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Abstract—A system of tunnel-coupled quantum dots is con-
sidered in the presence of an applied electric field. Given the
measurements of differences between ground state and excited
state energy levels as the electric field is varied, we seek to
recover the quantum Hamiltonians that describe this system. We
formulate this as a parameterized inverse eigenvalue problem
and develop algebraic and computational methods for solving
for parameters to represent these Hamiltonians. The results
demonstrate that this approach is highly precise even when there
is error present within the measurements. This theory could aid
in the design of high resolution tunable quantum sensors.

Index Terms—Quantum sensing, inverse eigenvalue problems,
Gröbner basis, optimization

I. INTRODUCTION

The control of photonic transport in nonequilibrium quan-
tum systems has recently garnered much interest. Our research
is motivated by the emerging field of quantum metrology,
which opens the door for high-resolution sensing of gravi-
tation, acoustic waves, electric, magnetic and other fields [1]–
[10]. For simplicity, we consider a system of two quantum
dots (QDs), which contains a positive trion, i.e., one electron
and two holes, and which is subject to an applied electric field.
The effective dynamics can be described by a quantum master
equation, whose steady-state possesses discrete energy levels.
The general problem is to recover the intrinsic physical param-
eters, such as spin-coupling strength, from measurements of
differences between energy levels as the applied electric field
is varied. This can be formulated as an inverse eigenvalue
problem (IEP), which depends on a “tunable” parameter (the
applied electric field). We develop efficient mathematical and
computational methods for solving such problems accurately.

II. PROBLEM DESCRIPTION

The steady-state energy levels of the two coupled QDs cor-
respond to eigenvalues of quantum Hamiltonians. Specifically,

This research is partially supported by NSF grants DMS 1840265 and DMS
2125510.

we assume that the ground state and first excited state are
described by 2×2 and 3×3 symmetric matrices, respectively
[11]. The diagonal elements of these matrices depend on the
applied electric field strength, F . The off-diagonal elements
are independent of F , which is a good approximation for
weak electric fields or weak tunnel coupling. The ground state
matrix has the form

G(F ) =

[
y1 y0
y0 α0 + β0F

]
, (1)

where y0, y1 and α0, β0 are all real-valued (y1 could depend
linearly on F as well, but this would not matter as discussed
below). The excited state matrix has the form

H(F ) =

h1(F ) x0 x0

x0 h2(F ) 0
x0 0 h3(F )

 , (2)

where h1(F ), h2(F ), and h3(F ) are quadratic in F , i.e.,

hi(F ) = αi + βiF + γiF
2, i = 1, 2, 3 , (3)

with real coefficients. For simplicity, we have assumed that
the (1, 2) and (1, 3) elements of H(F ) are equal and that
the (2, 3) and (3, 2) elements are zero. However, the methods
described below can be applied even when these assumptions
are relaxed. Consistent with experimental results, we also
make the following assumptions. The off-diagonal elements
are positive, i.e., y0 > 0, x0 > 0. The linear coefficients
satisfy: β0 < 0 and |β1| ≪ |β2,3|, β2 ≈ β3. The quadratic
terms are much smaller than the other terms. In addition, x0

is small. The electric field is in a range Fmin ≤ F ≤ Fmax,
such that for all F in this range: h2(F ) > h3(F ). These
conditions guarantee real, distinct eigenvalues.

The physical measurements correspond to the differences
between the eigenvalues of G and H . Our objective is to
recover the parameters that define G and H from these
differences. To this end, we denote the eigenvalues of
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G(F ) by {ξ1(F ), ξ2(F )} and the eigenvalues of H(F ) by
{λ1(F ), λ2(F ), λ3(F )}. Let Ci,j(F ) be the difference be-
tween the ith eigenvalue of H(F ) and the jth eigenvalue of
G(F ), i.e.,

Ci,j(F ) = λi(F )− ξj(F ), i = 1, 2, 3, j = 1, 2 . (4)

For an illustration, see Fig. 1. The X-pattern that appears in
this figure is a common feature in the experimental data [8],
[11]–[13]. The examples provided below correspond to what
is experimentally observed in spectroscopic measurements of
InAs/GaAs coupled dots. The ability to recover accurately
the coefficients that define G and H is of practical interest,
especially if the number of input measurements needed to do
so is not large. For example, this could help to drastically
reduce the time needed to catalog suitable coupled QD pairs
in a sample that contains O(108) dot pairs per cm2 or more.
Likewise, this could be employed to identify variations in the
measurement response due to an external stimulus, such as an
electric, magnetic, or other field, and hence assist in sensing
applications.

Consider any scalar multiple of the identity matrix that is
linear in F as L(F ) = (δ + ηF )I with constants δ, η ∈ R.
It follows that adding L(F ) to both G(F ) and H(F ) would
shift each of the eigenvalues by (δ + ηF ), thus yielding the
same Ci,j(F ). Hence, the diagonals of G and H can only be
determined up to an additive linear function of F . This also
explains why y1 was chosen to be constant. Moreover, owing
to this invariance, without loss of generality, we assume that
y1 = 0 in (1).

To recap, given the measurements Ci,j(F ) (defined in (4))
for a set of electric field values {F1, F2, . . . , Fn}, we seek to
recover the coefficients that define G(F ) and H(F ), namely
the vectors of parameters

p⃗G = [y0, α0, β0] ∈ R3 and p⃗H = [x0, p⃗h1 , p⃗h2 , p⃗h3 ] ∈ R10 ,
(5)

where p⃗hi
= [αi, βi, γi] ∈ R3 for i = 1, 2, 3.

Related work: Broadly speaking, inverse eigenvalue prob-
lems involve reconstructing a matrix with specified spectral
information. These problems are structured and are motivated
from a variety of applications in signal processing, physics,
chemistry, and engineering. For a general overview of such
applications, how they give rise to IEPs and their theory, see
[14]–[17]. There are generally three types of IEPs: param-
eterized [18], structured [19], and partially described [20],
[21]. Much of the literature on parameterized IEPs (PIEPs)
focuses on linear PIEPs. Our work differs from existing work
in two main ways: (i) the measured data corresponds to the
differences between eigenvalues of two separate matrices and
(ii) the parameterization of the matrices’ elements depends on
the applied electric field nonlinearly.

III. PROPOSED APPROACH

In this section we recover the coefficients p⃗G in G(F ) and
obtain an algebraic formulation for recovering the coefficients
p⃗H in H(F ).

Fig. 1. Simulated eigenvalue differences, Ci,j(F ) = λi(F ) − ξj(F ) with
i = 1, 2, 3 and j = 1, 2 .

A. Recovering the coefficients in G(F )

The eigenvalues of G(F ) are given explicitly by

ξ1,2(F ) =
1

2
(α0 + β0F ) ±

√
(α0 + β0F )2 + 4y20 . (6)

From (4) we get that Ci,2 −Ci,1 = ξ2 − ξ1 for all F and i. It
follows from (4) and (6) that

[Ci,2(F )− Ci,1(F )]2 = β2
0F

2 + 2α0β0F + α2
0 + 4y20 . (7)

Assuming that the set {Ci,j(F )} is known for (at least) three
values of F , we can recover β0, α0, and y0 by solving the
least-squares problem

min
κ0,κ1,κ2

n∑
k=1

3∑
i=1

{
[Ci,2(Fk)−Ci,1(Fk)]

2−(κ2F
2
k+κ1Fk+κ0)

}2

(8)
and letting

β0 = −
√
κ2, α0 =

κ1

2β0
, and y0 =

1

2

√
κ0 − α2

0. (9)

In our approach, we solve the normal equations associated
with (8) to obtain κ0, κ1, and κ2.

B. Algebraic formulation for recovering H(F )

Having recovered the coefficients in G(F ) using (9), its
eigenvalues can be computed readily for any F . Hence, the
eigenvalues of H(F ) can be found for any F from (4), i.e.,

λi(F ) = Ci,j(F ) + ξj(F ), i = 1, 2, 3, j = 1, 2 . (10)

It remains to solve the IEP for H(F ) given λi(F ) for a set
of F values.

Algebraic formulation. The eigenvalues of H(F ) are roots
of the characteristic polynomial

det(H(F )−λI) = ζ0(p⃗H)+ζ1(p⃗H)λ+ζ2(p⃗H)λ2−λ3, (11)
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where, suppressing the dependence on F ,

ζ0(p⃗H) = h1h2h3 − x2
0(h2 + h3) , (12a)

ζ1(p⃗H) = −(h1h2 + h1h3 + h2h3 − 2x2
0) , (12b)

ζ2(p⃗H) = h1 + h2 + h3 . (12c)

Since the eigenvalues of H(F ), λ1, λ2, and λ3, are known,
the characteristic polynomial is also given by

det(H(F )− λI) = (λ1−λ)(λ2−λ)(λ3−λ). (13)

Comparing the coefficients in (11) with those in (13) leads to
the following functions:

F̃0(p⃗H) = ζ0(p⃗H)− λ1λ2λ3 , (14a)

F̃1(p⃗H) = ζ1(p⃗H) + (λ1λ2 + λ1λ3 + λ2λ3) , (14b)

F̃2(p⃗H) = ζ2(p⃗H)− (λ1 + λ2 + λ3) , (14c)

whose root defines the desired parameters in H(F ). Sys-
tem (14) can be decoupled using the Gröbner basis of this
system relative to {hi}3i=1 (which can be obtained using a
process akin to Gaussian elimination for linear systems):

F0(x0, p⃗h1) = F̃0(p⃗H) + h1F̃1(p⃗H) + (h2
1 + x2

0)F̃2(p⃗H)

= 3h1x
2
0 + h3

1 + h1(λ1λ2 + λ1λ3 + λ2λ3)

− (h2
1+x2

0)(λ1+λ2+λ3)− λ1λ2λ3, (15a)

F1(p⃗h2
) = F̃1(p⃗H) + (h1 + h2)F̃2(p⃗H)

= h2
1 + h2h1 + h2

2 + 2x2
0 + λ1λ2 + λ1λ3

+ λ2λ3 + (h1 + h2)(λ1 + λ2 + λ3), (15b)

F2(p⃗h3) = F̃2(p⃗H). (15c)

In contrast to the functions in (14), whose roots must be deter-
mined simultaneously, the functions in (15) can determine the
roots sequentially. Specifically, the parameters x0 and p⃗h1 are
obtained first using (15a), as described below. Having obtained
p⃗h1

, the parameters p⃗h2
can be obtained using (15b). Finally,

p⃗h3
can be readily obtained from (15c).

C. Computational method

To find the roots of the functions in (15), we solve equiv-
alent optimization problems whose minima correspond to the
roots of the Fi’s. First, we solve

minimize
x0,p⃗h1

n∑
k=1

[
F0(x0, p⃗h1 , Fk)

]2
. (16)

In the absence of measurement errors, any four values of F ,
i.e., n = 4, are both necessary and sufficient for solving
(15a) to obtain x0 and p⃗h1

. Those same values of F can
then be used for solving (15b) and (15c) for p⃗h2 and p⃗h3

by solving minimization problems similar to (16). We shifted
the eigenvalues by subtracting their mean. This improves
the estimation of the coefficients by reducing the magnitude
differences among the coefficients.

In our numerical experiments, we use five equally spaced
values of F and solve (16) and those corresponding to F1

and F2 using a trust-region approach [22], which solves
a sequence of constrained subproblems that use quadratic
approximations of the objective function. We used the ”trust-
exact” method in Python’s scipy.optimize.minimize package.
Similar results were also obtained using line-search methods.

�
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)
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Fig. 2. Simulated eigenvalues (λ1, λ2, and λ3) and diagonal elements (h1,
h2, and h3) of H(F ). Here, ∆λ(Fk) is defined as in (18).

D. Initialization

Here we propose a protocol for obtaining a good initial
iterate for the coefficients. To illustrate this we refer to the
example provided by Fig. 2, where five measurements occur
at five equi-spaced F values denoted by the tick marks. For
each F , the values of λi (i=1, 2, 3) are obtained as described
above. To estimate the parameter vector p⃗h1 , we note that in
Fig. 2, we have h1(F1) ≈ λ1(F1), h1(F2) ≈ λ1(F2), and
h1(F5) ≈ λ3(F5). To compute an approximation to p⃗h1

=
[α1, β1, γ1], we then solve the least-squares solution to

α1 + β1F1 + γ1F
2
1 = λ1(F1), (17a)

α1 + β1F2 + γ1F
2
2 = λ1(F2), (17b)

α1 + β1F5 + γ1F
2
5 = λ3(F5). (17c)

A similar strategy can be used to obtain estimates for p⃗h2
and

p⃗h3
. To determine which F values and which eigenvalues to

use in the least-squares problem, we consider the differences
between the extremal eigenvalues,

∆λ(Fk) = |λ3(Fk)− λ1(Fk)|, k = 1, . . . , 5 . (18)

In Fig. 2, they are ordered as ∆λ(F4) < ∆λ(F3) <
∆λ(F5) < ∆λ(F2) < ∆λ(F1) . We choose those 3 values
of Fk that have the largest ∆λ(Fk), i.e., k = 1, 2, 5, which
provide the best values of F to approximate h1(F ). The
initial iterate for x0 can be easily obtained from (14b) at
F = F4. To most accurately estimate x0, it is best to use
a value of F where the diagonal elements are least similar
to the eigenvalues, which occurs at F = F4 in this case.
Overall, we find that this protocol yields good initial iterates,
using which the optimization method converges robustly to an
accurate solution.
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Fig. 3. Values of loss functions using F0, F1, F2 as functions of iterations
using a trust-region approach with no noise in the data.

E. Noisy measurements

Noise in the measurements is expected when obtaining
the observed eigenvalue differences, {Ci,j}. To measure the
impact of noise on the proposed approach, we introduce
perturbation, τiϵ, at each Ci,j , where τi ∈ {−1, 1} is a binary
random variable and ϵ ∈ R:

C̃i,j = Ci,j + (−1)τiϵ (19)

We found that using the approach in Sec. III-D consistently
generated an initial iterate that led to the minimizer of (16).

IV. NUMERICAL RESULTS

We conducted numerical experiments to test the efficacy
of the proposed approach outlined in Sec. III using both
noiseless and noisy measurements. For the results shown in
this section, we used simulated measurement values from
Fig. 1. These values were created with p⃗G = [0.35, 9,−1],
x0 = 0.3, p⃗h1

= [1300.0,−4.0 × 10−4, 7.0 × 10−4], p⃗h2
=

[1311.14,−1.0, 0.005], and p⃗h3 = [1310.86,−1.0, 0.004] at
F values 6, 8, 10, 12, and 14.
Experiment I: Noiseless measurements. Using noiseless
measurements, we achieved machine precision in estimating
p⃗G and p⃗H . When recovering the coefficients in p⃗H , we
observed the loss functions created in (16) converge to zero as
the iterations increased, as shown in Fig. 3. This shows that
our proposed approach is appropriate to use when recovering
the coefficients in p⃗G and p⃗H .
Experiment II: Noisy measurements. To determine the
effects of noise on our proposed approach, we simulated noise
in the measurements of eigenvalue differences using (19) for
different values of ϵ. We then implemented our proposed
method using these noisy measurements and observed the
error in the coefficients of p⃗G and p⃗H for these values of
ϵ. In Fig. 4 we observe an O(ϵ) relationship between the
coefficients in p⃗G and ϵ. We observed a similar relationship
between ϵ and the coefficients in p⃗H . The coefficient error
versus ϵ for x0 and p⃗h1 can be observed in Fig. 5, and similar

Fig. 4. Error in the coefficient vector p⃗G as a function of noise in the data.

Fig. 5. Error in the coefficient vector p⃗h1
as a function of noise in the data.

patterns can also be observed for p⃗h2 and p⃗h3 . This shows
that the proposed method is both robust in the presence of
noise and produces a predictable decrease in coefficient error
as noise is reduced.

V. CONCLUSIONS

The method proposed in this paper successfully recovers
ground and excited state coefficients using measurements
simulating observed eigenvalue differences from our moti-
vating example. We have demonstrated that, under some
assumptions, the ground state coefficients can be recovered
and used to reduce the problem to a parameterized IEP. Our
proposed method is able successfully solve the parameterized
IEP using a series of systems of equations to recover the
excited state coefficients. Through the use of a good initial
iterate using asymptotic relationships and instead solving a
related parameterized IEP, the proposed method is also robust
to noise in the measurements. This method can be adapted for
use in solving similar problems with various applications in
quantum sensing.
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