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Abstract

Wave collapse is investigated in nonlocal nonlinear 8dimger (NLS) systems, where a nonlocal potential is coupled to an
underlying mean term. Such systems, here referred to as NLS-Mean (NLSM) systems, are also known as Benney—Roskes o
Davey—Stewartson type and they arise in studies of shallow water waves and nonlinear optics. The role of the ground-state in
global-existence theory is elucidated. The ground-state is computed using a fixed-point method. The critical-powers for collapse
predicted by the Virial Theorem, global-existence theory, and by direct numerical simulations of the NLSM are found to be in
good agreement with each other for a wide range of parameters. The ground-state profile in the water-wave case is found tc
be generically narrower along the direction of propagation, whereas in the optics case it is generically wider along the axis of
linear polarization. In addition, numerical simulations show that NLSM collapse occurs with a quasi self-similar profile that is
a modulation of the corresponding astigmatic ground-state, which is in the same spirit as in NLS collapse. It is also found that
NLSM collapse can be arrested by small nonlinear saturation.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlinear waves problems are of wide physical and mathematical interest and arise in a variety of scientific fields
such as nonlinear optics, fluid dynamics, plasma physics, et¢7(86]). The solutions of the governing nonlinear
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waves equations often exhibit important phenomena, such as stable localized waves (e.g., solitons), self-similar
structures, chaotic dynamics and wave singularities such as shock waves (derivative discontinuities) and/or wave
collapse (i.e., blowup) where the solution tends to infinity in finite time or finite propagation distance. A prototypical
equation that arises ubic mediasuch as Kerr mediain optics, is the (2+1)D focusing cubic nonlineab8aiger

equation (NLS),

iuy(x, y,z) + %Au + |u|2u =0, u(x, y,0) = uo(x, y), (1)

whereu is the slowly-varying envelope of the wawvejs the direction of propagatioh(x, y) are the transverse
directions,Au = u,, + uyy, andug is the initial conditions. Remarkably, in 1965 Kellg¥3] carried out direct
numerical calculations dfL) that indicated the possibility of wave collapse. In 1970, Vlasov 484l.proved that
solutions of Eq(1) satisfy the following “Virial Theorem" (also called Variance ldentity)

d? 1
@/(x2+y2)|u|2=4H, H= 5/(|wo|z— luol*), )

whereV = (dy, 9y), the integrations are carried over the £) plane, andH, which is a constant of motion, is the
Hamiltonian of Eq(1). Using the Virial Theorem, Vlasov et al. concluded that the solution of the NLS can become
singular in finite distance (or time), because a positive-definite quantity could become negative for initial conditions
satisfying H < 0. On the other hand, Weinste[85] showed that when the power (which is also conserved)
is sufficiently small, i.e.N = [ lug|? = constant< N ~ 1.8623r, the solution exists globally, i.e., for ajl> 0.
Therefore, aufficient conditioffior collapse isH < 0 while anecessary conditiofor collapse isV > N.. Weinstein
also found that th@roundstateof the NLS plays an important role in the collapse theory. This ground-state
is a “stationary” solution of the form = R(r) €%, such thaR is radially-symmetric, positive, and monotonically
decaying. Papanicolaou et 7] studied the singularity structure near the collapse point and showed asymptotically
and numerically that collapse occurs with a (quasi) self-similar profile. The readers are refef8&d fir a
comprehensive review of related studies. Recent research by Merle and R@#jdalther elaborated on the
collapse behavior of NLS Eq1) and related equations, allowing for detailed understanding of the self-similar
asymptotic profile. Furthermore, Gaeta and cowork2#§ recently carried out detailed optical experiments in
cubic media that reveal the nature of the singularity formation and showed experimentally that collapse occurs with
a self-similar profile.

On the other hand, there are considerably fewer studies of wave collapse that arises in nonlinear media, whose
governing system of equations hawgadratic nonlinearitiessuch as water waves apt?) nonlinear-optical media.
Here we discuss a class of such systems, denoted as NLS-Mean (NLSM) systems, which are sometimes referred to
as Benney and Rosk@8] or Davey and Stewartsdt 3] type. The physical derivation of NLSM systems in water
waves and nonlinear optics is reviewed in SecfloBroadly speaking, the derivation of NLSM systems is based on
an expansion of the slowly-varying (i.e., quasi-monochromatic) wave amplitude in the first and second harmonics
of the fundamental frequency, as well as a mean term that corresponds to the zeroth harmonic. This leads to a systen
of equations that describes the nonlocal-nonlinear coupling between a dynamic field that is associated with the first
harmonic (with a “cascaded” effect from the second harmonic), and a static field that is associated with the mean
term (i.e., the zeroth harmonic). For the physical models considered in this study, the general NLSM system can be
written in the following non-dimensional form,

i, + 5(01ttar + ttyy) + ooulul? — pudy =0,  drx + voyy = (), €©)

whereu(x, y, t) corresponds to the field associated with the first-harmap(c, y, t) corresponds to the mean
field, o1 andoy are41, andv andp are real constants that depend on the physical parameters. It is well-known

1 In this studyz plays the role of the evolution variable (i.e., like time).
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that Systen(3) can admit collapse of localized waves when= o2 = 1 andv > 0. In that case, the governing
equations are

iuz+%Au+|u|2u — pug, =0, (4a)

xx + V¢yy = (|u|2))€v (4b)

wherev > 0 and p is real, and the initial conditions ane(x, y, 0) = ug(x, y), ¢(x, y, 0) = ¢o(x, y), such that
Eq. (4b) is satisfied at = 0, i.e., ¢o.x + v¢o,,y = (|uol?)x. The goal of this study is to further investigate the
collapse dynamics in the NLSM Systd#).

We note that Systerf®) reduces to the classical NLS Eg.) whenp = 0, because in that case the mean field
¢ does not couple to the harmonic fialdn Eq. (4a). In addition, wherv = 0 Eq.(4b) gives thatp, = |u|? and,
therefore, Eq(4a)reduces to a classical NLS E(.) with the cubic term (- p)|u|%u. As we shall see, in optics
o > 0, whereas in water wavgs< 0. In either case, i.e., whan# 0, the NLSM Systeng4) is a nonlocal system
of equations. Indeed, sinee> 0, Eq.(4b) can be solved as

o0
d
P(x, y,2) = f Glx—x',y—y)—u(x,y, z)>dx'dy,
00 ox’

whereG(x, y) is the usual Green’s function. For E@b) G(x, y) = (47)~log(x?2 + y2/v), which corresponds to
a strongly-nonlocal functiog. While one might have expected the strong-nonlocality in the NLSM to arrest the
collapse process, generally speaking, that is not the case for S{gtevtoreover, there is a striking mathematical
similarity between collapse dynamics in the NLS and NLSM cases.

The paper is organized as follows:

(1) In Section2 NLSM systems in water waves and in nonlinear optics are discussed.

(2) In Section3 the theory of collapse and global existence in NLS and NLSM equations is reviewed. In addition,
the Hamiltonian is used to explain why collapse in the case of water waved] is relatively easier to attain,
and also occurs more quickly, than in the case of nonlinear opties@).

(3) Using global existence theory and numerical calculations of the ground-state, in Settteonecessary con-
dition for collapse is explored in terms of the parameieasd p in the NLSM Systen(4). Using the Virial
Theorem and the Hamiltonian, a sufficient condition for collapse is found for Gaussian input beams, explic-
itly in terms of v, p, and the input power. These theoretical results are found to be consistent with numerical
simulations of the NLSM Systelf#) and are also consistent with the numerical results of Crasovan[&Rhl.
for nonlinear optics£ > 0). In addition, the effect of input astigmatism in the initial conditions on the critical
power for collapse is studied (Sectidri]). Furthermore, in SectioA.2it is shown that the NLSM can admit
collapse even without the cubic term [i.e., with¢wPu in Eq. (4a).

(4) In Section5 the astigmatism of the NLSM ground-state is explored in the) parameter space. It is found
that the ground-state is relatively more astigmatic for nonlinear opties @) than for water waves(< 0). In
addition, the dependence of the astigmatism of the ground-statesdaund to be weaker than its dependence
on p.

(5) In Sectiort simulations of the NLSM Systeifd) show that the collapsing solution is well described by a quasi
self-similar profile that is given in terms of a modulation of the corresponding ground state, a result that is in
the same spirit as for the NLS equation and also strengthens the results of Papanicola@8et-tdwever,
in [28] the ground-state itself was not computed and, in turn, it was not shown numerically that the asymptotic
profile approaches the corresponding ground-state. In this study numerical simulations directly show that the
collapsing wave approaches a quasi self-similar modulation of the corresponding ground-state. To calculate the
ground-state a fixed-point algorithm is used, which has been previously applied in dispersion-managed NLS
theory (seé\ppendix Q.
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(6) In Section7 numerical simulations are used to show that NLSM collapse can be arrested by a small saturation
of the cubic nonlinearity, a phenomenon that can be explained using the results of Fibich and Papdiigplaou
for the the perturbed NLS.

2. NLSM systems in water waves and nonlinear optics
Below we review some of the main results from the derivations of NLSM systems, with an emphasis on collapse.
2.1. Water waves

In the context of free-surface gravity-capillary water waves, NLSM equations result from a weakly-nonlinear
quasi-monochromatic expansion of the velocity potential as

o(x, v, 1) ~ e[AF) L cc 4 @] + ?[A2 ) L cc]+ -, (5)

wherex is the direction of propagatiory, the transverse direction,the time,e « 1 a measure of the (weak)
nonlinearity, A, A», and® are slowly varying functions ofx( y, z), which correspond to the coefficients of the

first, second, and zeroth harmonics, respectively, “c.c.” denotes complex conjugate of the term to its left, and the
frequencyw satisfies the dispersion relatiarf(x) = (g« + Tk®) tanhh), whereg is the gravity acceleratior,

is the surface tension coefficient, and= v/k2 + I2, where ¢, [) are the wave-numbers in the, (y) directions,
respectively. Substituting the wave expansibpinto the water-wave equations (i.e., Euler’s equation with a free
surface) and assuming slow modulations of the field inXtendy directions results in a nonlinearly-coupled
system forA and @. After non-dimensionalization, i.e.A( @) = (A, ®)k?/./gh, one finds the general NLSM

system6]
iAr + Mg + Ay = XIAPA + 1A, (6a)
a®s: + Dy = — (AP, (6b)

whereé = ek(x — cgt), n = ely andr = £2./gk t are dimensionless coordinates, agd= dw/0k is group velocity.
The coefficients,, u > 0, x, x1 > 0,z andg > 0 are suitable functions of T, k, ¢4, and the second-order dispersion
coefficientsy%w/0k? andd?w/d12. We note that in the derivation of Systéf) A, is expressed in terms df, which
accounts for the fact that, does not appear explicitly in the resulting system.

NLSM equations were originally obtained by Benney and Ro$&Ef their study of the instability of wave
packets in water of finite depth without surface tension. In 1974, Davey and Stewarf&8hstudied the evolution
of a 3D wave packet in water of finite depth and obtained a different, although equivalent, form of these equations.
In 1975 Ablowitz and Habermaf#] studied the integrability of systems such (&% These integrable systems
correspond to the Benney—Roskes equations in the shallow water limit. In 1977, Djordevic and Reddékopp
extended the results of Benney and Roskes to include surface tension. Subsequently, Ablowitz ajtd fBegss
tigated Systen(6) or, equivalently, Syster{8). They showed that the shallow water limit, i.e..~ 0, corresponds
to o1 > —v =41, andp — 2 in System(3). The resulting equations agreed with those obtained by Ablowitz
and Habermaf]. Hence, the shallow-water limit of Syst€®) is integrable and can be obtained from an associ-
ated compatible linear scattering system[2h] these reduced equations were linearized by the inverse scattering
transform (see alsi3]).

Subsequently, Ablowitz and Sed#8i studied the NLSM Systei(®) in the non-integrable case. In this parameter
regime, Systenf6) can be transformed by a rescaling of variables to Sy¢8with 01 = 02 = 1 andv > 0, i.e.,

2 A similar observation holds in the optics case mentioned below.
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the so called focusing elliptic—elliptic case, which, physically speaking, requires sufficiently large surface tension.
They found that Systeif6) preserves the Hamiltonian

B 0A 2 1 4 0X1 2, X1 2
H= / |:/\'8_§ :| - Ef [(—X)|A| + 7(‘155) + E(‘pn) ] )

where the first and second integrals correspond to the second-derivative and the nonlinear terféajr&spec-
tively, and the integrations are carried over the;j plane. When, in addition to the physical requirements 0,
B > 0,andy; > 0,one hasthat > 0,—x > 0, andx > 0, the first and second integral termgMare positive and
negative-definite, respectively. This corresponds to the self-focusing regime. Clearly, in thAt ea3és possible
for sufficiently large initial conditions.Furthermore they proved that the following Virial Theorem holds

92 2 2
_/ $_+r’_ |A]2 = 8H.
ar2 A 7

As can be seen, il < 0,the moment of inertia vanishes at a finite time. In that case, as for the NLS case mentioned
above, this indicates finite-distance singularity formation. We note that in the same study collapse solutions with the
self-similar profile were also investigated, i.e., wijth| ~ L‘lf(%, %), whereL = L(t) approaches zero during

the collapse.

2+ 9A
"o

2.2. Nonlinear optics

The electric polarization field of intense laser beams propagating in optical media an be expanded in powers of
the electric field as

P=xOxE4+ O XEXE+ O XxEXEXE+---, (8)

whereE = (E1, E», E3) the electric field vector ang”) are the susceptibility tensor coefficients of the medium.
In isotropic Kerr media, where the nonlinear response of the material depends cubically [i.e., thfSumtd
when x@ = 0] and instantaneously on the applied field, the dynamics of a quasi-monochromatic optical pulse is
governed by the NLS Ed1) (cf. [9,23,31). It turns out that NLSM type equations also arise in nonlinear optics
when studying media with a non-zeyé® [even whenyx® = 0], i.e., materials that have guadratic nonlinear
response. Such materials are anisotropic, e.g., crystals whose optical refraction has a preferred direction.
Ablowitz et al.[1,2] found, from first principles, that NLSM type equations describe the evolution of the elec-
tromagnetic field in such quadratically [i.e?] polarized media. Both scalar and vector (3+1)D NLS systems
were obtained. Briefly, in this derivation one assumes a quasi-monochromatic expansioxagnt@nent of the
electromagnetic field (which is primarily linearly-polarized), with the fundamental harmonic, second-harmonic,
and a mean term as

Ex~ e[AdE =) 4 col+ e[A2 20 L co+ ]+, )

whereA, A, and¢ are slowly varying functions ofx( y, t), which correspond to the first, second, and zeroth
harmonics, respectively. Using a polarization field of the f¢@nin Maxwell’s equations leads to the system of
equations

[2ikdz + (1 — ax.1)dxx + dyy — kk"d77 + My 1|A12 + My ops] A =0, (10a)
[(1 - ax,O)aXX + aYY + sxaTT]¢x - Ofy,OaXY(lsy = (Nx,laTT - Nx,28XX)|A|2a (1Ob)

3 Note that from Eq(6b) @ scales a$A|?, so all the terms in the second integra(@f scale like|A|*.
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wherea;, o, ay,1, @y,0, @ands, depend on the linear polarization tergf); M M, 0, Ny.1, and N, » depend on the
nonlinear polarization termg® and x®; and M;.1 depends on products of?) and . Physically speaking,

the dependence @, 1 on x®@ and x® corresponds to the fact that the second-harmonic @#.js coupled to

the first harmonic (i.e.A1), a process that is sometimes referred to as “optical rectification” or “cascaded” optical
effect. However, as in the water-wave case, hereAgds expressed in terms of, which is WhyA2 does not
appear explicitly in the resulting systeh0). In addition, similar to the water-wave case, the term withg in
System(10a)couples the mean field to the first-harmonic field. Interestingly, when the time dependence in these
equations is neglected = 0) and for media with a special symmetry class suchdhat= 0, it can be seen that,

after proper rescaling, the governing system of equation is given by Sy4jeim[32] these equations were further
elucidated and the coefficients described in terms of the electro-optic effect.

From the point of view of perturbation analysis, it is interesting to remark that in the expansion of the field in the
case of water-waves [i.e., E(p)], the mean tern® appears as an €)(term, whereas in the in the case of optics
[i.e., EQ.(9)], the mean terny, appears as an &) term. However, the physically measurable quantity in water
waves is®,, which scales like Gf), becaused is slowly-varying. Therefore, the expansions in the water-wave
and optics cases are, in fact, analogous from the viewpoint of perturbation analysis.

Wave collapse in such NLSM systems was recently investigated numerically by Crasov§tdt ahey solved
the following normalized system of equations,

iU, + AU + |U*U — pUV =0, (11a)
Ve + vV = (U, (11b)

whereU is the normalized amplitude of the envelope of the electric fiékthe normalized static fielgh a coupling
constant that comes from the combined optical rectification and electro-optic effects,camcesponds to the
anisotropy coefficient of the medium. They solved Sysf&fr) numerically with Gaussian initial conditions fox.
The regions of collapse were investigated for various values of the pararpeteds. \We note that Systetfil)is
a simple mathematical modification of the NLSM Systét Indeed, starting with the NLSM Systef#), taking
the derivative of Eq(4b) with respect ta, and defining the new variable (potentid)= ¢,, one finds that the
resulting system is identical {@.1).

3. Global existence, collapse, and the ground-state

We begin by briefly outlining some of the known results for the NLS and NLSM equations. Two conserved
quantities for the NLS Eq1) and NLSM Systent4) are the power, i.e.,

N(w) = / ul? = N(uo), 12)

where the integrations (here and below) are carried oventhg plane, and the Hamiltonian, i.e.,

1 1
Hnis(u) = 5/ |Vu|? — > / lu|* = Hnis(uo),

1 1
Hyism(u, ¢) = 5 / |Vul® - > / lul* + g/(d& + vgp2) = Hnism(uo. ¢o). 13)

whereHps and Hysm correspond to E1) and Systenf4), respectively, ang in (13)is obtained from Eq4b).
In addition, the Virial Theorem holds (di6]),

82
@/(x2+y2)|u|2=4H, (14)
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whereH is the corresponding Hamiltonian, i.e., eithiéy s or HnLsm. We are interested in the localized-decaying
case, whenandg vanish sufficiently rapidly atinfinity to be in the Sobolev spatei.e., [ u|? + I |[Vu|? < coand
similarly for ¢. We note that within the context of the water-wave problem (.e:,0), existence and well-posedness
of solutions of Systend) were studied ij22]. Singularity formation corresponds to finite-time (or finite-distance)
blowup in Hy. Since theL, norm is conserveglL2), blowup in H, amounts to lim_, z, [ |Vu|? = 0o, whereZ. is
the collapse distance. In fact, it is well-known in NLS and NLSM theories that when a singularity occurs, the peak
amplitude of the wave blows-up as well, i.e., limz, max. y) lu(x, y, z)| = oco.

WhenH < 0 it follows from the VirialTheorem (14jhat the solution becomes singular in finite time. This gives
a sufficient conditiorfor collapse. On the other handnacessary conditiofor collapse can be obtained using the
associated ground-state, as reviewed below. We note that the Hamil{@B)as comprised of three integrals, the
first of which is positive definite, the second negative definite, and, whef, the third integral is definite with a
sign that is determined by. Generally speaking, NLS (and NLSM) theory shows that the positive-definite terms
correspond to defocusing mechanisms, while the negative-definite terms correspond to focusing mechanisms. Thus
it follows that whenp > 0, i.e., in the optics case, the coupling to the mean field corresponds to a self-defocusing
mechanism, while whep < 0, i.e., the water-wave case, it corresponds to a self-focusing effect in addition to the
cubic termin the NLS Eq1). In other words, loosely speaking, one can expect that self-focusing in the water-wave
case is “easier” to attain than in the optics case (see Sediand 6for details). _

A stationary solution of the NLSM Syste) is a solution of the form(x, y, z) = F(x, y) €*? ande(x, v, z) =
G(x, y), whereF andG are real functions and is a positive real number. Substituting this ansatz into Sygtgm
gives

—AF+3AF + F3— pFG, =0, (15a)
G 4+ VGyy = (F?),. (15b)

Similarly, the NLS stationary solutions, which are obtained by substitutisgR(x, y) €*< into the NLS Eq(1),
satisfy

—AR+3iAR+R3=0. (16)

The ground-stateof the NLS* can be defined as a solution Hy of Eq. (16) for a giveni having minimal power

of all the nontrivial solutions. The existence and uniqueness of the ground state have been proven, as also the fac
that it is radially-symmetric, positive, and monotonically decaying (869). SinceR(r; ) = VAR(VA r; 1), it

suffices to consider the case= 1, for which the solution is henceforth denotedy-urthermore, Weinsteii35]

proved that the NLS ground-state is a minimizer of a Gagliardo-Nirenberg inequality that is associated with the
NLS Hamiltonian. To be precise, the functional

RRAE
J() = —2——2, ||u||§s/|u|p,

llull}

attains its minimum fou € H; whenu(x, y) = R(r), whereR is the ground-state of Eq16) and J(R) = 2/ N,
whereN; = [ R2. Moreover, Weinstein proved that wheh< N¢, the NLS solution exists globally (i.e., for all

z > 0) in Hy. In addition, it is not difficult to show (cfAppendix A) that any stationary solution, in particular the
ground-state, admits a zero Hamiltonian, iy s(R) = 0. These results can be used to explain why the ground-
state may be considered to be on the borderline between existence and collapse. Indeed, consider the initial conditior
ug = (1 + ¢)R(r) with ¢ = constant. Wher < 0 thenN < N and, therefore, the solution exists globally. On the
other hand, wher > 0 thenH < 0 and, therefore, finite-distance collapse is guaranteed by the Virial Theorem

4 R, the NLS ground-state, is sometimes referred to as the Townes profile.
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(cf.[35]). We note thatvV > N is only a necessary condition for collapse, i.e., there are solutiongwnith\V, that
exist globally.
Similarly to the NLS case, the ground-state of Systés) can be defined as the nontrivial solutiaf ) in
Hj, such thafF has minimal power. CipolatfiLO] proved the existence of the ground-state. In the same spirit as for
the NLS, Papanicolaou et 28] defined the ground-state as the minimizer the associated functional

2 2
llall5 [IVull

) = T+ By

By = 7 | 25 |,
k2 + vk?

where F and F~! denote the Fourier Transform operator and its inverse, respectivelyA(geendix B. They
extended global existence theory to the NLSM and proved the following.

Theorem 3.1. Consider Systerd) with initial conditionsug € Hi. Let F be the nontrivial minimizer of (i)
above and letN; be defined as

Ne(v. p) = / F2(x, yiv. p). (17)

Then F is a positive function antherefore Nc > 0. In addition if [ lug|? < N¢ the solution of Systel#) exists
in Hy forall z > 0.

In other words, solutions of the NLSM Systd#) exist globally when their power is smaller than the power of the
corresponding ground-state.

On the other hand, since the ground-state is a stationary solution, in analBigy46R) = 0, one has also (see
Appendix A
Proposition 3.2. Let(F, G) be a solution of Systefid5). Then

_1 21 4, P 2
Hnism(F, G) = > (VF)* — S F+35 (ViG)* =0, (18)

where(V,G)? = G% + vG2.
Therefore, it follows fromrheorem 3.1the Virial Theorem (14)andProposition 3.2hat, as in the NLS case, the
NLSM ground-state is neutrally-stable and may be considered to be on the borderline between global existence and
collapse.
4. Collapse and global-existence regions

In this section Systert?) is considered with the Gaussian initial conditions

2N
uf(xy) = ) e 00, (19)

whereN = N(G) is the input power oug. The collapse and global-existence regions in the NLSM Sy$tgm
are explored in theN, v, p) parameter space using the results obtained from the Miabrem (14)the global-
existencerheorem (3.1)and direct (2+1)D numerical simulations of the NLSM Sys{@m

5 Note that from Eq(4b) ¢, = p~B(u).
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The critical poweVe(v, p) is calculated from the ground-state [see @q)], which is found by using a numerical
method that is explained idppendix C For the NLSM simulations a standard fourth order accurate Runge-Kutta
integration is used, with a fourth order accurate spatial finite-difference stencil. The computational domain is a
truncation of thex, y) plane with Dirichlet boundary-conditionsjat = L and|y| = L, whereL is taken sufficiently
large, so to assure that the results are independent of reflections from the outer boundaries.

Substituting the initial-conditiongl9) into the NLSM Hamiltonian(13) gives (seéAppendix B

HwS,¢8)=N - (1- —2— il (20)
0-ros = 1+.v) 2n°

It follows from (20) and the VirialTheorem (14}hat for the Gaussian initial conditiori$9) there is athreshold

powerfor which H = 0, given by

27
1-p/(1+ V)

such that whenV > N/ then H < 0 and, therefore, the solution collapses at finite distance. We note that this
condition makes sense only when<ONy < oo, which impliesp < 1+ /v. Conversely, when eithes > 1+
Vv (no matter how largeN) or N < N, then H > 0, in which case collapse is not guaranteed by the Virial
Theorem.

Fig. 1 compares the critical power for collapsé; (17), the threshold-poweN/? (21), and the “actual” power
for collapse found from numerical simulations of the NLSM Sys{djnwhere the latter is obtained by gradually
increasing the input power (or amplitude), ildin the initial conditiong19), until the solution undergoes collapse.
This figure also shows that for= 0.5 and—1 < p < 1, N/ (21) is quite close taN;, which, in turn, is very
close to the numerically obtained threshold power for collapse in the NLSM SygerRor example, for the
classical NLS (i.e.p = 0) the discrepancy betwee¥y(R) ~ 1.867 and N/(R) = 2r is approximately 7% (see
also[16]). In addition, in this entire parameter regime the discrepancy betwgamd the numerically-obtained
threshold power is less than 2%. Furthermore, this figure shows that the change in the critical power with
is more pronounced fop > 0 than forp < 0. Similarly, Fig. 2 shows that for a wide range of the parameters,
NI (21) is a good approximation af¢, which, in turn, is a good approximation of the numerically-obtained
power for collapse. Furthermore, this figure shows that the critical power is weakly-dependentooreither
sign of p.

Ngl(v, p) = (21)

collapse

GE N

p

Fig. 1. The critical power for collapse as a functiorpdbr v = 0.5 (0 < 0 for water-waves and > 0 for optics).N. is obtained from the power

of the ground-state [i.e., E¢L7), dashes]NZ corresponds té7 = 0 [i.e., Eq.(21), dotted], and the threshold power for collapse obtained by
numerically integrating the NLSM [i.e., Systgd) with (19), solid]. “GE” denotes global existence and “NLSM” denotes numerical simulations
of System(4).
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10 10
collapse
N collapse ———
NGRY [ s e N.R) -
GE
0 0
0 1 0 1

(a) v (b) v

Fig. 2. Same abig. 1with: (a) p = —0.2 and varying; (b) p = 0.2 and varyingy.

An alternative way of using E¢20)is to fix N and allowv andp to vary. Thus, for a fixed\l there is aseparatrix
curvein the (v, p) plane for whichH = 0, given by

v = (1= 5 ) @+ o) (22)

such that whep < pff thenH < 0 and collapse is guaranteed by the Virial Theorem. These separatrix curves are
depicted inFig 3, which is consistent in the case pf>- 0 with the results of Crasovan et §l2].

As discussed in Sectidd) larger (more positive) values pfcorrespond to more defocusing. In fact, the results
in this section show that whem < 0, or whenp > 0 and sufficiently small, the defocusing effect induced by the
coupling to the mean field is weaker than the focusing effect induced by the cubic term (hafzdn that case,
collapse is guaranteed by the Virial Theorem for sufficiently large input power. On the other handy whand
is sufficiently large, the defocusing effectinduced by the coupling to the mean field can overcome the focusing effect
induced by the cubic term in E¢4a) In that case, the NLSM can effectively behave as a defocusing NLS-type
equation, i.e., like Eq(1) with a negative sign before the cubic term.

We emphasize thatf > 0 does not imply GE, becaudé < 0 is only a sufficient condition for collapse, not
a necessary one. Nevertheless, owing to their explicitness and apparent accuracy, caditiamsl (22)can
be useful for predicting for the boundary in th¥, (v, o) space between the regions of collapse and GE. On the

0
1 = — = N(G)=N¢(v,p)
—— NLSM
P
057 collapse
-1 collapse
4
0 0.7 1.4 0 0.7 1.4
(a) v (b) v

Fig. 3. The regions in thev( p) plane corresponding to collapse and global-existence (GE). Equating the power of the ground-&tag,
[i.e., Eq.(17)], to the powerN(G) of the initial conditiong19) [dashes, denoted by (G) = N(v, p) in the legend] i obtained fromH = 0
[i.e., Eq.(22), dotted, denoted by/(G) = 0 in the legend], and using numerical simulations of the NLSM [i.e., Sygtgnsolid] for: (a)
nonlinear optics (i.e > 0) and the initial condition§19) with the fixed input poweN(G) = 10; (b) water waves (i.eq < 0) and the initial
conditions(19) with N(G) = 4r/3.
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other hand, the condition derived from GE theory appears to be more accurate in the following sense: the actual
(numerical) critical power appears to be slightly closeNtathan toN/!. We note that iff16] a similar conclusion
was reached for the NLS E{[L) when using Gaussian as well as other types of initial conditions.

4.1. Input astigmatism

It is interesting generalize the results above to the case when the initial conditions are astigmatic. To do that,
consider the astigmatic Gaussian initial conditions

2EN
uf (e, y) = || == e (B, (23)

whereN s the input power anBis input ellipticity. HereE = 1 corresponds to radial symmetry, whereas @ < 1
andE > 1 correspond to relative elongation along ¥endy axes, respectively.
Similar to Eq.(20), one arrives at (seppendix B

E oy 1+ E? _(_ p )EN2
H(ug, ¢6) = —5—N — (1 1T i) o (24)

Thus, denoting
(E+1/E)x
1-p/(L+VWV/E)

it follows that whenN > N/’ then H < 0 and, therefore, the solution collapses at finite distance. This condition
makes sense only when€ Ny < oo, which implies thatp < 1+ \/v/E.

Generally speakingy/ increases with astigmatism. For example, let us consider the optics case with<§
1+ /v/E with an input bean{23) that is “focused” along th& direction, i.e., has > 1. AsE increases it will
approach the valug&; = /v/(p — 1), for which N’ = co. Physically speaking, this results suggests that as the
input beam becomes narrower along xkexis, the critical power for collapse increases, making the collapse more
difficult to attain. This conclusion is consistent with the numerical observations of CrasovafiLe] al.the optics
case, and is in the same spirit as the results of Fibich andligrfor the NLS case (i.ep = 0).

In addition, for a given powel, the separatrix curve in the,(o) plane for whichH = 0 is given by

(N, v, E) = [1 _ W] (1+ g) , (26)

N, p. ) = 29

such that whep < pf thenH < 0 and, therefore, collapse is guaranteed by the Virial Theorem.
4.2. Related NLSM-type system
Consider the NLSM Systeifd) without the cubic term, i.e.,
iu, + %Au — pugy =0, (279)

brx + vy, = ([u]?)s. (27b)

One might expect that the nature of collapse in the NLSM-type Sy¢Bshwould be similar to the NLSM
System(4). Indeed, the analysis of SystgRi7) is quite similar to that in Sectiordand 4 The only difference is
that the Hamiltonian corresponding({®7) is like (13), but without the second “self-focusing” integral, that is,

1
H ) =5 [V + 2 [ @2+ 0D,
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Since the VirialTheorem (14yemains unchanged, collapse is possible in Syg@mwheneverp < 0 and the
initial conditions are sufficiently large. Furthermore, substituting the initial-conditid@¥into the Hamiltonian
above gives

H(uo, ¢o) = N + —2 N
uo, = _
0. %0 1+./v2x

It follows that the threshold power for whicH = 0 is given by

Nf(v, p) = _2”(1—'{_\/;).

Thus, similar to the NLSM case, the Virial Theorem guarantees that the solution of SiStamdergoes finite-

distance collapse wheN > NH. To conclude, although the cubic term in the NLSM Systdiris self-focusing,

its presence is not necessary for collapse to occur. In other words, collapse can occur even in the case when the
nonlinearity is strictly and strongly nonlocal.

5. Astigmatic ground-states

Below we study how the astigmatism of the ground-state dependsindv. The astigmatism is recovered from
the ground-state as

JI(F?)
J1(F?),|°

It follows from (28) thate = 1 corresponds to a radially-symmetric ground-state,earndl ande > 1 correspond
to a ground-state that is relatively wider along ¥endy axes, respectively. In other wordsx L,/L,, whereL,
andL, are the full-widths at half-max of the function.

Fig. 4a) and (b) shows the on-axes amplitudes of the ground-state 00 (i.e., the radially-symmetri®
profile); (v, p) = (0.5, —1); and ¢, p) = (0.5, 1). The contour plots irrig. 4(c) and (d) correspond to the=
—1 andp = 1 cases, respectively. These plots clearly show that the ground-states withare astigmatic. In
addition, Fig. 5 shows the 3D plots and corresponding contour plots of the ground-state, for=£ (4, —4),
which hase ~ 1.5. Both F(x, y) and the corresponding mean figldx, y) are clearly astigmatic. Furthermore, the
mean fieldG is strongly nonlocal (see aldéig. 5d), as can be expected from the Poisson-type(Esp) that is
solves.

Fig. 6a shows that (i) the NLS ground-stafe £ 0) is radially-symmetric, (i.e¢ = 1); (ii) whenv = 0.5 and
p < 0 (water-wavesk is wider along the-axis (i.e..e > 1); and (iii) whenv = 0.5 andp > 0 (optics)F is wider
along thex-axis (i.e.,e < 1). We note that the parameter space explordeigs. 1 and @ is the same. Comparing
these two figures, one sees thapas changed fronp = 0 (in either direction), the deviation from the NLS ground
state is accompanied by a significant deviation in the critical power, as well as by a deviation from radial-symmetry.
Therefore, a$N¢(v, p) — Nc(v, 0)| increases withp, so does the astigmatism of the ground-state (along tirey
axes). On the other hanigs. 2 and 6 show that the critical power and the astigmatism are only weakly dependent
onv, for either sign ofo. In addition,Fig. 6a shows that, for the same valuesypthe functionF is relatively more
astigmatic foro > 0 (i.e., for optics) than fop < 0 (i.e., for water waves).

In summary, one has the followirggeneric picture

e(F) = (28)

(1) The ground-state profile in the water-wave case is narrower along the direction of propagatien-(il¢,,
whereas in the nonlinear optics case it is wider along the axis of linear polarization &.€.).
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oy | =0
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Fig. 4. Top: The on-axes amplitudes of the ground-state (a) along-#xés and (b) along the&-axis for @, p) = (0.5, 1) (dashes)p =0
(solid), and ¢, p) = (0.5, —1) (dotted). Bottom: Contour plots df(x, y) for: (c) o = —1 (corresponding to dotted above) with astigmatism
[i.e., EQ.(28)] e ~ 1.17; (d) p = 1 (corresponding to dashes above) witky 0.59.

(2) The ground-state is relatively more astigmatic for nonlinear opgics Q) than for water waves(< 0).
(3) Whereas the astigmatism of the ground-state changes significantly \itittepends only weakly on.

6. Quasi self-similar astigmatic collapse

Asymptotic analysis and numerical simulations strongly suggest that when collapse occurs in NU$ Eq.
under quite general conditions, it occurs with a quasi self-similar profile that is a modulation (up to a phase) of the

ground-state (cf30]), i.e.,

1 r
e~ 150 (105 ). 29)
where , y) are in some region surrounding of the collapse point (which typically shrinks during the self-focusing
process)R(r) is the NLS ground-state (see Sect8)randL(z) is a modulation function, such thatlim z. L(z) = O,
whereZ. is the collapse distance (or time). In the NLS case, the ground®{akés radially-symmetric and, to the
best of our knowledge, all the NLS-collapse simulations to date have shown that collapse occurs with a radially-
symmetric profile. The quasi self-similar collapse has received much theoretical attention since the contribution
of Merle and Tsutsumi25]. However, it is very difficult to justify(29) rigorously. Only very recently did Merle
and RaphagP6] provide a sharp result explaining this quasi self-similar behavior in the case of the NI(8)Eq.
Furthermore, on the experimental side, Gaeta and cowofRéfsecently carried out detailed measurements in
optical Kerr media showing that the collapse process occurs with a self-similar profile, in consistency {@®).Eq.
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(©) X @ X

Fig. 5. The ground-state [i.e., solution of Syst&tB)] for (v, p) = (4, —4). (a) and (b) are 3D plot af (x, y) andG(x, y), respectively; (c) and
(d) are contour plots corresponding to (a) and (b), respectively.

In contrast to the NLS case, when£ 0 andv > 0 the NLSM System(4) is not rotationally invariant and
the stationary solutions ¢i.5) are not radially symmetric. Moreover, with this choice of parameters the stationary
solutions cannot be transformed into radially-symmetric functions by any rescabamdy. Therefore, the NLSM
ground-stateF(x, y), is inherently astigmatic, which makes the analysis and numerical simulations more difficult.
The asymptotic analysis of Papanicolaou eff28] indicates that, similar to the NLS collapse, NLSM collapse
occurs with a modulated profile, i.e.,

1 X y
lu(x, y, 2)| ~ L(Z)P (L(Z), L(z)’b(Z)>’ (30)

0.9
e
0.5 ;

i 0 1 0 0.5 1
(a) P (b) v

Fig. 6. The astigmatisr(28) of the ground-staté’'(x, y) of System(4) for: (a) v = 0.5 with —1 < p < 1 (i.e., same abig. 1); (b) p = —0.2
(dashes) ang = 0.2 (solid) with 0< v < 1 (i.e., same abig. 2a and b, respectively).
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for certain functionsP(x, y, z), L(z), andb(z), such that ag — Z¢, L(z) andb(z) approach zero an&(x, y, z)
asymptotically approaches the corresponding ground-gtatey). Numerical simulations of the NLSM using
“dynamic rescaling” suggested that, indeed, the collapsing solution approaches a modulated profile. However,
in [28] the ground-state itself was not computed. Since it was not computed, it was not shown (numerically) that the
asymptotic profile approaches the corresponding ground-state. The numerical results in this section suggest tha
down to moderately small values b{z), the amplitude of the collapsing solution behaves as

N 1 X y
ey~ iy <L(z)’ L(Z)) ’ (1)

where F(x, y) is the ground-state of Syste(d). Therefore, the results of this study strengthen thosg8F,
because the collapsing wave is directly compared to the corresponding ground-state and is shown to approach
guasi self-similar modulation of the ground-state itself.

To study NLSM collapse numerically, Systdd)) is solved with the Gaussian initial conditio(l9). The self-
focusing dynamics are recovered from the simulations using the focusing fa€®, z)|/uo(0, 0), as a function
of the propagation distan@eThe astigmatism of the solution is recovered in accordance(2@jas

oy 10
A TN (32)

We begin by presenting several numerical simulations of collapse, that also serve to verify some of the results
of the previous sections. As noted in Sect&rthe Hamiltonian of the NLSM suggests, loosely speaking, that the
water-wave casep(< 0) is “more focusing” than the optics case£ 0). Indeedfig. 7shows that when the same
initial conditions are used for all cases, collapse wite —1 precedes collapse wigh= 0, which, in turn precedes
collapse withp = 1. For this figure, the input power is taken a8N:(v = 0.5, p = 1) ~ 12.2. We note that this
value of N is approximately twice as large a&(R) and approximately 3.3 times larger th&g(v = 0.5, p = —1)

(seeFig. 1).

Sincep < 0 andp > 0 correspond water waves and optics, respectively, and since critical power depgnds on
a more “balanced” comparison between the water-wave and optics cases requires using the same initial condition:
with an input power chosen with respect to the corresponding critical power (which is different for water-waves
and optics). Therefore, the rest of the simulations below [frigs. 8—13 use the input poweN = 1.2N¢(v, p),

i.e., 20% above the corresponding critical power for collapgg.8a shows the dynamics of the focusing factor for
v = 0.5 with: p = 0 (NLS), p = 1 (optics), ando = —1 (water waves). Similarly t&ig. 7, the collapse distance
with p > 0 is greater than witlr < 0. Surprisingly, the collapse distance in i{hhe- 0 andp < 0 cases is almost the

10 1.6
- = — v=05 p=1 ‘[
=) v=0.5 p=0 ||
3 |
9:’9 - v=05 p=-1 || e
= ! 1
o] l |
3 / ~
5 4 \
— 7
- < \ A
T 7 e
= = 0.4
0 1 1 10
(a) 5 (b) [u(0,0,2)|/u,(0,0)

Fig. 7. (a) Thefocusing factorthe NLSM solutions[i.e., Sys(éjiwith v = 0.5 and three values @f(see legend) using the initial conditiofi®)
with the same input powe¥ = 1.2N.(v = 0.5, p = —1) &~ 12.2. (b) The corresponding astigmatig¢B2) of the solution as a function of the

focusing factor.
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= |
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(a) z (b) |U(0.O,Z)|/UO(O,0}

Fig. 8. Same abig. 7, but with the input poweN = 1.2N(v, p), i.e., 20% above the corresponding critical power.

same. Although one might have expected the collapseaitt0 to precede collapse wiih= 0 (as inFig. 7), this
is not the case here, becaus€o = —1) is approximately 1.6 times smaller thaf{p = 0) (seeFig. 3). Thus, in
Fig. 8the collapse distances of the= —1 andp = 0 simulations are close, because the input power ipthe0
simulation is much larger than the input power in the- —1 one.

In addition,Fig. 8o shows the corresponding astigmatism plots. The astigmatism is plotted as a function of the
focusing factor (rather than as a functiorgpin order to “blow up” the dynamics near the collapse point, where the
interesting changes in the astigmatism are expected to occur. While the NLS solution remains radially-symmetric
(i.e.,e = 1), the NLSM solutions become astigmatic during propagation. Furthermerd andp > 0 correspond

10 ] 1.1
— p=—0.2 v=0 /
— — —p=-0.2 y=0.2 i Yl .
=) e p==0.2 v=1 i }’ I i
e ! e )
S k
= 1
N
S
=]
=
1 0.9
0 1 1 10
(a) - (b) |u(0,0,z)|l‘uo(0,0)
10 T T
— p=0.2 v=0 !
— — —p=0.2 v=0.2 !
= - |
= p=0.2 v=1 i
S e
o
=2 1
N \
o \
(=3 i
3 S o M R Rl e el
s
1 0.9
0 1 1 10
() z (d) |u(0,0,2)}/u,(0,0)

Fig. 9. Same aFig. 8with [(a) and (b)]p = —0.2 andv = 0 (solid),v = 0.2 (dashes), and = 1 (dotted, on top of the dashes); [(c) and (d)]
same as above with = 0.2.
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z=0.5 L=0.56 z=0.94 L=0.22
3 3 3 1
F(x,0)
- — — L]u(Lx,0)
]‘ -
0 ol———" = 0 =
-6 6 -6 6 -6 6
X X
3
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Fig. 10. Convergence of the modulated collapse profile (dashes) to the NLSM ground state (solid) atesgstieop) and thg-axis (bottom)
with (v, p) = (0.5, 1). The initial conditions ar€l9)with N = 1.2N¢(v, p).

toe > 1 ande < 1, respectively, which is consistent with kiigs. 4 and 6As can be seen from this figure, at the
initial stage of the propagation the astigmatism of the NLSM solutions becomes large, in a direction that depends
on p. Based on these simulations it appears that the astigmatism approaches a (more or less) constant value at tt
collapse point, a value that dependswoemndp (such thak £ 1). This is consistent with the results[28B], as well
as with the results presented below.

Figs. 7-9ndicate that NLSM collapse is astigmatic, however, they do not show that the collapse process is quasi
self-similar. In order to study the self-similarity of the collapse process, in accordance w{Bildhe modulation
function is recovered from the solution as

F(0,0

L@ = F00
lu(0, 0, z)|
z=0 L=1 z=05 L=0.58 z=0.84 L=0.19
2 2 2
R\
0 0 =
-6 6 -6 6
X X X
2 2 2

Fig. 11. Same aBig. 10with (v, p) = (0.5, —1).
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z=0 L=1 z=0.5 L=0.57 z=09 L=0.17

1.5

Fig. 12. Same aBig. 10with (v, p) = (4, —4).

where F(x, y) is the corresponding ground-state. The rescaled amplitude of the solution of the NLSM, i.e.,
Llu(L%, LY, z)|, is compared withF (%, y), whereF(, y) is the ground-state and.,(¥) = (3, 7). In order to show
that the collapse process is, indeed, quasi self-similar with the corresponding ground-state, the rescaled amplitude
is shown to converge pointwise Fonear the origin ag — Z; (i.e., near the collapse point).
Fig. 10shows that the NLSM collapse is indeed self-similar with the ground-state$06.5 andp = 1. The
rescaled on-axis amplitude is compared separately axahdy axes (top and bottom plots, respectively). One can
see that, as the solution is undergoing self-focusing [i.eL(asapproached zero], its rescaled profile approaches
that of the astigmatic ground-state near the origin.
Fig. 11shows the same picture with= —1, whose ground-state is somewhat less astigmatic thanowiti
(as mentioned above). In order to observe self-similar collapseavittD and a more astigmatic profilEjg. 12

z=0 L=1 z=0.5 1|=0.57 z=0.9 L=0.17

Fig. 13. Same aBig. 120n a semi-log plot.
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compares the solution and the ground-state with4 andp = —4. The ground-state in this latter case is clearly
astigmatic and, in turn, the collapse process is quasi self-similar with the ground-ggafie8further demonstrates

the local nature of the self-similar collapse process. While the spatial region in the vicinity of the collapse point is
self-similar to the ground-state, the outer “wings” of the solution do not approach the ground-state. This phenomenon
is well-known in the NLS case as w¢H0], and can be understood as follows: in accordance witl{3g, exactly

one critical power enters the collapse region. More precisely,-asZc, the power ofu(x, y, z) contained in a

“ball” of radius L(z) around the collapse point is just slightly abaVe (cf. [25]). Since the input power is 20%

above N, the residual 20% radiates into the outer wings in a process that is not self-similar with the ground-
State.

7. Collapse arrest

As mentioned in SectioB.2, within the context of nonlinear optics, the self-focusing mechanism in the NLSM
is due to a quadratic effeft,2]. However, it is well-known that collapse with an infinite amplitude does not occur
in physical situations. In reality, there are always physical mechanisms that arrests the collapse. Such mechanism
have been studied extensively in nonlinear optics, e.g., nonlinear satJdti88], beam nonparaxialitjl5], and
vectorial effectd18]. In order to investigate the arrest of collapse in NLSM in the optics case, we consider the
NLSM with a small nonlinear saturation of the cubic nonlinearity as

. 1 |u)2u — pudy

“Au+— =, 33a
s + 5 0u+ = (332)
bux + vy = (|1])s, (33b)

wheres is the small nonlinear-saturation parameter.

Whenp « 1 ande « 1 System(33) is a small perturbation of the NLS E¢{l). In that case, the asymptotic
analysis of Fibich and Papanicolgd®] for the perturbed NLS can be used. Their analysis is based on the asymptotic
and numerical observations that the collapsing solution in the NLS case is self-similar with the ground-state (Townes
profile), i.e., as in Eq(29). The asymptotic analysis predicts that, to leading order, the dynamics of the focusing
factor in the solution of Systelf33) is given by the following ODE (seg.9, 5.3-5.4])

 4Ho (wy — w)(w — wy)

2 _
(wo? = -2 > , (34)

wherew(z) = L?(z), L(z) is the focusing-factor in E(29), M ~ 0.55, andHp, wy;, andw,, are constants that
depend only ore and the initial conditions, such thaty; > w,,. It follows from this nonlinear-oscillator-type
equation that for generic initial conditions the intensity of the solution initially focusesl[i.€.decreases] until ~
Vwm = O(J/¢), then defocuses [i.eL,(z) increases] until. ~ ,/wy, followed by focusing—defocusing oscillations,
such that,/w,, < L(z) < /wu .

Fig. 14shows the on-axis amplitude of the numerical solution of Syg&3hfor p = 0.5, v = 1, ¢ = 0.0025,
and the initial condition§19) with N = 1.5N¢, whereN¢ is the critical power corresponding to= 0. The nu-
merical solution of Systen(33) agrees qualitatively with the predictions based on B4). Indeed, one sees
that collapse is arrested by the small nonlinear saturation, followed by a series of focusing—defocusing oscilla-
tions.

It should be mentioned that the physical mechanisms that arrest the collapse in water waves are not understoo
to the same level as in optics, in part because of the scarce experimental results on water waves with large surfac
tension.
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[u(0,0,2)|

Z

Fig. 14. Collapse in the NLSM [i.e., Systef@) with (v, p) = (1, 0.5), dashes] is arrested by small nonlinear saturation [i.e., Sy&®8ywith
(v, p) = (1, 0.5) ande = 0.0025, solid] leading instead to focusing—defocusing oscillations.

8. Summary and final remarks

The results of this study show that nonlinear-wave systems that admit a quadratic—cubic type interaction, such as
in nonlinear optics and in nonlinear free-surface water waves, lead to the NLSM Sygtarhe NLSM can admit
finite-distance collapse in a certain parameter regime. The regions of collapse and global-existence is explored in a
relevant parameter space and the consistency between global existence theory, the Virial Theorem, and numerical
simulations the NLSM Systeif#) is established. Furthermore, numerical simulations of the NLSM show that the
collapse process occurs with a quasi self-similar profile, which is a modulation of the ground-state profile. The
ground-state profile is found using a numerical algorithm that was recently used in dispersion-managed NLS theory.
Generically, the ground-state profile is astigmatic and, therefore, the collapse profile is astigmatic as well.

These results are in the same spirit as for the NLS(Ey.However, NLSM theory is more difficult and not
as advanced as NLS theory. There are several remaining questions and problems. For example, it remains an oper
problem to extend the sharp theoretical results on the self-similar nature of the singularity to the NLSM case. From the
numerical perspective, while our simulations indicate that NLSM collapse occurs with a self-similar ground-state,
we only resolve moderate focusing factors [i.e., O(10)] near the collapse point. Using more specialized numerical
methods (cf[28,20)), much larger focusing factors (e.g., greater that) t@uld furnish more convincing evidence
of this self-similar collapse. From the experimental perspective, self-similar collapse in quadratic—cubic type media
remains to be demonstrated in either free-surface water waves or nonlinear optics.
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Appendix A. Proof of Proposition 3.2

Following Weinstein{35], if one substitutes the stationary solutid®) into the Virial Theorem (14)one finds
that the variance, i.e., the integral on left-hand side, is independentbkrefore, its secondderivative is zero,
which implies that the right-hand side, i.e., the Hamiltonian of the stationary solg@t®nis zero as well. [
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Below an alternative constructive proof is given. Multiplying Etpa)by F and Eq.(15b)by G and integrating
gives

- x/ F?+ % /(FFxx + FFyy) + / F* — p/ F?°G, =0, (A.1a)

/ (GGrx + VGG yy) = / (F?),G. (A.1b)
Using integration by-parts (IBP) g\.1b) gives

/ F2G, = / (V,G)?, (A.2)
where ¥,G)? = G2 + vGi. Combining(A.1b) and(A.1a)leads to

A/F2+%/(VF)Z—/F4+,0/(VUG)2=O. (A.3)

On the other hand, multiplying E¢l5a)by (xFy + yF,) gives that
A 1 1
=5 [+ 31+ 5 [ 4D + 5 [ty

43 [l 45,1 - 2 [ 2.6+ 59,60 =0

Using IBP several times on the first four terms we arrive at

A/ F2 - %/- Fé— g/[X(Fz)xGx +W(F?),Gy] = 0. (A-4)
Similarly, multiplying Eq.(A.1b) by (xG, + yG,) and using IBP leads to

6.6, 4+ 3706, =0
Using IBP and Eq(A.2) gives

[et .6, 439,60 = - [ F6. = - [(.67 (A5)
Substituting(A.5) into (A.4) we obtain that

A/FZ—%/F4+§/(V‘,G)2=

Subtracting from Eq(A.3) gives Eq.(18). O

Appendix B. Derivation of the Hamiltonians (20) and (24)

The derivation of Eq(24)is outlined below. Substituting the astigmatic Gaussian initial condi{i8ginto the
first two terms of the Hamiltonia(l3) gives

2 2
/|Vuo|2——/| 1= (1+E N EZZZ : (B.1)
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It remains to calculate the third term in §33). To do that it is convenient to use the Fourier Transform. Below we
denote

1
(2m)?

Flhe, ky) = FLf1 = / fley)e b fy) = F I = / Flle, eyt

as the direct and inverse 2D Fourier Transforms, respectively, whgrk,§ are the Fourier frequencies in, (y)
directions and the integrations are carried over thgXand &,, k,) planes, respectively. Therefore, it follows from
Eq. (4b)that

iky
— 5 Up.
k2 + vk O

$o = Flg(x, y, 0)] =

Using Parseval’s identity and substituting the Gaussian initial condifi®)deads to

> (12 27,2 2
[@ = [ Kl _ N2 [ ke (ErEAD/AEY
* Yo 4n? ) k24 k2 42 k2 + vk? ’

Transforming to the cylindrical coordinates defined by, &,) = (r cos, E~1rsing) yields

2 00 2 2
0 2 2 oN / 242 / do ON“E 27
— — e d = .
2 / @ +v0) = g2F |, " 11 (/EDcoBe  4n? 1+ Jo/E

Combining with Eq(B.1) and the Hamiltoniai(13) yields Eq.(24). Note that Eq(20)is a special case of E(R4)
with £ = 1.

Appendix C. Calculating the ground state

The NLSM ground state is obtained in this study using a fixed-point numerical procedure similar to that recently
used in dispersion-managed soliton theory [&f29]).
Below we use the following formulation. Le{x, y, z) andv(x, y, z) be solutions of the system

i, + %(uxx + uyy) + |u|2u — puv =0, (C.1a)
Uxy + VUyy = (|u|2)xx- (C.1b)

We note that Systen(@) and(C.1) are mathematically equivalent under the transformatiend,. A stationary
solution of systen(C.1) has the formu(x, y, z) = €*F(x, y) andv(x, y, z) = V(x, y), whereF andV are real
functions and is an arbitrary real number. Substituting this ansatz into sy§tef) gives

— AF + 3(Fex + Fyy) + F2 — pFV =0, (C.2a)
Vax + Wy = (F2)a. (C.2b)

When the stationary solutions are known to be radially-symmetric, e.g., wkef or v = 0, one can write this
system as a single ODE in the radial variable. In that case, one can solve the ODE using a “shooting” method. This
technique, however, does not work well for a “true” PDE, i.e., wheandG are not radially-symmetric, which is

the case in this study when bgttandv are nonzero. Therefore, in order to solve this system we use a fixed-point
method as explained below.
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Taking the Fourier Transform (ségpendix B of System(C.2) gives

AP %F + FIF® = pFV] = 0, (@ + w7 = K2FF,

whereF (k.. ky) andV (k.. ky) are the Fourier transforms &f(x, y) andV (x, y), respectively, angk|? = k2 + k2.
This system can be re-written as

1
A+ k|2/2
2

F= FF3— pFV], (C.3a)

i‘/

—* _TF?. C.3b
k§+vk§f[] (C.3b)

The idea is to use the fixed-point iterative method

2 (I’l+l) F3 FV (n)
A+|k|2/2ﬂ pFVI™,

where the right-hand side is evaluated usifi§y found using Eq(C.3b) This procedure is then supplemented with
aninitial gues¥O(x, y) = fo(x, y), which is typically chosen to be a Gaussian, ifg(x, y) = e, However,

this approach fails, because the right-hand side of EQ)is nonlinear and, as a result, the iterations either converge
to the trivial solution or diverge to infinity. To rectify this problem, one can “homogenize” the right-hand side of
Eq.(C.3)as follows. Multiplying(C.3a)by F* and integrating over the{, ky) plane yields the equation Sk SR,
where

SL= [ |F|?., SR= F3 — pFV]F*.
f|| fx+|k|2/2ﬂ pFV]

Here SL and SR are two scalar quantities that can be efficiently calculated using Fast-Fourier Transforms. Since
SL = SR whenF andV are solutions ofC.2), one can use instead the modified iterative method

A 1 SL
F(n+1) Tklz/z ( > ﬂF3 pFV](n), (C4)

where SL and SR are calculated usfhgndV at stepn and V™ is found using Eq(C.3b) Herex is an arbitrary
constant that is chosen to make the right-hand sid€ @f) have homogeneity zero with respecBowhich is to be
expected to prevent the aforementioned divergence. In our case the right-handGid¢sufales like (SLSRY F2 =
F3~22_This observation suggests usimg= 3/2, which, indeed, allows the fixed-point meth(@4)to converge.
The convergence can be monitored using erof(SL/SR)— 1|, which should approach zero. Typically, 20—-40
steps suffice for obtaining errer 10~8. In addition, when the solution obtained by this method is substituted for
the initial conditions of the NLSM Systefd), the NLSM solution is confirmed to be stationary, i.e., its amplitude
remains (approximately) constant for a propagation distange-00(10).
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