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Theory of nondegenerate-spectrum reversal and its breaking
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We theoretically study spectrum reversal and spectral-temporal similarity-and-inversion phenomena in
nondegenerate four-wave mixing of ultrashort optical pulses. The key ingredients leading to spectrum reversal
between two waves are identified, showing that energy conservation alone is insufficient. Only under certain
conditions can the shapes of the two waves in the time and frequency domains possess special relations.
Specifically, the two waves can have nearly identical temporal shapes, whereas their spectral shapes are reversed.
In addition, the temporal and spectral shapes are the same for one wave and reversed for the other. However,
non-negligible parasitic effects in ultrafast dynamics can breakup these relationships under more general
conditions. The physical mechanisms underlying these phenomena are explored analytically and confirmed
by direct numerical computations of the governing equations.
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I. INTRODUCTION

Special relationships between time and frequency reveal a
deeper understanding of physical systems and can lead to better
ways to control them. In this vein, the authors have recently
demonstrated “spectral mirror imaging” (SMI), a phenomenon
in which two ultrashort optical pulses possess oppositely
shaped spectra [1]. SMI occurs when the pulses overlap
spatially and temporally while undergoing a nondegenerate
four-wave-mixing (FWM) process. Thus far, the origin of SMI
has not been studied in detail.

In this study we explore the physical origin of SMI.
Intuitively, one might expect that SMI follows from energy
conservation. However, we show that the condition of energy
conservation alone is insufficient to deduce SMI. In fact, due
to non-negligible parasitic effects present in ultrafast pulse
propagation, the two waves do not generally feature oppositely
shaped spectra. We find that only under certain conditions are
the spectral shapes of two waves reversed with respect to the
center frequency of the controlling pump pulse. In addition,
we identify a relationship between the temporal and spectral
amplitude shapes, i.e., one wave exhibits shape similarity in
the time and frequency domains, while the other wave exhibits
temporal and spectral shapes that are reversed with respect
to one another. We call this phenomenon “spectral-temporal
similarity and inversion” (STSI).

We present an analytic theory for these two special relation-
ships. The key physical mechanisms and operating conditions
responsible for SMI are opposite values of group-velocity
dispersion (GVD) for the two waves and their complex-
conjugated parametric gain. The conditions leading to STSI are
large GVD and a strong initial chirp. The physical mechanisms
underlying SMI and STSI are explored analytically and
confirmed by direct numerical computations of the governing
system of nonlinear Schrödinger (NLS) equations.

The interrelationships between temporal and spectral prop-
erties of waves offer physical insights into ultrafast phenomena
that have application to state-of-the-art spectroscopic and
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imaging techniques of ultrafast processes. These interrelation-
ships are applicable to other nonlinear wave systems as well.

II. FUNDAMENTALS OF SMI THROUGH ULTRAFAST
FWM PROCESSES

In this section, we briefly review the previous related work,
starting with the general concept of phase conjugation in the
time domain and its relation to SMI. We present a common,
yet incorrect, argument according to which SMI follows from
energy conservation in FWM processes. We also highlight
the key role of NLS equations in modeling the dynamics of
ultrafast FWM processes. These equations are at the focus of
the analytical and computational modeling in this study.

A. SMI as a concept and physical model

The special relationships of interest are illustrated in Fig. 1.
This figure depicts how SMI is closely related to another
concept, that of temporal phase conjugation (TPC, also known
as midspan spectral inversion in optical communications). To
represent and understand the connections between TPC and
SMI fundamentally, consider the complex electric fields of
two optical pulses, called “wave 1” and “wave 2”, that are
copropagating along the z direction with electric fields

En(t,z) = An(t,z)e−i(kz−ωnt), n = 1,2, (1)

where An(t,z) is a slowly varying complex envelope and the
fast carrier of “wave n” is centered at frequency ωn. The
spectrum of each pulse centered at its own reference frequency
is

Ân(ω,z) =
∫

An(t,z)e−iωt dt = Ên(ω + ωn,z). (2)

As depicted on the top of Fig. 1, TPC signifies that the
temporal phase profiles of two pulses are inverted, i.e.,

arg{A2(t,z)} = ϕ0 − arg{A1(t,z)}, (3)

where ϕ0 is a constant absolute phase. When the amplitudes
of two pulses are the same, this condition is equivalent to

A2(t,z) = eiϕ0A∗
1(t,z). (4)
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FIG. 1. (Color online) Illustration of special relationships be-
tween two waves in the time (top) and frequency (bottom) domains.
Horizontally, the connection between two waves is featured as SMI.
Vertically, whereas “wave 2” exhibits similarity between its temporal
and spectral shapes, “wave 1” has opposite temporal and spectral
shapes.

Taking the Fourier transform of the general TPC relation (4)
gives

Â2(ω,z) = eiϕ0Â∗
1(−ω,z), (5)

and taking the absolute values yields

|Â2(ω,z)| = |Â1(−ω,z)|. (6)

This relation manifests SMI, i.e., in the frequency domain the
shapes of the spectral amplitudes of the two waves appear as
mirror images of each other with respect to a center frequency
as depicted on the bottom of Fig. 1.

Earlier studies of TPC can be traced back two decades ago
when this concept was used to compensate for pulse broaden-
ing due to chromatic dispersion in optical fibers [2,3]. On the
other hand, SMI, which is the spectral counterpart of TPC, has
only recently been studied and demonstrated through ultrafast
FWM [1]. Detailed characterization of ultrashort pulses can be
difficult to achieve due to the need for sophisticated diagnostic
techniques (cf. [4,5]). The vast majority of previous reports
on spectrum reversal are wavelength-shift-free [6,7] based on
narrowband light sources.

One might suspect that SMI should always occur due to
energy conservation. This argument typically goes as follows.
Consider a conservative interaction of an intense optical
“pump” field with a nonlinear medium, in which two incident
pump photons are annihilated and two new photons are created,
as happens in a FWM process [8]. Since the energy of a photon
is proportional to its frequency, E = h̄ω, the pump frequency
is twice the sum of the frequencies of the two new photons due
to energy conservation, i.e.,

2ωp = ω1 + ω2. (7)

As pump photons are annihilated and replaced with new ones,
two continuous sidebands arise and their amplitudes are the
same. Then one might figuratively “expand” the amplitudes at
each frequency and conclude from the relation (7) that the two
sidebands should always appear as mirror images with respect
to the pump frequency.

However, the argument above is incorrect in the last step
of speculation. Formally speaking, the analysis above only
applies to FWM process for monochromatic waves or the
center frequencies of two spectral sidebands. In the ultrafast
regime, this generalization of amplitudes (spectral shapes)
from a series of single frequencies fails. This failure is
demonstrated in Sec. IV B, where the spectral shapes are not
reversed, in spite of the fact that the system is conservative
and the two waves have the same energy. This means that
for ultrashort pulses with broadband spectra, a FWM process
does not necessarily lead to two waves whose spectra are
the opposite shape. To obtain a quantitative theory which
reveals detailed information about the spectral shape, one
must perform careful simulations of the ultrafast FWM process
using coupled NLS equations [1].

Additionally, narrowband light sources produce
continuous-wave or long pulse durations. Broadband
light sources deliver ultrashort pulse durations, typically in
the femtosecond or picosecond regimes. The concepts of
spectral shape and temporal phase have little meaning when
referring to narrowband, long pulse, or continuous-wave light
sources. In short, in order to theoretically explore SMI one
must perform the computation of coupled NLS equations.
Experimentally, this means one should use ultrashort pulses
with broadband spectra [1] instead of continuous-wave or
long pulse light sources with narrowband spectra [6,7].

B. Equations for ultrafast FWM processes

Motivated by the need for a deeper understanding of our
recent experimental observation of SMI [1], we consider
the propagation of ultrashort optical pulses through a FWM
process. The wave dynamics in lossless media can then be
modeled by three coupled NLS equations for the pump field,
Ap, and the two sideband waves A1,A2, as (cf. [9])

i
∂Ap

∂z
− 1

2
β2,p

∂2Ap

∂t2
+ γ [|Ap|2 + 2|A1|2 + 2|A2|2]Ap

− 2γA1A2A
∗
pei�βlinz = 0, (8a)

i
∂An

∂z
+ i�β1,n

∂An

∂t
− 1

2
β2,n

∂2An

∂t2
+ γ [2|Ap|2

+ 2|A3−n|2 + |An|2]An − γA2
pA∗

3−ne
−i�βlinz = 0, (8b)

where the last equation represents two equations (n = 1,2).
Let us recap the physical meaning of each of the terms and
coefficients. γ is the nonlinear coefficient of the medium is
and β2,n are the GVDs of “wave n”. The difference between
the group velocities of the pump and “wave n” is �β1,n =
β1(ωn) − β1(ωp). The linear phase mismatch coefficient in
the exponents is

�βlin = β(ω1) + β(ω2) − 2β(ωp). (9)

In Eq. (8b), the second term represents the walk-off between
the pump and wave n. The third term represents dispersive
wave propagation from the contribution of GVD. The fourth
term represents self-phase modulation of wave n, and cross-
phase modulation (XPM) induced the combined effects of
the pump and the other “wave (3 − n)”. The fifth term
represents energy flow among the three waves. The direction
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and magnitude of energy flow are governed by the phase-
mismatched coefficient �βlin.

Unfortunately, there is no closed-form general solution
for system (8). However, this system is amenable to direct
computations.

III. ANALYTIC THEORY OF SMI

Under some basic assumptions, the nonlinear system (8)
can be simplified into two linearly coupled-wave equations and
solved analytically. In this way, we obtain special solutions that
exhibit SMI, allowing us to obverse the physical mechanisms
underlying this phenomenon.

A. Coupled-wave equations and special solutions
with SMI features

As we mentioned above, an accurate modeling of the
temporal and spectral dynamics requires solving system (8)
numerically. To gain insight into this dynamics, it is expedient
to begin with a simpler approach by making the undepleted
pump approximation. This allows us to capture some of the
major aspects of SMI. For the moment, we simply consider
the following linearly coupled system of two equations:

i
∂A1

∂z
− 1

2
β2,1

∂2A1

∂t2
= 1

Lnl
A∗

2, (10a)

i
∂A2

∂z
− 1

2
β2,2

∂2A2

∂t2
= 1

Lnl
A∗

1, (10b)

where Lnl is a characteristic nonlinear length [see (14) below
for details].

Strictly speaking, system (10) is a linear one—it is as though
the two waves copropagate in a linear dispersive system.
However, the nonlinear effects present in system (8) are
“hidden” in the form of parametric gain, i.e., the terms on the
right-hand sides of (10). Parametric gain is inherent in FWM
(and other nonlinear-wave-mixing processes, cf. [8]). Note that
the terms with parametric gain have the complex conjugation
of the fields, i.e., the amplification of one wave proportional
to the complex conjugate of the other. This conjugated gain is
one of the key requirements for SMI.

Furthermore, for dispersive wave propagation one may
assume that two waves experience opposite GVDs, i.e.,

β2,1 = −β2,2 ≡ −β2. (11)

This is another key requirement for the special relations
that follow. The opposite GVDs produce one wave with a
blueshifted spectrum and the other wave with a redshifted
spectrum. Justification of this assumption is discussed in
Appendix A.

In the femtosecond domain, both mechanisms, namely
conjugated gain and opposite GVDs, contribute to SMI. When
the pulses become longer, i.e., in the picosecond domain, the
contribution from the GVD plays a minor role in SMI. This is
confirmed by our computation results in Sec. IV A.

Before discussing the analytic solution of system (10),
it is easy to verify that the coupled equations (10) with
condition (11) admit solutions that satisfy the following

self-consistent relations:

A2(t,z) = ±iA∗
1(t,z). (12)

Relations (12) manifest two special cases of TPC relation (4).
To incorporate the effect of phase mismatch, it is expedient
to present a more general system of two coupled linear
Schrödinger equations,

i
∂A1

∂z
+ 1

2
β2

∂2A1

∂t2
= e−i�βlinz

Lnl
A∗

2, (13a)

i
∂A2

∂z
− 1

2
β2

∂2A2

∂t2
= e−i�βlinz

Lnl
A∗

1. (13b)

In Appendix A, under the assumption of a long pulsed
strong undepleted pump wave, we derive the linear system (13)
from the nonlinear system (8). In doing so, the characteristic
nonlinear length is found to be

Lnl
.= 1

γP0
, (14)

where P0 is the peak power of pump.
Comparing systems (13) and (8b), the third and fifth terms

in Eq. (8b) are present in both systems. However, the second
and fourth terms in (8b) are missing. Thus, system (13) only
considers the contribution from dispersive wave propagation
and parametric gain with phase mismatch. We show later that
this approach captures the major physical mechanisms of SMI,
yet it omits some subtleties that can actually make the SMI
feature more distinguishable.

In Appendix B we prove that system (13) admits special
solutions that satisfy the SMI relation (5). More precisely, we
prove that system (13) admits SMI if, and only if, the input
waves satisfy one of the two SMI conditions,

Â∗
2(−ω,0) = ±r−Â1(ω,0), (15)

where r− is a complex number of unit magnitude [see Eq. (B6)
and subsequent analysis]. Physically, relations (15) mean that
two waves are required to be conjugated (up to a constant
phase) at the input.

To recap, SMI and TPC can arise as special solutions for two
copropagating waves in a linear dispersive system, in which
the two waves experience opposite GVDs and conjugated gain.

B. Discussions on asymptotic solutions with SMI feature

As proved in Appendix B, system (13) admits an asymptotic
solution exhibiting SMI, even without the requirement of
a conjugated wave as the input. This asymptotic solution
suggests that SMI should always hold for large propagation
distances. However, recall that this analysis is based on
system (13), which is a simplification of system (8).

As we mentioned above, by comparing the format of two
Eqs. (13) and (8b), one can identify that the similar format
of the third and fifth terms in Eq. (8b) is preserved, while
the second and fourth terms are missing. Thus system (13)
only considers the contribution from dispersive wave propa-
gation and parametric gain with phase mismatch. However,
system (13) neglects the contribution from walk-off and the
important fact that the pump wave is also an ultrashort pulse.
As we will show in the next section, these effects can distort
the spectrum of each sideband wave in the frequency domain.
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One might consider these effects “parasitic”. However, for the
practical consideration of ultrafast FWM processes (broad-
band spectra with widely separated wavelength difference),
the dispersion and walk-off are persistent. To fully appreciate
their significance, in the next section we solve the nonlinear
system (8).

IV. COMPUTATIONAL STUDIES ON SMI

In this section, we focus on computational modeling of the
nonlinear system (8). To solve this system we use standard
numerical techniques for ultrashort pulse propagation, i.e., the
split-step Fourier transform method [10]. The purpose of these
computations is not only to find SMI, but also to identify under
which conditions it arises. In particular, we show that parasitic
effects can “break” SMI, even though system (8) conserves
the total energy and the energies of the two sideband waves
are the same.

The input (initial conditions) for the nonlinear system (8)
is specified for the pump and the two waves (corresponding
to the two sidebands). The input pump wave is assumed to
be real-valued (“transform-limited”) and temporally delayed
with respect to the two waves. The input for “wave 1” is taken
to have a sech profile (a Gaussian profile would lead to similar
results). For the moment, we do not specify the input for “wave
2”—it is absent (zero) in certain simulations below, which
mimics the pump-probe technique. Thus, the input pump and
wave 1 are

Ap(t,0) =
√

P0e
− (t+τ )2

2T 2
0 , (16a)

A1(t,0) =
√

P1sech

(
t

T1

)
e
− iCt2

T 2
1 , (16b)

where P0 and P1 are peak powers, T0 and T1 are pulse durations,
C is (dimensionless) chirp, and τ is the initial time delay
between the pump and two waves (the waves are ahead of
the pump when τ < 0). In the picosecond regime, we use
T0 = 8 ps, P0 = 780 W, T1 = 2 ps, P1 = 0.04 W, and the
fiber length is L = 1.2 m. In the femtosecond regime, we use
T0 = 400 fs, P0 = 30 kW, T1 = 10 fs, P1 = 4 W, and the fiber
length is L = 3 cm.

The physical parameters inside of nonlinear system (8)
used in these computations are chosen corresponding to two
experiments which have different pulse-width regimes: (i)
the picosecond regime (see [11]), and (ii) the femtosecond
regime (see [12]). In all cases, γ = 11 (W km)−1. The
dispersion parameters in the picosecond regime are �β1,1 =
0.864 ps/m, �β1,2 = 0.821 ps/m, β2,p = −0.470 ps2/km,
β2,1 = −12.9 ps2/km, β2,2 = 13.8 ps2/km, and �βlin =
−13.2 m−1 The dispersion parameters in the femtosecond
regime are �β1,1 = 1.73 ps/m, �β1,2 = 1.56 ps/m, β2,p =
−0.621 ps2/km, β2,1 = −23.5 ps2/km, β2,2 = 28.2 ps2/km,
and �βlin = −38.2 m−1.

We decompose the temporal and spectral outputs of the two
sideband waves after a propagation distance z = L as

An(t,L; τ ) = 	n(t ; τ )ei
n(t ;τ ), n = 1,2, (17a)

Ân(ω,L; τ ) = 	̂n(ω; τ )ei
̂n(ω;τ ), n = 1,2, (17b)
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FIG. 2. (Color online) Spectral shapes of two waves when
τ = 3 ps.

where τ is the initial delay we already defined in (16a), 	

is the temporal amplitude, 
 is the temporal phase, 	̂ is the
spectral amplitude, and 
̂ is the spectral phase.

A. Spectrum reversal: Conjugated inputs

As the first series of computations, the two input waves are
assumed to be initially conjugated,

A2(t,0) = iA∗
1(t,0). (18)

The computational results shown in Fig. 2 depict the spectral
shapes of the two waves in the picosecond regime, for a specific
value of the initial delay τ . The left and right profiles depict the
spectra of “wave 2” and “wave 1”, respectively. It is clear that
two waves are mirror images of one another in the frequency
domain.

To present the SMI feature more clearly, we also show the
spectra |Ân(ω,L; τ )| = 	̂n(ω; τ ) as a function of τ , i.e., the
spectrograms of two waves. The left and right columns in
Figs. 3 and 4 correspond to the spectrograms of “wave 2” and
“wave 1”, respectively.

In the picosecond regime, spectrograms appear as mirror
images of each other—whether the input waves are chirped
[top plots shown in Fig. 3(a)] or unchirped [bottom plots
shown in Fig. 3(b)]. These spectrograms shows lumps, which
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FIG. 3. (Color online) Demonstration of SMI through system (8)
in the picosecond regime using conjugated input waves with (a) input
chirp C = −20; (b) unchirped input waves (C = 0).
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FIG. 4. (Color online) Demonstration of SMI through system (8)
in the femtosecond regime using conjugated input waves with (a)
input chirp C = −1; (b) unchirped input waves (C = 0).

correspond to the higher-intensity spectral amplitude. Thus,
system (8) with conjugated input waves exhibits the feature
of SMI. However, there is an important distinction due to the
chirp. When the input waves are chirped, these lumps are
oblique and possess inverse slopes (approximately at ±45◦),
which makes SMI easily distinguishable. On the other hand,
when the input waves are unchirped, these lumps are vertical,
i.e., each sideband spectrum itself is symmetric with respect to
its center frequency. In such cases, though the waves do exhibit
SMI, this might not be evident by comparing their spectra.

A similar picture arises in the femtosecond regime (Fig. 4),
though SMI is not as sharp as in the picosecond regime due
to the broader spectra. However, in the femtosecond case, one
can observe a distinguishable SMI feature no matter whether
the initial chirp is added [as shown in Fig. 4(a)] or not [as
shown in Fig. 4(b)].

To summarize the above computational results in the
two different pulse-width regimes, when using conjugated
waves at the input, an input chirp is required to observe the
distinguishable SMI feature in the picosecond regime, but such
a chirp is not required in the femtosecond regime.

B. Breaking spectrum reversal: Nonconjugated inputs

As the second series of computations, the input two waves
are assumed to be not initially conjugated. Specifically, “wave
2” is absent at the input, i.e.,

A2(t,0) = 0. (19)

Everything else is the same as in the computations above. This
initial condition is used to emulate the common approach in
the pump-probe technique.

Figures 5(a) and 6(a) (top plots) show the spectrograms of
the two waves. Clearly, the SMI features in these computations
are degraded compared with the results in Sec. IV A. The
spectrograms of “wave 1” possess an additional vertical lump,
which is not mirrored in “wave 2”. Moreover, comparing
Figs. 5(b) and 6(b) (bottom plots), as the peak power of wave
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FIG. 5. (Color online) Degradation of SMI through system (8)
in the picosecond regime using nonconjugated input waves. Initial
conditions are A2 = 0, and A1 is with chirp C = −20 and peak
power (a) P1 = 0.04 W; (b) P1 = 400 W.

1 is increased, the distortion between the shapes of the two
sidebands becomes more evident. Hence, despite the fact that
two waves have the same energy, “wave 2” does not become
the mirror image of “wave 1”.

It is interesting to remark that other theoretical studies have
suggested that the relationship of spectrum reversal can be
destroyed; cf. [13]. Our computational results of system (8)
with nonconjugated waves at the input show this in detail.
These counterexamples prove that energy conservation in
ultrafast FWM processes is not sufficient to give rise to SMI.
As long as the two waves have equal energies, the distributions
of spectral intensities can be quite arbitrary.
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FIG. 6. (Color online) Degradation of SMI through system (8)
in the femtosecond regime using nonconjugated input waves. Initial
conditions are A2 = 0, and A1 is with chirp C = −1 and peak power
(a) P1 = 4 W; (b) P1 = 10 kW.
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C. Analysis of distinguishable SMI features

Recall that the asymptotic solutions of system (13) predict
that SMI should always occur for long propagation distance,
even when the input waves are not conjugated. However,
the analysis in Appendix B neglects the effects of walk-off
during the pulse propagation due to material dispersion. The
computational results based on system (8) show that the effect
of walk-off can either “enhance” or “obscure” SMI. On the
one hand, the effect of walk-off in combination with either
input chirp or GVD (distributed chirp) can distort the profile
of each sideband and break the SMI feature, as can be seen,
for example, comparing the results in Figs. 3 and 5 (or Figs. 4
and 6). On the other hand, when the inputs are conjugated,
the combined contributions of walk-off and chirp make the
SMI feature more distinguishable, because the profile of each
sideband is highly asymmetric, as can be seen, for example,
comparing the results in Figs. 3(a) and 3(b). We remark that the
condition of conjugated waves as input excludes the commonly
used pump-probe approach, in which the other sideband is
absent at the input.

To understand why the input chirp is also essential for
distinguishing SMI, first consider an unchirped (real-valued)
wave that is inhomogeneously amplified in the time domain
by the pump wave due to the effect of walk-off. Since the
amplitude of a real-valued function’s Fourier transform is
always symmetric, the amplitudes of the spectral sidebands
must be symmetric as well. However, when the wave is
chirped and inhomogeneously amplified in the time domain,
the spectrum will generally be asymmetric.

V. SPECTRAL-TEMPORAL SIMILARITY
AND INVERSION

In this section, we identify and investigate a different yet
related temporal-spectral feature in a nondegenerate FWM
process. Specifically, when two ultrashort pulses overlap
spatially and temporally, under certain conditions found below,
one wave exhibits shape similarity in the time and frequency
domains, while the other wave exhibits temporal and spectral
shapes that are reversed with respect to one another. We call
this phenomenon spectral-temporal similarity and inversion
(STSI), vertically depicted in Fig. 1. Actually, SMI and STSI,
can—and typically do—occur in tandem. When referring to
SMI, the focus is on the comparison of two different waves
in the frequency domain. When referring to STSI, the focus is
on the comparison of the spectral and temporal properties of
the same wave. We also investigate the physical mechanisms
underlying STSI computationally and analytically, based on
the same models presented in Sec. II B.

A. Computational studies on STSI

Here we present computational results of STSI. Our compu-
tations use the same assumptions in Sec. IV A, i.e., conjugated
waves as the input, for two waves in the femtosecond and
picosecond regimes. In the figures below, the left (right) panel
depicts the temporal (spectral) amplitude and chirp of each
wave [see Eqs. (17) for these decompositions].

In the picosecond regime, all the parameters in our
computations are the same as in Fig. 2, except that the input
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FIG. 7. (Color online) Spectral-temporal similarity for “wave 2”
in the picosecond regime.

power has been increased to P1 = 25 W. Figures 7 and 8 show
the outputs for “wave 2” and “wave 1”, respectively.

In the femtosecond regime, all the parameters in our
computations are the same as in Fig. 4, except that P1 = 100 W
and the input delay is τ = 5 fs. Figures 9 and 10 show the
outputs for “wave 2” and “wave 1”, respectively.

From the results above, we observe that “wave 2” (Figs. 7
and 9) exhibits identical or similar shapes, in both the
picosecond and femtosecond regimes. On the other hand,
“wave 1” (Figs. 8 and 10) exhibits reversed shapes, in both the
picosecond and femtosecond regimes. In other words, these
results show that, within one nonlinear system, two sideband
waves exhibit STSI features.

B. Analytic theory of STSI

Our computational results show that STSI occurs in ultrafast
FWM processes. To obtain more physical insight into this
phenomenon, we reconsider the simplified linear system (13).
In Appendix B we derive the special solutions of this system
exhibiting the feature of SMI. Recapitulating Eq. (B14),

Â1(ω,z) = e
1
2 i(β2ω

2−�βlin)zeγP0�zÂ1(ω,0).

Applying the inverse Fourier transform gives

A1(t,z) = e− 1
2 i�βlinzeγP0z

1

2π

∫
e

1
2 iβ2ω

′2zeiω′t Â1(ω′,0) dω′.

(20)

Let the characteristic temporal duration of the input wave
be T , which is inversely proportional to its characteristic
bandwidth. For an ultrashort pulse that propagates a distance
z, the pulse duration is much smaller than the characteristic
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FIG. 8. (Color online) Spectral-temporal inversion for “wave 1”
in the picosecond regime.
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FIG. 9. (Color online) Spectral-temporal similarity for “wave 2”
in the femtosecond regime.

dispersion length, i.e.,

|β2z|
T 2

� 1. (21)

Therefore, the phase in the complex exponent in Eq. (20) is
rapidly varying. This allows us to use the method of stationary
phase on the integral in Eq. (20). Doing so leads to evaluating
the integral near the “stationary frequency”,

ωs
.= t

β2z
, (22)

and this gives the approximate solution

A1(t,z) ≈ e− 1
2 i�βlinzeγP0zÂ1(ωs,0)e− it2

2β2z

× 1

2π

∫
e
− 2i

β2z
(ω′2−ωs )2

dω′

≈ (1 − i)(4π |β2|z)−1/2e
− it2

2β2z e− 1
2 i�βlinzeγP0zÂ1(ωs,0).

(23)

To see how the time-frequency relations arise from this
solution, let us first assume that β2 > 0. It follows from
Eq. (23) that, in the time domain, the temporal output of “wave
1” has approximately the same shape as the input spectrum,
but stretched out by the factor β2z due to the denominator in the
definition (22). Furthermore, because this system also exhibits
SMI, the temporal output of “wave 2” has approximately the
reverse shape of its stretched input spectrum. On the other
hand, when β2 < 0 (as in our computations in the picosecond
and femtosecond regimes), these relations are reversed for
the two waves. This explains the physical origin of the STSI
feature in Fig. 1.
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FIG. 10. (Color online) Spectral-temporal inversion for “wave 1”
in the femtosecond regime.

To obtain further insight, we recall that the stationary phase
approximation that leads to Eq. (23) depends on the pulse
width being sufficiently short or, equivalently, the product of
the GVD, and the propagation distance being sufficiently large.
However, even when condition (21) is not satisfied, one can
still make this approximation if there is a sufficiently strong
initial chirp. In this case, we rewrite the input “wave 1” as

A1(t,0) = e
i Ct2

T 2 f (t), (24)

where C is chirp and f (t) is a real-valued function. Therefore,

Â1(ω,0) = e− i
4C

ω2
f̂ (ω)√

1 − 2iC
T 2

. (25)

Using the transformation β2z → β2z + T 2

2C
, the above analysis

is the same. In particular, condition (21) is replaced with∣∣∣∣β2z

T 2
+ 1

2C

∣∣∣∣ � 1 (26)

and the chirp-shifted stationary frequency is

ωs
.= t

β2z + T 2

2C

. (27)

Several important conclusions follow from (26) and (27).
(i) If β2z + T 2

2C
> 0, the shape of A1(t,z) is a stretched-out

version of its input spectrum, while the shape of A2(t,z) is
reversed with respect to its stretched input spectrum; and vice
versa if β2z + T 2

2C
< 0.

(ii) If

sgnC = sgnβ2, (28)

the chirp “helps” us observe the time-frequency duality
relations, i.e., for larger C, condition (26) is satisfied at a
shorter propagation time.

(iii) If

sgnC = −sgnβ2, (29)

there is a “focal” propagation distance,

ZC ≈ β2T
2

2C
, (30)

at which there is a flip between the time-frequency relations
of the two waves, i.e., the temporal and spectral shapes of one
wave are the same for z < ZC and reversed for z > ZC ; and
vice versa for the other wave.

We note that in order to obtain Eq. (25), the stationary phase
approximation was made possible by adding a big initial chirp,
even without making the assumption of ultrashort pulses and
large GVD. In fact, the contribution from the GVD can be
regarded as a “distributed chirp” that is applied during the
pulse propagation, instead of an initial chirp at the input.
Our previous computational results confirm this analysis.
Specifically, in the femtosecond regime (Figs. 9 and 10), there
is no need to chirp the input pulses due to the inherently
large GVD. On the other hand, in the picosecond regime
(Figs. 7 and 8), either chirping the input pulses or using large
GVD waveguides is required. Interestingly, the requirement of
having an input chip in the picosecond regime to observe STSI
is exactly the same requirement for the distinguishable SMI
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case, as discussed in Sec. IV A. Thus, SMI and STSI typically
occur in tandem.

VI. SUMMARY AND CONCLUSIONS

In summary, we presented theoretical and computational
studies on SMI and STSI. Starting from a nonlinear system
of three coupled NLS-type equations, a simplified linear
system of two coupled-wave equations was derived. Our
analytic theory based on the special solutions of this simplified
system captures the essential aspects of SMI and STSI. We
also computationally demonstrate that the condition of energy
conservation alone is not sufficient to deduce SMI. Our
computational results for the nonlinear system show that only
when the two waves are conjugated at the input will these
two waves exhibit SMI features during pulses propagations.
Furthermore, the combined effects of walk-off and chirp can
either break SMI (when the inputs are not conjugated) or
make it more visually distinguishable (when the inputs are
conjugated). In addition, our study shows that SMI and STSI
occur in tandem.

We note that the analysis is not limited to ultrashort pulses
in the optical frequency regime, and the results of this study
extend to wave dynamics in other nonlinear systems as well.
These results shed light on the fundamental relationships
between spectral and temporal properties of waves.
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APPENDIX A: DERIVATION OF THE LINEAR SYSTEM (13)
FROM THE NONLINEAR SYSTEM (8)

Here we derive the linear system (13) from the nonlinear
system (8) under certain assumptions. First, we assume that
the pump wave is much stronger than the sideband waves,

|Ap| � |A1|,|A2|. (A1)

Second, we consider the usual experimental cases for a FWM
process in which the wavelength of the pump is near the zero
dispersion wavelength of the optical fiber [9]. In addition, if
the difference between the wavelength of each sideband and
the pump’s wavelength is small, the variation of the GVD is
approximately linear in this wavelength region (cf. [9]). These
observations lead to the following three assumptions:

(i) The GVD experienced by the pump wave is negligible,

β2,p ≈ 0. (A2)

(ii) The group velocities of the signal and idler waves are
approximately the same,

β1,1 ≈ β1,2. (A3)

(iii) The magnitudes of the GVDs of two waves are
approximately the same, but their signs are opposite,
β2,1 = −β2,2 ≡ −β2.

Approximation (A3) implies that there is almost no relative
walk-off between “wave 1” and “wave 2”. For this reason, it

is convenient to denote the walk-off coefficient as

�β1
.= β1,1 − β1,p, (A4)

which is between “wave n” and the pump wave.
Using (11) and (A1)–(A3), system (8) reduces to

i
∂Ap

∂z
+ γ |Ap|2Ap = 0, (A5a)

i
∂A1

∂z
+ i�β1

∂A1

∂t
− 1

2
β2

∂2A1

∂t2
+ 2γ |Ap|2A1

− γA2
pA∗

2e
−i�βlinz = 0, (A5b)

i
∂A2

∂z
+ i�β1

∂A2

∂t
+ 1

2
β2

∂2A2

∂t2
+ 2γ |Ap|2A2

− γA2
pA∗

1e
−i�βlinz = 0. (A5c)

As with system (8), system (A5) is a coupled system of
nonlinear equations, since Ap multiplies An. However, they
can be further simplified as follows. Equation (A5a) can be
solved in general as

Ap(t,z) = Ap(t,0)eiγ |Ap |2z. (A6)

Moreover, we assume that the temporal duration of the pump
wave is much longer than that of the sideband waves. The
latter implies that, for the propagation distances of interest,
the pump wave can be regarded as a continuous wave rather
than a pulse, i.e.,

Ap(t,z) ≈
√

P0e
iγP0z, (A7)

where P0 is the peak power of the input pump wave.
Substituting (A6) in (A5b) and (A5c) yields the linearly

coupled system for the sideband waves,

i
∂A1

∂z
+ i�β1

∂A1

∂t
− 1

2
β2

∂2A1

∂t2
+ 2γP0A1

− γP0A
∗
2e

i(2γP0−�βlin)z = 0, (A8a)

i
∂A2

∂z
+ i�β1

∂A2

∂t
+ 1

2
β2

∂2A2

∂t2
+ 2γP0A2

− γP0A
∗
1e

i(2γP0−�βlin)z = 0. (A8b)

System (A8) contains additional terms that are not present
in system (13)—the second term corresponding to walk-off
and the fourth term corresponding to XPM from the pump
wave. These terms can be “removed” from the equations as
follows. The second term is canceled by transforming to the
moving coordinate frame,

t̃ = t − (�β1)z.

The fourth term is canceled by rescaling the sideband fields as

An = Ãne
−2iγ P0z, n = 1,2.

Doing so also partially cancels the phase 2iγ P0 in the fifth
term. Thus, we achieve rescaled coupled equations as follows:

i
∂Ã1

∂z
− 1

2
β2

∂2Ã1

∂t̃2
− γP0Ã

∗
2e

−i�βlinz = 0, (A9a)

i
∂Ã2

∂z
+ 1

2
β2

∂2Ã2

∂t̃2
− γP0Ã

∗
1e

−i�βlinz = 0. (A9b)

Removing all the tilde signs leads to system (13).
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APPENDIX B: SOLUTION OF SYSTEM (13)

Taking the Fourier transform of system (13) gives

∂Â1(ω,z)

∂z
− i

2
β2ω

2Â1(ω,z) = − ie−i�βlinz

Lnl
Â∗

2(−ω,z),

(B1a)

∂Â2(ω,z)

∂z
+ i

2
β2ω

2Â2(ω,z) = − ie−i�βlinz

Lnl
Â∗

1(−ω,z).

(B1b)

It is expedient to take the complex conjugate of (B1b) and
make the transformation ω → −ω. This gives

∂Â∗
2(−ω,z)

∂z
− i

2
β2ω

2Â∗
2(−ω,z) = ie−i�βlinz

Lnl
Â1(ω,z). (B2)

Multiplying (B1a) and (B2) by the integrating factor

μ(ω,z)
.= e− 1

2 iβ2ω
2z

and rescaling the fields as

Ân(ω,z) = 1

μ(ω,z)
Ân(ω,z), n = 1,2 (B3)

yields the system

∂Â1(ω,z)

∂z
= − ie−i�βlinz

Lnl
Â∗

2(−ω,z), (B4a)

∂Â∗
2(−ω,z)

∂z
= ie−i�βlinz

Lnl
Â1(ω,z). (B4b)

Taking the z derivative of (B4a) and substituting the right-
hand side of (B4b) leads to a second-order linear equation for
Â1(ω,z) as

∂2Â1

∂z2
+ i�βlin

∂Â1

∂z
− 1

L2
nl

Â1 = 0. (B5)

The characteristic equation obtained from the ansatz Â1 =
erz/Lnl is

r2 + i(Lnl�βlin)r − 1 = 0.

The two solutions of this quadratic equation are

r± = − iLnl�βlin

2
± �, (B6)

where

�
.=

√
1 −

(
Lnl�βlin

2

)2

=
√

1 −
(

�βlin

2γP0

)2

. (B7)

One can identify that r± is a normalized complex number, i.e.,

|r±| = 1. (B8)

In (B7), � is real-valued because of the relation |�βlin| <

2γP0. This is due to our original assumption of a small
difference between each sideband wavelength and the pump
wavelength.

The general solution of (B5) is thus

Â1(ω,z) = e− 1
2 i�βlinz[P1(ω)e�z/Lnl + Q1(ω)e−�z/Lnl ],

where P1 and Q1 are arbitrary functions of frequency related
to the input profiles (see below).

Using (B4a), the general solution for Â∗
2 is

Â∗
2(−ω,z) = ie

1
2 i�βlinz[r−P1(ω)e�z/Lnl − r+Q1(ω)e−�z/Lnl ].

Reverting to the unscaled fields using (B3), the general solution
of system (13) is

Â1(ω,z) = e
1
2 i(β2ω

2−�βlin)z[P1(ω)e�z/Lnl + Q1(ω)e−�z/Lnl ],

(B9a)

Â2(ω,z) = −ie− 1
2 i(β2ω

2−�βlin)z[r∗
−P1(−ω)e�z/Lnl

− r∗
+Q1(−ω)e−�z/Lnl ]. (B9b)

The functions P1(ω),Q1(ω) can be expressed in terms of
the input spectral profiles as

P1(ω) = i

Lnl�βlin
[r−Â1(ω,0) + Â∗

2(−ω,0)], (B10a)

Q1(ω) = i

Lnl�βlin
[r−Â1(ω,0) − Â∗

2(−ω,0)]. (B10b)

To find special solutions with SMI features, by compar-
ing (B9a) and (B9b) we identify that the two fields have the
same type of exponential terms, but with linearly independent
coefficients. Therefore, the two fields are proportional to each
other if, and only if, either Q1(ω) ≡ 0 or P1(ω) ≡ 0.

One can identify that for the situation, either Q1(ω) = 0
or P1(ω) = 0 requires the initial condition of two inputs
as

Â∗
2(−ω,0) = ±r−Â1(ω,0). (B11)

Choosing Q1(ω) ≡ 0 gives the relation

Â∗
2(−ω,z) = ie�βlinzr−Â1(ω,z), (B12)

whereas, choosing P1(ω) ≡ 0 gives the relation

Â∗
2(−ω,z) = −iei�βlinzr+Â1(ω,z), (B13)

Taking the absolute values of either (B12) or (B13), we obtain
the SMI relation (6). Note that it follows from (B12) and (B13)
that each of these relations holds if, and only if, the input
conjugated-wave condition Eq. (B11) is satisfied.

Furthermore, it is important to mention that system (13)
has an asymptotic solution, which also exhibits SMI without
the requirement of a conjugated wave as the input. Indeed,
in (B9a) or (B9b) the terms with Q1 are negligible for z → ∞
as they are multiplied by decaying exponentials. Therefore,
this analysis shows that SMI always hold for large propagation
distances for system (13).

For completeness and the use in Sec. V, we explicitly state
the SMI solution for the first wave when Q1(ω) ≡ 0,

Â1(ω,z) = e
1
2 i(β2ω

2−�βlin)zeγP0�zÂ1(ω,0). (B14)
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