamiltonian(13)gives

1

2

∫
|∇u0|2 − 1

2

∫
|u0|4 = (1 + E2)N

2
− EN2

2π
. (B.1)
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It remains to calculate the third term in Eq.(13). To do that it is convenient to use the Fourier Transform. Below we
denote

f̂ (kx, ky) = F[f ] ≡
∫

f (x, y) e−ikxx−iky , f (x, y) = F−1[f̂ ] ≡ 1

(2π)2

∫
f̂ (kx, ky)e

ikxx+ikyy,

as the direct and inverse 2D Fourier Transforms, respectively, where (kx, ky) are the Fourier frequencies in (x, y)
directions and the integrations are carried over the (x, y) and (kx, ky) planes, respectively. Therefore, it follows from
Eq.(4b) that

φ̂0 ≡ F[φ(x, y,0)] = − ikx
k2
x + νk2

y

û2
0.

Using Parseval’s identity and substituting the Gaussian initial conditions(19) leads to

∫
(φ2

x + νφ2
y) = 1

4π2

∫
k2
x(û2

0)2

k2
x + νk2

y

= N2

4π2

∫
k2
x e−(k2

x+E2k2
y)/(4E2)

k2
x + νk2

y

.

Transforming to the cylindrical coordinates defined by (kx, ky) = (r cosθ, E−1r sinθ) yields

ρ

2

∫
(φ2

x + νφ2
y) = ρN2

8π2E

∫ ∞

0
e−r2/4E2

r dr
∫ 2π

0

dθ

1 + (ν/E2) cot2 θ
= ρN2E

4π2

2π

1 + √
ν/E

.

Combining with Eq.(B.1) and the Hamiltonian(13)yields Eq.(24). Note that Eq.(20) is a special case of Eq.(24)
with E = 1.

Appendix C. Calculating the ground state

The NLSM ground state is obtained in this study using a fixed-point numerical procedure similar to that recently
used in dispersion-managed soliton theory (cf.[5,29]).

Below we use the following formulation. Letu(x, y, z) andv(x, y, z) be solutions of the system

iuz + 1
2(uxx + uyy) + |u|2u − ρuv = 0, (C.1a)

vxx + νvyy = (|u|2)xx. (C.1b)

We note that Systems(4) and(C.1) are mathematically equivalent under the transformationv ≡ φx. A stationary
solution of system(C.1) has the formu(x, y, z) = eiλzF (x, y) andv(x, y, z) = V (x, y), whereF andV are real
functions andλ is an arbitrary real number. Substituting this ansatz into system(C.1)gives

− λF + 1
2(Fxx + Fyy) + F3 − ρFV = 0, (C.2a)

Vxx + νVyy = (F2)xx. (C.2b)

When the stationary solutions are known to be radially-symmetric, e.g., whenρ = 0 or ν = 0, one can write this
system as a single ODE in the radial variable. In that case, one can solve the ODE using a “shooting” method. This
technique, however, does not work well for a “true” PDE, i.e., whenF andG are not radially-symmetric, which is
the case in this study when bothρ andν are nonzero. Therefore, in order to solve this system we use a fixed-point
method as explained below.
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Taking the Fourier Transform (seeAppendix B) of System(C.2)gives

−λF̂ − |k|2
2

F̂ + F[F3 − ρFV ] = 0, (k2
x + νk2

y)V̂ = k2
xF[F2],

whereF̂ (kx, ky) andV̂ (kx, ky) are the Fourier transforms ofF (x, y) andV (x, y), respectively, and|k|2 = k2
x + k2

y.
This system can be re-written as

F̂ = 1

λ + |k|2/2F[F3 − ρFV ], (C.3a)

V̂ = k2
x

k2
x + νk2

y

F[F2]. (C.3b)

The idea is to use the fixed-point iterative method

F̂ (n+1) = 1

λ + |k|2/2 F[F3 − ρFV ](n),

where the right-hand side is evaluated usingV (n) found using Eq.(C.3b). This procedure is then supplemented with
an initial guessF (0)(x, y) = f0(x, y), which is typically chosen to be a Gaussian, i.e.,f0(x, y) = e−x2−y2

. However,
this approach fails, because the right-hand side of Eq.(C.2)is nonlinear and, as a result, the iterations either converge
to the trivial solution or diverge to infinity. To rectify this problem, one can “homogenize” the right-hand side of
Eq.(C.3)as follows. Multiplying(C.3a)by F̂∗ and integrating over the (kx, ky) plane yields the equation SL= SR,
where

SL ≡
∫

|F̂ |2, SR≡
∫

1

λ + |k|2/2F[F3 − ρFV ]F̂∗.

Here SL and SR are two scalar quantities that can be efficiently calculated using Fast-Fourier Transforms. Since
SL = SR whenF andV are solutions of(C.2), one can use instead the modified iterative method

F̂ (n+1) = 1

λ + |k|2/2
(

SL

SR

)α

F[F3 − ρFV ](n), (C.4)

where SL and SR are calculated usingF andV at stepn andV (n) is found using Eq.(C.3b). Hereα is an arbitrary
constant that is chosen to make the right-hand side of(C.4)have homogeneity zero with respect toF, which is to be
expected to prevent the aforementioned divergence. In our case the right-hand side of(C.4)scales like (SL/SR)αF3 =
F3−2α. This observation suggests usingα = 3/2, which, indeed, allows the fixed-point method(C.4) to converge.
The convergence can be monitored using error := |(SL/SR)− 1|, which should approach zero. Typically, 20–40
steps suffice for obtaining error< 10−8. In addition, when the solution obtained by this method is substituted for
the initial conditions of the NLSM System(4), the NLSM solution is confirmed to be stationary, i.e., its amplitude
remains (approximately) constant for a propagation distance ofz = O(10).
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