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BAND-EDGE SOLITONS, NONLINEAR
SCHRÖDINGER/GROSS–PITAEVSKII EQUATIONS, AND

EFFECTIVE MEDIA∗

B. ILAN† AND M. I. WEINSTEIN‡

Abstract. We consider a class of nonlinear Schrödinger/Gross–Pitaevskii (NLS/GP) equations
with periodic potentials having an even symmetry. We construct “solitons,” centered about any
point of symmetry of the potential. For focusing (attractive) nonlinearities, these solutions bifurcate
from the zero state at the lowest band-edge frequency into the semi-infinite spectral gap. Our results
extend to bifurcations into finite spectral gaps, for focusing or defocusing (repulsive) nonlinearities
under more restrictive hypotheses.

Soliton nonlinear bound states with frequencies near a band edge are well approximated by a
slowly decaying solution of a homogenized NLS/GP equation, with constant homogenized effective
mass tensor and effective nonlinear coupling coefficient, modulated by a Bloch state.

For the critical NLS equation with a periodic potential, e.g., the cubic two-dimensional NLS/GP
with a periodic potential, our results imply the following: (1) The limiting soliton squared L2 norm,
as the spectral band-edge frequency is approached, is equal to Pedge = ζ∗ ×Pcr , where Pcr denotes
the minimal mass soliton of the translation invariant critical NLS. Pcr is also known as the Townes
critical power for self-focusing of optical beams. (2) The constant ζ∗ is expressible in terms of the
band-edge Bloch eigenfunction and the determinant of the effective mass tensor. If the potential
is nonconstant, then 0 < ζ∗ < 1 and Pedge is strictly less than Pcr . The results are confirmed by
numerical computation of bound states with frequencies near the spectral band edge.

Finally, these results have implications for the control of nonlinear waves using periodic struc-
tures.
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condensates
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1. Introduction and outline. “Solitons” are spatially localized concentrations
of energy, which are of great interest in many nonlinear wave systems. They arise
from a balance of dispersion (or diffraction), which tends to spread energy and (fo-
cusing/attractive) nonlinearity which tends to concentrate energy. Although their
importance was first recognized in the context of hydrodynamics [66, 2], soliton-like
coherent structures are now understood to play a central role in contexts ranging
from optical pulses (temporal solitons) to stationary beams (spatial solitons) of non-
linear optics [11, 40] to soliton matter waves in macroscopic quantum systems [46].
Advances in the design of micro- or nano-structured media have greatly enabled the
control of optical and matter waves. Thus, it is of interest to develop a fundamen-
tal understanding of the effect of inhomogeneities in a medium on the dynamics of
nonlinear dispersive waves and, in particular, on the dynamics of solitons. See, for
example, [24] for an experimental investigation of solitons in periodic structures.
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1056 B. ILAN AND M. I. WEINSTEIN

In this article we consider solitons in nonhomogeneous media governed by a class
of nonlinear Schrödinger/Gross–Pitaevskii (NLS/GP) equations:

(1.1) i∂tψ = −Δψ + V (x)ψ − |ψ|2σψ .

Here ψ = ψ(x, t) denotes a complex-valued function of (x, t) ∈ R
d × R

1, d ≥ 1. The
potential V (x) is assumed to be real-valued, smooth, periodic, and symmetric about
one or more points.1,2

NLS/GP is a Hamiltonian system, expressible as follows:

i∂tψ =
δ H
δ ψ∗

H[ψ, ψ∗] =

∫
∇ψ · ∇ψ∗ + V (x)ψψ∗ − 1

σ + 1
ψσ+1 (ψ∗)σ+1,(1.2)

where ψ∗ denotes the complex conjugate of ψ. By Noether’s theorem, the invariance
t �→ t + t0 implies the time-invariance of H for solutions of NLS/GP. Furthermore,
the invariance ψ �→ eiθψ implies the additional time-invariant quantity

(1.3) P [ψ, ψ∗] =

∫
ψ ψ∗ dx .

The parameter σ > 0 allows for variation of the strength of the nonlinearity. In
physical systems, we typically have σ = 1. Allowing σ to vary enables one to quantify
the balance between nonlinear effects and dispersive/diffractive effects, which depend
on spatial dimensionality, d. Local well posedness in time for the initial value problem
for (1.1) with data

(1.4) ψ(x, t = 0) = ψ0(x)

in ψ0 ∈ H1(Rd) (see, for example, [16, 59]) holds for all σ > 0 for d = 1, 2 and all
0 < σ < 2(d − 2)−1 for d ≥ 3. Global well posedness for arbitrary data holds for
σ < 2/d. For well posedness for data in spaces of weaker regularity, see [10, 60].

The NLS/GP equation, (1.1), with σ = 1 governs the dynamics of a macroscopic
quantum state, a Bose–Einstein condensate, comprised of a large collection of inter-
acting bosons in the mean-field limit [46, 25, 15]. The attractive nonlinear potential,
−|ψ|2, corresponds to a species of bosons, whose two-particle interactions have a neg-
ative scattering length. A second important area of application of NLS/GP is its
description of the evolution of the slowly varying envelope of a stationary and nearly
monochromatic laser beam propagating through a nonlinear medium [40, 11]. Here
the attractive nonlinear potential is due to the Kerr nonlinear effect; regions of higher
electric field intensity have a higher refractive index. In this setting t denotes the
distance along the direction of propagation and x ∈ R

2, the transverse dimensions. In
the quantum mechanical setting the potential, V (x), is determined by magnetic and
optical effects that are used to confine a cloud of bosons. In optics, the potential is
determined by the spatial variations of the background linear refractive index of the
medium. The functional P denotes the optical power or, in the quantum setting, the
particle number.

1Periodic potentials are often called “lattice” potentials.
2The main results of this paper extend to general nonlinearities of the form f(|ψ|2)ψ =

g
[
1 +O(|ψ|2) ] |ψ|2σψ.
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Nonlinear bound states or solitons of NLS/GP are solutions of standing wave type

(1.5) ψ(x, t) = e−iμtu(x, μ),

where μ denotes the frequency (propagation constant in optics, chemical potential in
quantum many-body theory) and u is a real-valued solution of

( −Δx + V (x) )u(x, μ) − u2σ+1(x, μ) = μ u(x, μ), u(·, μ) ∈ H1(Rd).(1.6)

We shall construct solutions of (1.6) with μ located in a spectral gap of −Δ+ V .
The properties of solitons in homogeneous media, V ≡ 0, are reviewed in detail in

section 2. Briefly, for σ < 2/d (subcritical nonlinearities) dynamically stable solitons
exist at any prescribed L2 norm (in one-to-one correspondence with any μ < 0). In
the critical case and supercritical cases, σ ≥ 2/d, solitons are unstable.

We raise several motivating questions below and outline our results in the next
subsection.

(Q1) Persistence and stability: What is the effect of a periodic potential on the
existence and stability properties of solitons?

(Q2) Stabilization: Can unstable solitons be stabilized by a potential, V (x)? This
question was first addressed in [48] in the context of localized potentials
and more recently for more general potentials [54], e.g., periodic and quasi-
periodic.

(Q3) Excitation thresholds/minimal mass solitons: How does periodic structure ef-
fect soliton excitation thresholds? For critical nonlinearity, σ = 2/d, and V ≡
0, the soliton squared L2 norm is independent of μ; P [u(·, μ)] = Pcr. Thus,
there is an L2 threshold below which there are no solitons. This L2 excitation
threshold for soliton formation is of great physical interest [65, 26, 19, 41, 9].
In optics it corresponds to the critical power for self-focusing [18, 42]. Such
solitons are also often called minimal mass solitons. See Remark 3.3.

1.1. Outline of results. In order to outline the results of this paper, we begin
with very quick review of the spectral theory of Schrödinger operators, −Δ+V , for V
periodic [47, 23, 36]. If V (x) is a periodic potential, then the spectrum of −Δ+ V is
real, bounded below, tends to positive infinity, is absolutely continuous, and consists
of the union of closed intervals (spectral bands). The open intervals separating the
spectral bands are called spectral gaps. One-dimensional Schrödinger operators with
periodic potentials generically have infinitely many gaps. In dimensions d ≥ 2, there
are at most finitely many gaps.

We denote by E∗ the lowest point in the spectrum, the left endpoint, or the edge
of the first spectral band. E∗ is simple and is the ground state (lowest) eigenvalue of
−Δ+ V , subject to periodic boundary conditions on the basic period cell of V . The
eigenspace associated with E∗ is spanned by w(x), a nontrivial solution of

(1.7) (−Δ+ V (x))w(x) = E∗w(x), w(x) periodic.

For the case V ≡ 0, E∗ = 0, and we can take w(x) ≡ 1.
The present work considers the bifurcation and dynamic stability properties of

families of solitons emerging from a spectral band edge. Such edge-bifurcating solitons
have a multiscale character described below. Our results include the following.
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1058 B. ILAN AND M. I. WEINSTEIN

1. Theorem 3.1: Let x0 denote any point of symmetry of V (x).3

There is a family

(1.8) μ �→ u(x, μ ) ≈ (E∗ − μ)
1
2σ F

( √
E∗ − μ (x− x0)

)
w(x),

which bifurcates from the zero solution at energy E∗ into the semi-infinite
gap (−∞, E∗) for 0 < E∗ − μ sufficiently small. Here σ ∈ N for d = 1, 2 and
σ = 1 for d = 3.
F (y) denotes the soliton profile for an effective medium with effective mass
tensor, Aij , given by (3.6) and effective nonlinear coupling constant, γeff ,
given in (3.7), and it satisfies the following homogenized soliton equation:

−
d∑

i,j=1

∂yiA
ij∂yjF (y) − γeff F

2σ+1(y) = −F (y),(1.9)

F > 0, F ∈ H1(Rd).

The leading order expansion is constructed via multiple-scale expansion. The
error term is studied by decomposition of the corrector into spectral com-
ponents near and far from the band edge and is estimated via a Lyapunov–
Schmidt strategy; see also [14, 21, 22]. The results can be extended to solitons
near edges of finite spectral bands for focusing and defocusing nonlinear po-
tentials under more restrictive hypotheses on V ; see subsection 3.1. A variant
of Theorem 3.1 holds in dimension one in any spectral gap near a “positive
curvature” band edge; see Theorem 3.5.

2. Corollary 3.1, part 1: Consider the critical cases: σ = 1, d = 2 and σ =
2, d = 1. Near the band edge, i.e., for 0 < E∗ − μ
 1, we have

(1.10) P [u(·, μ)] = ζ∗ Pcr + (μ− E∗) ζ1∗ + O
(
(μ− E∗)2

)
.

Here Pcr, ζ∗, and ζ1∗ are defined as follows.
(a) Pcr = P [R(·,−1)], where R(·,−1) denotes the unique (up to transla-

tions) solution of

(1.11) ΔR − R +R
4
d+1 = 0, R > 0, R ∈ H1 ;

see (Q3) above.
(b)

(1.12) Pedge ≡ lim
μ→E∗

P [u(·, μ)] = ζ∗ Pcr

is given by (3.17) and satisfies the inequality 0 < ζ∗ < 1, unless V is
identically constant. In the latter case, ζ∗ = 1.

(c)

(1.13) ζ1∗ ≡ d

dμ

∣∣∣∣
μ=E∗

P [u(·, μ)]

is given by (3.18).

3That is, f(x) = f(x1, . . . , xd) is symmetric (about the origin) if f(x1, . . . , xd) =
f(s1x1, . . . , sdxd), sj = ±1. x0 is a point of symmetry of V (x) if Ṽ (z) ≡ V (x0 + z) is sym-
metric. Thus, by translating coordinates, we can arrange for a point of symmetry to be at the
origin.
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(d) For periodic potentials V of the form δ Ṽ (x), where δ is sufficiently
small, we show that ζ1∗ > 0; see (3.20).

(e) Positive slope conjecture: In general, ζ1∗ > 0.
Both ζ∗ and ζ1∗ depend on the edge (periodic) Bloch eigenstate and the
Hessian matrix (of second partial derivatives) of the band dispersion function,
D2E1, near E∗. The latter is often called the inverse effective mass tensor.

3. Instability for μ near the band edge: Consider the critical cases σ = 1, d = 2
and σ = 2, d = 1. For V nonzero and μ near E∗, nonlinear bound states are
linearly exponentially unstable, provided ζ1∗ > 0. We conjecture ζ1∗ > 0, in
general, and have verified it for potentials V = δṼ , with δ sufficiently small.
For V ≡ 0, the linear instability is algebraic, although for the nonlinear
dynamics, solutions can blow up in finite time or decay to zero dispersively
(diffractively) as t tends to infinity. In contrast, consider the case V �= 0. For
μ close enough to the spectral band edge, the curve μ �→ P [u(·, μ)] lies below
the line P = Pcr. Thus, for initial conditions ψ0 = u(·, μ) + ε with |ε| 
 1,
the solution of (1.1) exists globally in time in H1, even though it does not
remain close to u(·, μ) in H1.

4. Section 6: Numerical computations are used to illustrate the asymptotic re-
sults and to study the global behavior.

Figure 1.1 below summarizes a key consequence of our results.
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Fig. 1.1. Plot of power curves: P[u(·, μ)] vs. μ (using semi-log axis) for the quintic one-
dimensional NLS/GP equation, (6.4), with V0 = 10 and K = 2π (here E∗ ≈ −1.23). Solid
curve corresponds to power curve for soliton family centered at a local minimum. Dashed curve
corresponds to centering at a local maximum. Agreement is shown between numerical computa-
tions and the analytically obtained value for the band-edge power (dashed lower horizontal line),
Pedge = limμ→E∗ P[u(·, μ)] = ζ∗ × Pcr ≈ 2.2 (3.15). For μ large and negative, P(μ) converges
to Pcr ≈ 2.72 (dashed horizontal line), which is the critical power of the Townes soliton in the
translation invariant (V ≡ const) case.

For any nontrivial periodic V (x) the limiting L2 norm at the band edge is strictly
less than that of the homogeneous medium. The slope of the curve μ → P [u(·, μ)] is
strictly positive. As −μ = |μ| increases, solitons become increasingly localized in space
and thus depend more and more on the local properties of V . The limiting (|μ| → ∞)
squared L2 norm is Pcr. The orbital stability theory, outlined in section 2, implies that
solitons with energies μ near the band edge (where ∂μP [u(·, μ)] > 0) are unstable,
while those which are centered and sufficiently concentrated (−μ sufficiently large,
∂μP [u(·, μ)] < 0) about a local minimum of V are stable. It is natural to conjecture
that for localized initial conditions with L2 norm strictly less than infμ≤E∗ P [u(·, μ)],
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1060 B. ILAN AND M. I. WEINSTEIN

solutions to the initial value problem disperse to zero as t→ ∞; see the discussion in
the proof of part 3 of Theorem 3.3 and [64].

Remark 1.1. Concerning the dependence of μ �→ P [u(·, μ)] for μ near the band
edge on the nonlinearity parameter, σ, and dimensionality d (see Theorem 3.2 and
Corollary 3.1), it is useful to recall the analogous behavior in the translation invariant
case: V ≡ 0. In this case, NLS is also invariant under dilation

(1.14) ψ(x, t) �→ λ
1
σψ(λx, λ2t) .

Let R(·, μ) denote the positive (unique up to translation) solution of

(1.15) −ΔR−R2σ+1 = μR.

By uniqueness,

(1.16) R(x, μ) = |μ| 1
2σR(|μ| 12x,−1).

It follows that

(1.17) P [R(·, μ)] = ‖R(·, μ)‖22 = |μ| 1
σ−d

2 ‖R(·,−1)‖22,

implying that as μ → E∗, P [R(·, μ)] tends
• to 0 for σ < 2/d,
• to ‖R(·;−1)‖22 for σ = 2/d, and
• to +∞ for σ > 2/d;

see Figure 1.2. In one space dimension, the family of solitons is given explicitly by

(1.18) R(x, μ) = [ (σ + 1) |μ| ]
1
2σ sech

1
σ

(
σ
√
|μ| x

)
.

In the critical case, σ = 2,

(1.19) P [R(·, μ)] =
√
3

2

∫
R

sech(y) dy =

√
3

2
π ∼ 2.7207;

see Figure 1.2. Theorem 3.2 implies a similar trichotomy of behaviors for states
bifurcating from the band edge, E∗, of a periodic potential. Also, for σ = 2/d, the
curves μ �→ P [u(·, μ)] in Figure 6.3 are seen to be deformations (for minimum and
maximum centered solitons) of the horizontal line μ �→ Pcr for the case V ≡ 0.

Previous work. Formal expansions and numerical approximation of nonlinear
bound states near spectral band edges for periodic and aperiodic structures and their
linearized stability properties were presented in [57, 7, 67, 45, 12, 8, 49, 50, 17, 1,
13, 5, 52, 56]. The band-edge limit of P , for the case of a two-dimensional sepa-
rable potential was obtained by formal perturbation theory and numerically in [51].
Two-scale convergence methods have been applied to rigorously derive homogenized
effective equations, valid on large but finite time scales, in [6] for the linear Schrödinger
equation and in [55] for the time-dependent NLS/GP, with two-scale-type initial con-
ditions. Bifurcation of localized states from the continuous spectrum into spectral
gaps has been considered in [37, 38, 30, 29, 4, 58, 43]. The connection with nonlin-
ear coupled mode equations is explored in [14, 44, 21, 22]. The Lyapunov–Schmidt
strategy applied herein is motivated by these latter approaches.
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Fig. 1.2. (A) L∞ norm and (B) squared L2 norm (P) as functions of frequency, μ, for the
ground state solution of (1.6) in one dimension (d = 1) with three nonlinear exponents: subcritical
(σd = 1 < 2), critical (σd = 2), and supercritical (σd = 3 > 2); see legend. In L∞, bifurcation
appears from a state with zero norm at E∗ = 0. In L2, the limiting behavior as μ→ 0− depends on
σd.

Outline. The paper is structured as follows. In section 2 we discuss background
for the formulation of our results. We state our main results in section 3. In section 4
a formal homogenization/two-scale expansion of solitons with frequencies near the
band edge is derived. In subsection 4.3 we derive the consequences of our expansion
of band-edge solitons for the character of P [u(·, μ)] as μ → E∗. The expansion and
error estimates are proved in section 5. Section 6 contains a discussion of numerical
simulations illustrating our main theorems. Section 7 contains a short summary and
discussion. The latter sections of the paper are appendices containing technical results
on the effective mass tensor.

1.2. Notation.
1. η(ε) = O(ε∞) if η(ε) = O(εq) for all q ≥ 1
2. Fourier transform of G: Ĝ(k) =

∫
e−2πik·x G(x) dx

3. χ(a ≤ |k| ≤ b) = characteristic function of the set {k : a ≤ |k| ≤ b}
4. χ(|∇y| ≤ a) G =

∫
e2πik·y χ(|k| ≤ a) Ĝ(k) dk

5. Hs, Sobolev space of order s; Hs
even, space of even Hs functions

(1.20) ‖f‖2Hs =
∑
|α|≤s

‖∂αf‖2L2 ∼ ‖f̂‖2L2,s

6. Hs
sym, symmetric Hs functions, i.e., f ∈ Hs

sym if f ∈ Hs and f(x1, . . . , xd) =
f(s1x1, . . . , sdxd), sj = ±1

7. ‖f‖2L2,s(D) =
∫
D

|f(z)|2 (1 + |z|2)s dz
8. Cm

↓ (Rd), functions in Cm(Rd) with limit equal to zero as |x| → ∞
9. B, the fundamental period cell; B∗, the dual fundamental cell or the Brillouin

zone.

2. Background.

2.1. Solitons and stability theory. We give a very brief review of the stability
theory of solitons of NLS/GP (1.1).

Definition 2.1. The nonlinear bound state u(x, μ) of NLS/GP is orbitally stable
if for all ε > 0, there is a δ > 0 such that if the initial condition ψ0 satisfies

(2.1) inf
γ∈[0,2π)

‖ψ0 − u(·, μ)eiγ‖H1 < δ,
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1062 B. ILAN AND M. I. WEINSTEIN

then the corresponding solution, ψ(·, t), satisfies

(2.2) inf
γ∈[0,2π)

‖ψ(·, t)− u(·, μ)eiγ‖H1 < ε for all t �= 0.

This notion of soliton stability for NLS is natural since NLS/GP for V nonconstant
is invariant under the group of phase translations, ψ �→ eiθψ, but not spatial transla-
tions.

A central role in the stability theory is played by the operator

(2.3) L+ ≡ −Δ− μ+ V − (2σ + 1)u2σ,

which is the real part of the linearization of NLS/GP about u(·, μ). Let n−(L+)
denote the number of negative eigenvalues of L+. If u(x, μ) is a nonlinear bound
state with μ < E∗ (frequency lying in the semi-infinite gap), then n−(L+) < ∞ and
the following nonlinear stability theorem holds [63, 48, 64, 28, 54].

Theorem 2.2.

1. Let u(x, μ) denote a positive soliton solution of NLS/GP with μ in the semi-
infinite gap (−∞, E∗). The nonlinear bound state, ψ(x, t) = u(x, μ)e−iμt, is
orbitally stable if the following two conditions hold:
(a) slope (VK) condition:

(2.4)
d

dμ
P [u(·, μ)] < 0, and

(b) spectral condition: L+ has no zero eigenvalues and

(2.5) n−(L+) = 1.

2. If either ∂μ P [u(·, μ)] > 0 or n−(L+) ≥ 2, then the soliton is unstable (non-
linearly unstable as well as linearly exponentially unstable).

Remark 2.1. As discussed in [54], the spectral condition can be associated with
the suppression of a drift instability and the slope condition with the suppression of
an energy-concentrating self-focusing instability.

2.2. Spectral theory for periodic potentials. We consider the Schrödinger
operator −Δ+ V (x) acting in L2(Rd), where V (x) is a smooth, real-valued potential
which is periodic. That is, V (x + q) = V (x) for all x ∈ R

d. Here q = {q1, . . . ,qd}
denotes a linearly independent set of vectors in R

d that spans (over the integers) a
lattice denoted by Γ. The set

(2.6) B =

⎧⎨
⎩

d∑
j=1

vjqj : vj ∈
[
−1

2
,
1

2

]⎫⎬
⎭

is called a fundamental period cell. The first Brillouin zone B∗ is generated by the
dual basis (r1, . . . , rd) given by rj · qk = 2π δjk; i.e.,

B∗ =

⎧⎨
⎩

d∑
j=1

vjrj : vj ∈
[
−1

2
,
1

2

]⎫⎬
⎭ ,

and the dual lattice, Γ∗, is the integer span of B∗.
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It is useful to review some well-known results of Floquet–Bloch theory [35, 47, 23,
36]. The spectrum of −Δ+V , denoted σ(−Δ+V ), consists of a union of closed inter-
vals called spectral bands separated by gaps (also known as band gaps and photonic
band gaps). The spectral bands are characterized as follows.

For each k ∈ B∗ we seek solutions of the linear eigenvalue problem

(2.7) ( −Δ+ V (x) ) u = E u

of the form u(x;k) = eik·xp(x;k), where p(x;k) is periodic in x:[
− (∇+ ik)

2
+ V (x)

]
p(x;k) = E(k)p(x;k) ,

p(x+ qj ;k) = p(x;k), j = 1, . . . , d .

For each k ∈ B∗ this periodic elliptic boundary value problem has the following
sequence of discrete eigenvalues, or band dispersion functions, tending to positive
infinity: E1(k) ≤ E2(k) ≤ · · · ≤ Em(k) ≤ · · · . As k varies over the Brillouin zone B∗,
each Em(k) sweeps out a closed subinterval of the real axis. The spectrum of −Δ+V
acting on L2(Rd) is the union of these subintervals,

(2.8) σ(−Δ+ V ) = ∪m≥1 {Em(k) : k ∈ B∗} ⊂ [min
B
V,∞),

and the states {um(x;k) = eix·kpm(x;k)} are complete in the sense that

(2.9) f ∈ L2(Rd) =⇒ f(x) =
∑
m≥1

∫
B∗

〈um(·;k), f(·)〉L2(Rd) um(x;k) dk.

We denote the lowest point in the spectrum of (2.7) and corresponding periodic
eigenstate by

(2.10) E∗ = E1(0), w(x) = p(x;k = 0).

E∗ is simple. We will often make use of the relation

(2.11) L∗w = 0 , w > 0 , w(x + qj) = w(qj) ,

where

(2.12) L∗ ≡ −Δ+ V − E∗ .

Thus, w is the periodic ground state of L∗, L∗ ≥ 0, and 0 is a simple eigenvalue of
L∗ with kernel spanned by w. Note that if P⊥ is the orthogonal projection onto the
subspace {w}⊥,

(2.13) P⊥ g = g −
〈

w

‖w‖ , g
〉

w

‖w‖ , 〈f, g〉 =

∫
B
f(x) g(x) dx,

then L−1∗ P⊥ is bounded on the space of L2 periodic functions with fundamental
period cell B.

Finally, note that we may, without loss of generality, restrict to the case where
the fundamental period cell is [−π, π]d. Indeed, if B is the fundamental period cell
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(see (2.6)), then define the constant matrix Q to be the matrix whose jth column is
(2π)−1qj . Then, under the change of coordinates x �→ z = Qx,

−∇x · ∇x + V (x) acting on L2
per(B) transforms to

−∇z · α ∇z + Ṽ (z) ≡ −
d∑

i,j=1

αij
∂2

∂zi∂zj
+ Ṽ (z)

acting on L2
per

(
[−π, π]d

)
, where

α =
QQT

| detQ| , Ṽ (z) = V
(
Q−1z

)
, x = Q−1z .

3. Main results. In this section we state our main results on bifurcation of
solitons from the band edge, E = E∗, into the semi-infinite gap.

Hypotheses:
(H1) Potential: V (x) is smooth and periodic with B = [−π, π]d .
(H2) Dimension/nonlinearity:4

(3.1) d = 1, 2 : σ ∈ N, d = 3 : σ = 1.

Theorem 3.1. Let x0 denote any point of symmetry of V (x).
1. For all μ less than and sufficiently near E∗, there is a family of nonlinear

bound states of NLS/GP (“solitons”), u(·, μ) ∈ Hs(Rd), s > d/2, which is
centered at x0.

2. These solutions bifurcate from the zero solution at band-edge frequency μ = E∗
into the semi-infinite gap. Specifically, this family is given by the two-scale
expansion for small ε,

με = E∗ − ε2,(3.2)

uε(x, με) = ε
1
σ [w(x)F (ε(x− x0)) + εU1 (x, ε(x− x0))(3.3)

+ ε2U2 (x, ε(x− x0)) + η(x; ε)
]
,

where η(x; ε) satisfies the estimate

(3.4) | η(·; ε) |Hs ≤ Cs ε
3, s > d/2.

The terms in the expansion are given as follows: w(x) is the band-edge Bloch
state (see (2.11)), and F (y) is the ground state solution of the NLS equation
in an effective medium:

−
d∑

i,j=1

∂yiA
ij∂yjF (y) − γeff F

2σ+1(y) = −F (y),(3.5)

F > 0, F ∈ H1(Rd).

4The assumption on the nonlinear term can be made less restrictive. However, since some of
our results concerning the higher-order character of μ �→ P[u(·, μ)] depend on the construction of a
multiple-scale expansion to a sufficiently high order, we require a certain degree of smoothness of the
nonlinear term in a neighborhood of zero. Note also that the methods and our results extend easily
to more general nonlinearities, e.g., K[|u|2]u (local or nonlocal).
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The matrix Aij is the inverse effective mass tensor [35], expressible in terms
of the band dispersion function, E1(k), as

(3.6) Aij ≡ δij −
4 〈∂xjw,L

−1
∗ ∂xiw〉

〈w,w〉 =
1

2

∂2E1

∂ki∂kj
(k = 0);

see Appendix A. The effective nonlinear coupling constant is given by

(3.7) γeff =

∫
B w

2σ+2(x) dx∫
B w

2(x) dx
.

Aij is a symmetric, positive definite constant matrix. Its determinant, the
product of inverse effective masses, is denoted by

(3.8)
1

m∗
= det( Aij ) ≤ 1,

with m∗ = 1 only if V (x) is identically constant; see [34] and Appendix B.
3. F (y) is a rescaled ground state of the NLS equation (1.11) as

(3.9) F (y) =

(
1

γeff

) 1
2σ

R(Λ−
1
2Sy,−1),

where S is an orthogonal matrix that diagonalizes the effective mass tensor;
i.e.,

(3.10) Sik A
kl Slj = Λij ≡ diag(λ1, . . . , λd) ,

where λi denote the eigenvalues of Aij .
4. Combining (3.2), (3.3), and (3.9) gives for 0 < ε2 = E∗ − μ
 1,

(3.11) u(x, μ) =

(
ε2

γeff

) 1
2σ [

R
(
Λ−

1
2Sε(x− x0),−1

)
w(x) +O(ε)

]
.

5. The O(ε) and O(ε2) corrections are given (using y = ε (x− x0) and sum-
mation over repeated indices) by

O(ε) : U1(x,y) = 2L−1∗ [∂xiw(x)] ∂yiF (y) ,(3.12)

O(ε2) : U2(x;y) = U2p(x,y) + w(x)F2h(y),

U2p(x,y) = L−1∗
[ (

δij + 4∂xjL
−1
∗ ∂xi −Aij

)
w(x)

]
∂yi∂yjF (y)

+ L−1∗
[
w2σ+1(x) − γeff w(x)

]
F 2σ+1(y),

LA
+ F2h(y) = S(y) ,(3.13)

where S(y) is given by

S(y) = 〈w,w〉−1
[
〈w, (Δy − 1)U2p(·,y) + (2σ + 1)U2σ

0 U2p(·,y) 〉

+ σ(2σ + 1) 〈w,U2σ−1
0 U2

1 (·,y)〉 + 2〈w,∇x · ∇yŨ3(·,y)〉
]
,(3.14)

where Ũ3 is given in (4.19).
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Theorem 3.1 is proved in sections 4 and 5.
Using expansion (3.2) we can derive the asymptotic behavior for P(μ) = P [u(·, μ)]

as μ→ E∗.
Theorem 3.2. Let x0 denote a point of symmetry of V and u(·, μ) a soliton

given in Theorem 3.1.
1. For μ near the band edge P [u(·, μ)] is given by

P [u(·, μ)] = | μ− E∗ |
1
σ− d

2

×
[
ζ∗P [R(·,−1)] + ζ1∗(μ− E∗) +O

(
(μ− E∗)2

)]
,(3.15)

where P [R(· ,−1)], the optical power of the homogeneous NLS ground state,
depends on σ and d,

(3.16) −ΔR−R2σ+1 = −R,R > 0, R ∈ H1,

and

0 < ζ∗ ≡
(

1

m∗

) 1
2

((
−
∫
B w

2
)σ+1

−
∫
B w

2σ+2

) 1
σ

≤ 1,(3.17)

where −
∫
B g = 1

vol(B)
∫
(x)dx, and the slope is given by

ζ1∗ ≡ 4

d∑
j=1

−
∫
B

∣∣L−1∗ [
∂xjw(x)

]∣∣2 dx ·
∫
Rd

∣∣∂yjF (y)
∣∣2 dy

−−
∫
B
w2(x)dx

∫ (
1

σ
F (y) + y · ∇yF (y)

)
S(y)dy,(3.18)

where S(y) is given by (3.14). Note that to order O(|E∗−μ|1), the expansion
is independent of x0 (the soliton centering).

2. Positive slope for small potentials: Let V (x) = δV1(x), where |δ| is sufficiently
small and V1(x) is a smooth periodic function on R with a zero cell average.
Then, in the critical case σ = 2,

ζ∗ ∼ 1− 8δ2−
∫
B

[
(−∂xx)−1V1

]2
dx ,(3.19)

ζ1∗ ∼ 34
√
3 πδ2−

∫
B

[
(−∂xxx)−1V1

]2
dx .(3.20)

Here (−∂xx)−1 and (−∂xxx)−1 are, respectively, the second- and third-order
integration operators in B acting on the space of zero average functions to
itself. Hence, ζ1∗ > 0 for small potentials.

3. Positive slope conjecture: ζ1∗[V ] > 0 if V is nonconstant.
Theorem 3.2 is proved in subsection 4.3, except for part 2, concerning small

potentials, which is proved in Appendix D.
Remark 3.1. Concerning equality in (3.17), when V (x) is constant, then so is

w(x). In that case E∗ = 0, E1(k) = k2, and m−1∗ = det{2−1 D2
ki,kj

E1(0)} = 1.
Therefore, ζ∗ = 1.

Remark 3.2. That ζ∗ ≤ 1 can be seen by considering each factor in the definition
(3.17) separately. First, by Hölder’s inequality the quotient in the second factor of
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(3.17) is bounded one with equality holding if and only if w ≡ constant. Furthermore,
w is identically constant if and only if V ≡ constant. Concerning the first factor
in (3.17), by Theorem 3.1, 0 < m−1∗ ≤ 1 with equality holding if V ≡ constant.
Therefore, 0 < ζ∗ ≤ 1 with ζ∗ = 1 if and only if V ≡ constant.

In the critical case, an immediate consequence of Theorem 3.2 is the following
result for critical nonlinearity (σ = 2/d).

Corollary 3.1. Consider the critical case σ = 2/d; by hypotheses (H1) and
(H2) this implies either (d, σ) = (1, 2) or (d, σ) = (2, 1).

As μ→ E∗ we have

(3.21) P [u(·, μ)] = ζ∗ Pcr + ζ1∗ (μ− E∗) + O
(
(μ− E∗)2

)
.

Here Pcr = P [R(·,−1)]. Since ζ∗ < 1 for any nonconstant periodic potential,
it follows that the limiting power at the band edge is strictly smaller than Pcr,

(3.22) Pedge ≡ lim
μ→E∗

P [u(·, μ)] = ζ∗ Pcr < Pcr .

Corollary 3.1 is proved in subsection 4.3. The band-edge limiting behavior (3.22) is
illustrated in Figure 1.1; see also Figure 6.3.

Concerning the NLS/GP dynamics near solitons, we have the following theorem.
Theorem 3.3. Consider the critical case σ = 2/d; by hypotheses (H1)–(H2)

this implies either (d, σ) = (1, 2) or (d, σ) = (2, 1). If the positive slope conjecture of
Theorem 3.2 holds, then

1.

(3.23)
dP [u(·;μ)]

dμ

∣∣∣∣
μ=E∗

> 0,

and it follows from Theorem 2.2 that for μ such that E∗−μ > 0 and sufficiently
small, u(·, μ) is unstable.

2. In particular, for small periodic potentials, by Theorem 3.2, or μ such that
E∗ − μ > 0 and sufficiently small, u(·, μ) is unstable.

To complement this information about stability/instability of solitons, we remark
on Pcr and Pedge as they relate to well posedness and blow-up/collapse.

Theorem 3.4. Let ψ(x, t) be a solution of the NLS/GP (1.1) with a smooth
potential V (x) and initial conditions ψ0(x) in H1. Denote by R(x) the ground state
(“Townes soliton”) corresponding to the translation invariant NLS equation (i.e., with
V ≡ 0). Then if

(3.24) P [ψ0] =

∫
|ψ0(x)|2 dx <

∫
R2(x) dx ≡ Pcr,

then solutions of NLS/GP (1.1) exist globally in time—no singularity formation/no
collapse.

Remark 3.3. Recall that in the spatially homogeneous case, V ≡ 0, if in addition
to (3.24) we impose the additional assumption |x|ψ0 ∈ L2, then ψ(x, t) tends to zero
in Lp as t→ ∞ for a range of p > 2 [64]; see also [33] for scattering results in H1.

In view of Theorem 3.3 and Remark 3.3, Pcr is thus called the soliton excitation
threshold in the case of V ≡ 0. Excitation thresholds also play a role in systems
without critical scaling symmetry. See, for example, [65, 26] and [19, 41, 9].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1068 B. ILAN AND M. I. WEINSTEIN

For V nonzero, the picture which emerges from the above theorems and numerics
(see, for example, Figure 1.1) is quite different. The minimal mass (minimal power),
band-edge power, and V ≡ 0 critical mass are related by:

(3.25) Pmin < Pedge < Pcr.

Here

(3.26) Pmin = P [u(·, μmin)] ≡ min
μ≤E∗

P [u(·, μ)] ,

where in (3.26), μ �→ P [u(·, μ)] is computed along the family of solitons centered
at a local minimum; see the solid curve in Figure 1.1. Along this soliton curve,
computations indicate that u(·, μ) > 0 and n−(L+) = 1. By Theorem 2.2 (applied for
V periodic) there is an open set of initial data in the phase space H1,

(3.27) {ψ0 ∈ H1 : Pmin < P [ψ0] < Pedge < Pcr},
within which there are coexisting unstable/“wide” and stable/“narrow” solutions.
There is also an open set in H1,

(3.28) {ψ0 ∈ H1 : Pedge < P [ψ0] < Pcr},
where the only solitons are stable and “narrow.” The terms wide and narrow refer,
respectively, to solitons with frequencies in an interval near (to the right of μmin) or
far from (to the left of μmin) the band edge, E∗ [54, 53].

Finally, we state a soliton excitation threshold conjecture (see also [64, 65, 33]).
Pmin is an excitation threshold: if P [ψ0] < Pmin, then ψ(x, t) tends to zero in Lp

as t → ∞ for range of p > 2. Furthermore, there exists f± ∈ L2(Rd) such that
ψ(x, t)− eiΔtf± tends to zero in H1 as t→ ±∞.

Proof of Theorem 3.3. Part 1 follows from part 2 of Theorem 2.2, where we review
results on the stability/instability of solitary waves.

Proof of Theorem 3.4. The proof follows from an application of the sharp
Gagliardo–Nirenberg inequality; see [61, 64]. Specifically, for any function f ∈ H1(Rd)
we have (

1− ‖f‖L2

‖R‖L2

) 4
d
∫

|∇f |2 ≤
∫ (

|∇f |2 − 1

1 + 2
d

|f | 4d+2

)
≡ H0[f ],(3.29)

where H0 denotes the conserved NLS/GP Hamiltonian for V ≡ 0. Estimate (3.29)
was used in [61] to establish, for V ≡ 0, that if ψ0 ∈ H1 and ‖ψ0‖L2 < ‖R‖L2, then
NLS has a global in time H1 bounded solution. It was further used in [64] to show
that if, in addition, we assume that |x|ψ0 ∈ L2, then the solution decays to zero in
Lp, for range of p > 2 (and therefore in L2

loc).
To prove Theorem 3.4, note from (3.29) that

(3.30)

(
1−

(
‖f‖L2

‖R‖L2

) 4
d

)∫
|∇f |2 ≤ H[f ]−

∫
V |f |2.

Applying this inequality to a solution, ψ(x, t), of NLS/GP yields

(3.31)

(
1−

(
‖ψ0‖L2

‖R‖L2

) 4
d

)∫
|∇ψ(x, t)|2 ≤ H[ψ0] + ‖V ‖L∞

∫
|ψ0|2.

For initial data, ψ0, in small H1 neighborhood of a soliton with frequency near the
band edge, we have ‖ψ0‖L2 < ‖R‖L2. Estimate (3.31) implies a uniform bound on
‖ψ(·, t)‖H1 and therefore global existence (no singularity formation/no collapse).
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3.1. Finite gaps—results for focusing and defocusing nonlinearities. In
this subsection we remark on extensions of our results to solitons with frequencies in
finite gaps (gap solitons). For this more general discussion, it is convenient to write
NLS/GP and its nonlinear bound state equation in the form

i∂tψ = −Δψ + V (x)ψ + g|ψ|2σψ,(3.32)

( −Δ + V )u + g u2σ+1 = μ u,(3.33)

where we have introduced a parameter g to encode the (i) focusing/attractive (g = −1)
and the (ii) defocusing/repulsive (g = +1) cases.

Focusing nonlinearity, g = −1. Our results of the previous section applied to
solitons with frequencies in the semi-infinite gap, μ < E∗. The results on bifurcations
of solutions from the spectral band edge can be extended to the case where E∗ is
replaced by Eedge, any band edge frequency. Here we consider the case where the
following two conditions hold:

1. The space of B-periodic solutions (−Δ + V )w(x) = Eedgew(x) is
one-dimensional, spanned by a function wedge(x); Eedge is attained by the
band dispersion function at k = 0.5

2. The inverse effective mass tensor, Aij , is symmetric and positive definite.
In this case, we have solitons centered about any point of symmetry of V (x), which in
analogy to those described in Theorem 3.1, bifurcate from the left band edge toward
lower frequencies into the spectral gap

(3.34) μ �→ u(x, μ ) ≈ (Eedge − μ)
1
2σ w(x) F

( √
Eedge − μ (x− x0)

)
,

where 0 < E∗ − μ 
 1. Here F satisfies the effective medium nonlinear Schrödinger
equation (3.5), whose inverse effective mass tensor, Aij , is given by (3.6), with w
replaced by wedge. Alternatively, this is (D

2En(k0))ij , the Hessian matrix of a Bloch
dispersion function, En, where En(k0) = Eedge, k0 ∈ B∗.

Defocusing nonlinearity, g = +1. Here we consider the case where the fol-
lowing two conditions hold:

1. The space of B-periodic solutions (−Δ + V )w(x) = Eedgew(x) is one-
dimensional, spanned by a function wedge(x); Eedge is attained by the band
dispersion function at k = 0.

2. The inverse effective mass tensor, Aij = −Bij , is symmetric and negative
definite.

In this case, we have solitons centered about any point of symmetry of V (x), bifur-
cating from the right band edge toward higher frequencies into the spectral gap.

Indeed, if we seek, along the lines of our previous analysis, soliton-like states with
frequency

(3.35) μ = Eedge − τε2,

our analysis near a band edge with negative definite effective mass tensor, −Bij , yields
an effective medium soliton equation:

−
d∑

i,j=1

∂yiB
ij∂yjF − γeffF

2σ+1 = τF.

5In dimensions d ≥ 2 band edges may be attained at 0 �= k ∈ B∗; see [22]. In this case, the
corresponding solutions are complex-valued, and an extension of the present methods we use along
the lines of [22] is necessary.
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Thus, we can construct localized states for τ < 0 and μ = Eedge + |τ |ε2 > Eedge.
Finally, we remark that all hypotheses concerning multiplicity of spectrum and

curvature of band dispersion functions are verifiable in one space (d = 1) dimension.
Thus, we have the following theorem.

Theorem 3.5. Let V (x) denote a smooth, periodic, and even potential. Consider
any finite width, nonempty, spectral gap, −∞ < a < b <∞, of −∂2x+V (x). The band
dispersion curvature at E = a is strictly negative and at E = b is strictly positive; see
Appendix C.

1. For focusing nonlinearity, g = −1, centered about any point of symmetry of
V , there exists a family of solitons of NLS-GP (3.32), which bifurcates from
the zero solution with frequencies in the gap less than E = b.

2. For defocusing nonlinearity, g = +1, centered about any point of symmetry of
V , there exists a family of solitons of NLS-GP (3.32), which bifurcates from
the zero state with frequencies bifurcating into the gap greater than E = a.

These bifurcating branches have expansions and properties analogous to those described
in Theorems 3.1 and 3.2.

Note. The results of this subsection indicate extensions to bifurcations into fi-
nite width gaps. In particular, for critical nonlinearities, we are able to analytically
characterize the band-edge limit of the squared L2 norm, P . Note, however, that
the factor, ζ∗, arising in finite gaps is associated with an excited Bloch state, i.e., a
state wedge(x), which is not a positive ground state of the periodic boundary value
problem. Since the estimate, ζ∗ ≤ 1, hinged on the result [34], (m∗)−1 ≤ 1, which
makes use of the ground state property (in particular positivity), we do not have an
estimate on the size of ζ∗ in finite gap cases.

4. Homogenization/multiscale expansion. In this section we derive a formal
multiple-scale expansion of solitons bifurcating from the band edge. In section 5 we
prove an error estimate, thus completing the proof of Theorem 3.1 .

Without loss of generality we choose coordinates with x0 = 0. We seek a solution
of the bound state equation (1.6), which bifurcates from the zero state at the band
edge μ = E∗, depending on a “fast” spatial scale x and a slow spatial scale

(4.1) y = ε (x− x0) = εx, ε
 1,

of the form

με = E∗ + εμ1 + ε2μ2 + . . . ,(4.2a)

uε(x) = ε
1
σUε(x,y),(4.2b)

Uε(x,y) = U0(x,y) + εU1(x,y) + ε2U2(x,y) + . . . .(4.2c)

We also impose periodicity in x; i.e.,

(4.3) Uε(x+ qj , y) = Uε(x,y), j = 1, . . . , d.

Rewriting (1.6) by treating x and y as independent variables gives

− (∇x + ε∇y)
2
Uε + V (x)Uε − ε2 U2σ+1

ε = μεUε.
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Using the expansion (4.2) and the operator L∗ (see (2.11)), we obtain the following
hierarchy of equations to O(ε4):

O(ε0) : L∗U0 = 0 ,

O(ε1) : L∗U1 = (2∇x · ∇y + μ1)U0,

O(ε2) : L∗U2 = (2∇x · ∇y + μ1)U1 + (Δy + μ2)U0 + U2σ+1
0 ,

O(ε3) : L∗U3 = (2∇x · ∇y + μ1)U2 + (Δy + μ2)U1 + (2σ + 1)U2σ
0 U1 + μ3U0,

O(ε4) : L∗U4 = (2∇x · ∇y + μ1)U3 + (Δy + μ2)U2

+(2σ + 1)U2σ
0 U2 + (2σ + 1)σU2σ−1

0 U2
1 + μ4U0,

where for each k ≥ 5 we have

O(εk) : L∗Uk = μkU0

+(2∇x · ∇y + μ1)Uk−1(x,y)
+(Δy + μ2)Uk−2 + Fk[Uj(x,y), μj : 1 ≤ j ≤ k − 2].(4.4)

Note that L∗ is self-adjoint with a one-dimensional null space spanned by w. In
addition, μk is determined by a solvability condition of the form,

(4.5) μk〈w(·), U0(·,y)〉 + 〈w(·), F̃k(·,y)〉 = 0,

obtained by imposing orthogonality of w to the right-hand side of (4.4). Here, F̃k

denotes expression the sum of the last two lines on the right-hand side of (4.4).
Condition (4.5) ensures the existence of a solution to (4.4) which is periodic in x.

We now implement this procedure at successive orders in ε. In particular, we
construct the terms Uj(x,y), 0 ≤ j ≤ 4, as these are required in the proof of Theo-
rem 3.1.

4.1. Solution at each O(εk), k = 0, 1, 2, 3, 4.

O(ε0) terms. The O(ε0) equation is solved by the choice

(4.6) U0(x,y) = w(x)F (y),

where w is the periodic Bloch state associated with the band edge, as defined in (2.11).

O(ε1) terms. The O(ε) equation for U1, by (4.6), becomes

(4.7) L∗U1 = 2∇xw · ∇yF + μ1w F.

Orthogonality of the right-hand side of (4.7) to w implies μ1 = 0, from which we
obtain (3.12):

(4.8) U1 = 2L−1∗ [∇xw] · ∇yF (y) .

Remark 4.1. To be completely systematic, we should add to the right-hand side
of (4.8) a term of the form F1h(y)w(x), which is in the null space of L∗, with F1h(y) to
be determined. F1h(y) is determined via the solvability condition for U3. Symmetry
considerations lead to F1h(y) ≡ 0 (see the discussion of U3). We omit inclusion of
this term to simplify the presentation. Note, however, that this degree of freedom is
required at higher order. In particular, see the expression for U2(x,y) and the role of
F2h(y) in the solving for U4(x,y).
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O(ε2) terms. The O(ε2) equation for U2, by (4.6) and (3.12), becomes

L∗U2 = w(x) (Δy + μ2)F (y) + 4 ∂xj∂yjL
−1
∗ [∂xiw](x) ∂yiF (y)

+w2σ+1(x)F 2σ+1(y)

= w(x) Δy F (y) + 4 ∇x · ∇y

[
L−1∗ [∇xw](x) · ∇yF

]
+μ2 w(x)F (y) + w2σ+1(x)F 2σ+1(y).(4.9)

An equation for F (y) is obtained by imposing orthogonality of the right-hand side of
(4.9) to w(x). It is convenient to formulate the following proposition.

Proposition 4.1. Denote by L∗ the operator

G(y) �→ L∗[G](x,y)
= w(x) Δy G(y) + 4 ∇x · ∇y

[
L−1∗ [∇xw](x) · ∇yG(y)

]
.(4.10)

Then

(4.11) 〈w(·),L∗[G](·,y)〉 = ∂yiA
ij∂yjG(y) × 〈w,w〉.

Imposing orthogonality of the right-hand side of (4.9) to w(x) and applying Propo-
sition 4.1 yields (3.5) for F = F (y, μ2):

(4.12) − ∂yiA
ij∂yjF (y, μ2) − γeff F

2σ+1(y, μ2) = μ2F (y, μ2).

Here we consider only the positive decaying solution of (4.12), which by scaling and
uniqueness can be expressed as

(4.13) F (y, μ2) = |μ2|
1
2σ F (|μ2|

1
2y;−1).

We can, therefore, scale out |μ2| and henceforth assume μ2 = −1.
Thus far, we have shown the following: To leading order, the slowly varying

envelope function F (y) of the nonlinear bound state of NLS/GP is composed of a
nonlinear bound state of the NLS equation (3.5) for a homogeneous medium with
effective mass tensor (Aij)−1 (3.6) and effective nonlinearity γeff .

In subsection 4.2 we show that F (y) is an appropriate scaling of R(y), the Townes
soliton, which is the ground state associated with an isotropic homogeneous medium.

We express the general solution of (4.9) in the form

(4.14) U2(x,y) = U2p(x,y) + U2h(x,y) = U2p(x,y) + w(x)F2h(y),

where U2p denotes a particular solution of (4.9) and w(x)F2h(y) lies in the kernel of
L∗ (recall L∗w = 0), with F2h(y) to be determined.

Using (4.12) to simplify the right-hand side of (4.9) gives

U2p(x,y) =
∑

1≤i,j≤d
L−1∗

[ (
δij + 4∂xjL

−1
∗ ∂xi

)
w(x) ∂yi∂yjF (y)

+ w2σ+1(x)F 2σ+1(y) − w(x)F (y)
]

= L−1∗
[ (

δij + 4∂xjL
−1
∗ ∂xi −Aij

)
w(x)

]
∂yi∂yjF (y)

+ L−1∗
[
w2σ+1(x) − γeff w(x)

]
F 2σ+1(y)(4.15)
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or

(4.16) U2p(x,y) ≡
∑

1≤i,j≤d
L−1∗ X ij

2p,1(x) ∂yi∂yjF (y) + L−1∗ X2p,2(x) F
2σ+1(y),

with X ij
2p,1 and X2p,2 given by the corresponding expressions in (4.15). To obtain

(4.15), we use (4.12) for F (y), in terms of the effective mass tensor, (3.6), and effective
coupling, (3.7). This is a consequence of the solvability (orthogonality) condition for
(4.9).

O(ε3) terms. Using (4.14), we obtain the following equation for U3(x,y):

L∗U3 = 2 ∇x · ∇y ( U2p + wF2h )

+
(
Δy − 1 + (2σ + 1)F 2σw2σ

)
2L−1∗ ∂xiw ∂yiF + μ3w F.(4.17)

Solvability of (4.17) requires orthogonality of the right-hand side to w. Since all terms,
except the last, on the right-hand side of (4.17) are antisymmetric functions of x, we
have μ3 = 0. Thus, after substitution of the explicit expression for U2p, we have

L∗U3 = 2∂xl
w(x) ∂yl

F2h(y)

+ 2∂xl
L−1∗ X ij

2p,1(x) ∂yl
∂yi∂yjF (y) + 2∂xl

L−1∗ X2p,2(x) ∂yl
F 2σ+1(y)

+ 2L−1∗ ∂xiw(x) ( Δy − 1) ∂yiF (y)

+ 2w2σ(x)L−1∗ ∂xiw(x) ∂yiF
2σ+1(y),(4.18)

with summation over repeated indices implied. Thus,

U3 = 2L−1∗ [∇xw](x) · ∇yF2h + Ũ3 ,

where we have introduced

Ũ3 ≡ 2L−1∗
[
∇L−1∗ [X ij

2p,1] · ∇y∂yi∂yjF + ∇L−1∗ [X2p,2] · ∇yF
2σ+1

+L−1∗ [∇xw] · (Δy − 1)∇yF + 2w2σL−1∗ [∇xw] · ∇yF
2σ+1

]
.(4.19)

O(ε4) terms. For U4 we have

L∗U4 = (2∇x · ∇y + μ1)U3 + (Δy − 1)U2 + (2σ + 1)U2σ
0 U2

+ σ(2σ + 1)U2σ−1
0 U2

1 + μ4U0

= L∗[F2h](x,y) + (2σ + 1)w2σ+1(x)F 2σ

+(Δy − 1)U2p + (2σ + 1)U2σ
0 U2p + 2∇x · ∇yŨ3

+ σ(2σ + 1)U2σ−1
0 U2

1 + μ4w(x)F (y).(4.20)

The operator L∗[·](x,y), appearing in (4.20), is defined in Proposition 4.1. Imposing
orthogonality of the right-hand side of (4.20) and applying Proposition 4.1 gives the
following equation for F2h:

LA
+ F2h(y) = 〈w,w〉−1[〈w, (Δy − 1)U2p(·,y) + (2σ + 1)U2σ

0 U2p(·,y)〉
+ σ(2σ + 1)〈w,U2σ−1

0 U2
1 (·,y)〉 + 2〈w,∇x · ∇yŨ3(·,y)〉] + μ4F (y)

≡ S(y),(4.21)

where LA
+ is the second-order linear Schrödinger operator

(4.22) LA
+ ≡ −∂yiA

ij∂yj + 1 − (2σ + 1)γeffF
2σ+1(y).
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We now show that we can take μ4 = 0. Equation (4.21) can be solved in L2(Rd) for
F2h(y) if and only if S(y) is L2-orthogonal to the kernel of LA

+. The kernel of LA
+

has dimension d and is generated by translations; i.e., Ker(LA
+) = span{∂yjF (y), j =

1, . . . , d } [62, 39]. Since F (y) is even, the kernel of LA
+ consists of functions which are

antisymmetric in one coordinate direction. Moreover, it is easy to see that all terms
in S(y) are symmetric and therefore orthogonal to the kernel of LA

+. Thus, we set
μ4 = 0.

4.2. F (y) is a scaled Townes soliton. Thus far, we have constructed the for-
mal expansion (3.2) of (uε, με) through O(ε2). The proof of its validity, in particular
the error estimate (3.4), is given in section 5.

We conclude this subsection by relating the effective medium soliton F (y), which
solves the NLS bound state equation with effective medium parameters Aij and γeff
to the unique ground state of the uniform-medium NLS equation,

(4.23) −ΔR − R2σ+1 = μ R, R > 0, R ∈ H1(Rd).

Let A = (Aij) and Λ ≡ diag(λ1, . . . , λd) denote the diagonal matrix whose diagonal
entries are the eigenvalues of A. Let S denote an orthogonal matrix for which

(4.24) SAST = Λ ≡ diag(λ1, . . . , λd) .

Then, under the change of coordinates y �→ z = Λ−
1
2Sy, F1(z) = F (y,−1) solves

(4.23) with μ = −1. By uniqueness up to translations, the solution to the isotropic
NLS equation (4.23) is given by

(4.25) F (y) = F1(z) = R(Λ−
1
2Sy,−1) =

(
1

γeff

) 1
2σ

R(Λ−
1
2Sy,−1).

Note that our expansion gives

(4.26) με = E∗ − ε2 +O(ε5) ≈ E∗ − ε2.

In fact, as shown in the proof (see (5.3)) we can take με = E∗ − ε2. Substitution
of (4.25) and (4.26) into the expansion (4.2) and using (4.6) and y = εx yields the
leading order expansion of u(x, μ) displayed in (3.3).

4.3. P [u(·, μ)] near the band edge. To prove Theorem 3.2 and Corollary
3.1, we evaluate

∫
|uε(x)|2 dx, where uε is given by the two-scale expansion plus error

term (3.3) of Theorem 3.1. We obtain (again recalling the choice of coordinates so
that y = ε (x− x0) = εx)

∫
Rd

|uε(x)|2dx = ε
2
σ

⎡
⎢⎣∫ |U0(x, εx)|2︸ ︷︷ ︸

α0

+2εU0(x, εx)U1(x, εx)︸ ︷︷ ︸
α1

+ ε2
(
|U1(x, εx)|2 + 2U0(x, εx)U2(x, εx)

)︸ ︷︷ ︸
α2

dx +O(ε3)

⎤
⎥⎦

= ε
2
σ

[
Iε
0 + Iε

1 + Iε
2 +O(ε3)

]
.(4.27)

Each of the three terms on the right-hand side will be treated below using the following
general averaging method.
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Lemma 4.1. Let p(x) be periodic on the lattice Γ having the fundamental period
cell B. Let B∗ denote the dual fundamental cell (first Brillouin zone) which spans the
dual lattice Γ∗. Assume that

∑
k∈Γ∗ |pk| <∞, where {pk} denotes the set of Fourier

coefficients of p. Let G ∈ L1(Rd) ∩ C∞(Rd). Then, as ε→ 0,∣∣∣∣ εd
∫
Rd

p(x) G(εx)dx − −
∫
B
p(x)dx ·

∫
Rd

G(y)dy

∣∣∣∣ = O(ε∞)×
∑
k∈Γ∗

|pk| = O(ε∞) ,

where the cell average −
∫
B is defined by −

∫
B p =

1
|B|

∫
B p.

Proof of Lemma 4.1. p(x) has the Fourier representation

(4.28) p(x) =
∑
k∈Γ∗

pk e
ik·x, where pk = −

∫
B
e−ik·xp(x)dx .

Therefore,

εd
∫
Rd

p(x) G(εx)dx = εd
∑
k∈Γ∗

pk

∫
Rd

eik·xG(εx)dx

= p0

∫
Rd

G(y)dy +
∑

0�=k∈Γ∗
pk

∫
Rd

ei
k
ε ·yG(y)dy

= −
∫
B
p(x)dx

∫
Rd

G(y)dy +
∑

0�=k∈Γ∗
pkĜ

(
k

2πε

)
.

By smoothness of G, for all q ≥ 1 and ξ ∈ R
d there is a positive constant, rG,q, such

that |Ĝ(ξ)| ≤ rG,q(1 + |ξ|)−q. The required estimate of the remainder term follows.
This completes the proof of the lemma.

We now proceed with proof of the Corollary 3.1 by evaluating the terms Iε
j , j =

0, 1, 2, in (4.27).
Claim 1.

Iε
0 = ε−dζ∗Pcr +O(ε∞), where(4.29)

ζ∗ =

((
−
∫
B w

2
)σ+1

−
∫
B w

2σ+2

) 1
σ

m
− 1

2∗ .(4.30)

Proof. By (4.6) and Lemma 4.1 one has

Iε
0 =

∫
α0 dx =

∫
Rd

w2(x) F 2(εx) dx = ε−d −
∫
B
w2(x) dx

∫
Rd

F 2(y) dy + O(ε∞).

Using expression (3.9) for F (y) as a scaling of R(y;−1), we get∫
Rd

F 2(y) dy = (γeff)
− 1

σ m
− 1

2∗
∫
Rd

R2(y;−1) dy

=

( −
∫
B w

2

−
∫
B w

2σ+2

) 1
σ

m
− 1

2∗ Pcr.

Claim 2. Iε
1 = O(ε∞).
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Proof. We proceed similarly by using (3.12) and Lemma 4.1. We obtain

Iε
1 =

∫
α1 dx = 2ε

d∑
j=1

∫
Rd

w(x) F (εx) · 2L−1∗ [∂xjw](x)∂yjF (εx) dx

= 4ε1−d−
∫
B
w(x)L−1∗ (∂xjw)(x) dx

∫
F (y)∂yjF (y) dy + ε O(ε∞) = O(ε∞) ,

since
∫
Rd F (y)∂yiF (y) dy = 0.

Finally, we turn to Iε
2.

Claim 3.

Iε
2 = ε−d · ε2

[
4

d∑
j=1

−
∫
B

∣∣L−1∗ [
∂xjw(x)

]∣∣2 dx

∫
Rd

∣∣ ∂yjF (y)
∣∣2 dy

+ −
∫
B
w2(x)dx

∫
∂ΩF (y) S(y) dy

]
+ O(ε∞),

(4.31)

where S(y) is explicitly displayed in (4.21).
Proof.

Iε
2 =

∫
α2 dx = ε2

∫ [
|U1(x, εx)|2 + 2U0(x, εx) (U2p(x, εx) + w(x)F2h(εx) )

]
dx

= I2,a + I2,b + I2,c,

and by Lemma 4.1, Iε
2,a is given by

Iε
2,a ≡ ε2

∫
|U1(x, εx)|2dx = 4ε2

∫ ∣∣L−1∗ [
∂xjw(x)

]
∂yjF (εx)

∣∣2 dx
= ε2−d

⎛
⎝4

d∑
j=1

−
∫
B

∣∣L−1∗ [
∂xjw(x)

]∣∣2 dx ·
∫
Rd

∣∣∂yjF (y)
∣∣2 dy +O(ε∞)

⎞
⎠ .

Concerning I2,b, we assert the following:

(4.32) Iε
2,b = 2ε2

∫
Rd

w(x)F (εx)U2p(x, εx) dx = O(ε∞).

Proof of Theorem 3.2. To prove (4.32) we note that U2 (4.16) is of a sum of terms
that have the factored form

(4.33) U2p(x, εx) =
∑
j

Gj(εx) · L−1∗ P⊥gj(x) .

Here P⊥ denotes the projection onto the orthogonal complement of w in L2
periodic(B);

see (2.13). Substitution of (4.33) gives

(4.34) Iε
2,b = 2ε2

∑
j

∫
Rd

w(x) L−1∗ P⊥gj(x) · F (εx)Gj(εx) dx,
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which by Lemma 4.1 implies

(4.35) Iε
2,b =

∑
j

−
∫
B
w(x) L−1∗ P⊥gj(x)dx

∫
F (y)Gj(y)dy + O(ε∞).

Since P⊥ commutes with functions of L∗ and P⊥w = 0, we have

〈w(x), L−1∗ P⊥gj〉 = 〈w,L−1∗ P⊥ P⊥gj〉 = 〈P⊥w,L−1∗ P⊥gj〉 = 0.

It remains to calculate I2,c:

I2,c = 2ε2
∫
U0(x, εx)U2h(x, εx) dx

= 2ε2
∫
w(x)F (εx) · w(x)F2h(εx) dx

= 2ε2−d−
∫
B
w2 ·

∫
F (y) F2h(y) dy + O(ε∞)

= 2ε2−d−
∫
B
w2 ·

∫
F (y)

(
LA
+

)−1
S(y) dy + O(ε∞)

= 2ε2−d−
∫
B
w2 ·

∫ (
LA
+

)−1
F (y) S(y) dy + O(ε∞)

= −ε2−d−
∫
B
w2 ·

(
1

σ
F (y) + y · ∇yF (y)

)
S(y) dy + O(ε∞).(4.36)

Here we have used the relation(
LA
+

)−1
F = ∂μ2F (·, μ2)|μ2=−1 = −1

2

(
1

σ
F (y) + y · ∇yF (y)

)
,

which follows from differentiation of the equation for F = F (x;μ2) with respect to
μ2; see (4.12) and (4.13).

Therefore, summing up the terms we have∫
Rd

|uε(x)|2dx = ε
2
σ

[
Iε
0 + Iε

1 + Iε
2 +O(ε3)

]
= (ε2)

1
σ−d

2 ζ∗Pcr

+(ε2)
1
σ− d

2+1

[
4

n∑
j=1

−
∫
B

∣∣L−1∗ [
∂xjw(x)

]∣∣2 dx∫
Rd

∣∣∂yjF (y)
∣∣2 dy

−−
∫
B
w2dx

∫ (
1

σ
F (y) + y · ∇yF (y)

)
S(y)dy

]
+O(ε∞)

= (ε2)
1
σ−d

2

(
ζ∗Pcr + ε2ζ1∗ +O(ε∞)

)
Recall S(y) is displayed in (4.21).

This concludes the proof of Theorem 3.2.

5. The error estimate (3.4). In this section we prove the error estimate (3.4),
which concludes the proof of Theorem 3.1. For ease of presentation, we focus on the
cubic (σ = 1) one-dimensional case (d = 1):

(5.1)
(
−∂2x + V (x)

)
u − u3 = μ u.
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The proof carries over to the more general setting in the statement of Theorem 3.1.
After the proof, we indicate the modifications required for the proof to go through in
general dimension d = 1, 2, 3; see Remark 5.2 below.

We shall construct a solution (u,E) = (uε, με), using the formal multiple-scale
expansion of section 4:

uε = ε U ε(x) = ε

[
4∑

k=0

εk Uk(x, y) + ε3 U ε
5(x)

]
,(5.2)

με = E∗ − ε2.(5.3)

The expansion includes an error term, ε3U ε
5(x), which must be estimated. The equa-

tion for ε3U ε
5 is(

−∂2x + V (x)− 3ε2U2
0 (x, εx) − E∗ + ε2

)
U ε
5(x)

= ε2 Rε[ Uj ; 0 ≤ j ≤ 4, U ε
5(x) ]

≡ ε2 Rε
0[Uj ; 0 ≤ j ≤ 4] + ε3 Rε

2[Uj ; 0 ≤ j ≤ 4] U ε
5

+ ε5 Rε
2[Uj ; 0 ≤ j ≤ 4] ( U ε

5 )
2
+ ε8 ( U ε

5 )
3
,(5.4)

where Rε
k[Uj ; 0 ≤ j ≤ 4] denotes the coefficient of the kth power of U ε

5 and is a
polynomial in the previously constructed functions Uj , j = 0, 1, 2, 3, 4.

The scaling of the error term in (5.2) is motivated as follows. Formally, the
correction to the leading order sum in (5.2) will be of order ε5. In our analysis, we
find that the frequency components of the corrector (to the truncated multiple-scale
expansion near the band edge) are of order O(ε3) . Therefore, anticipate this result
in (5.3). We will, in fact, show that for s > d/2, ‖U ε

5‖Hs is bounded uniformly in ε.
This implies the error bound of Theorem 3.1.

In particular,

(5.5) Rε
0 = 2∂x∂yU4 + (∂2y − 1)U3 + 3U2

0 + 6U0U1U2 + U3
1 + O(ε).

Our goal is to estimate U ε
5 , and to do this we employ the spectral (Floquet–Bloch)

decomposition of the operator −Δ+ V (x).

5.1. Floquet–Bloch theory and the Bloch transform. See [23, 47, 36] for
basic results on the spectral theory of operators with periodic coefficients.

Assume V (x + 2π) = V (x). For each k ∈ T = [− 1
2 ,

1
2 ] we seek solutions of the

eigenvalue equation for the operator (−∂2x + V (x)) of the form:

(5.6) u(x; k) = eikxp(x; k), p(x+ 2π; k) = p(x; k), x ∈ R.

This yields the periodic elliptic eigenvalue problem for p(x; k):

(5.7)
(
−(∂x + ik)2 + V (x)

)
p(x; k) = E p(x; k), p(x+ 2π; k) = p(x; k).

For each k ∈ T the spectrum is discrete, giving rise to eigenpairs (Em(k), pm(x; k))m≥1
and a complete orthonormal set {pm(x; k)} in L2

per with respect to the inner product:

(5.8) 〈f, g〉L2
per

=

∫ 2π

0

f(x)g(x) dx.
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(En(k), un(x; k)), n ≥ 1, k ∈ [−1/2, 1/2] are solutions of the eigenvalue problem,(
−∂2x + V (x)

)
un(x; k) = En(k) un(x; k),

un(x+ 2π; k) = e2πikun(x; k), x ∈ R,

where k �→ Em(k) sweeps out the mth spectral band, and yield a complete set of
states in L2(R); see (2.9).

Note. In this section we assume that w(x) is normalized, 〈w,w〉 = 1. Thus, w(x)
is the unique normalized ground state of the periodic boundary value problem and

(5.9) (p1(x; 0), E1(0)) = (p1(x; 0), E1(0)) = (w(x), E∗).

Furthermore, for each k ∈ T, the set {pn(x; k)} is an orthonormal set in
L2
per( [0, 2π) ).

Introduce the Gelfand–Bloch transform, (T φ)(x; k) = φ̃(x; k), and its in-
verse, T −1:

(T φ)(x; k) = φ̃(x; k) =
∑
m∈Zd

eim·xφ̂(k +m),(5.10)

(T −1φ̃)(x) =
∫
[− 1

2 ,
1
2 ]

d

eik·xφ̃(x; k)dk,

where φ̂(k) denotes the Fourier transform of φ(x). Clearly, we have

(5.11) φ̃(x+ 2π; k) = φ̃(x; k) and φ̃(x; k + 1) = e−ix φ̃(x; k).

One can check that

(5.12) T T −1 = identity on L2(R).

Another important property of T is that it commutes with multiplication by a
periodic function

(5.13) f(x+ 2π) = f(x) =⇒ (T fg)(x; k) = f(x) (T g)(x).

Since φ̃(x; k) is 2π-periodic in x, we have

(5.14) φ̃(x; k) =
∑
m≥1

〈pm(·; k), φ̃(·; k)〉pm(x; k).

We conclude this subsection with some basic definitions and results required below;
see, for example, [22] and references cited therein.

Theorem 5.1.

1. There exist positive constants c1, c2, and band dispersion functions
En(k), n ≥ 1, satisfy the bounds6

(5.15) c1 n
2 ≤ En(k) ≤ c2 n

2, |k| ≤ 1/2 ;

see [20, 31].

6In dimension d, n2 is replaced by n
2
d .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1080 B. ILAN AND M. I. WEINSTEIN

2. The mapping

(5.16) φ(x) �→
( 〈

φ̃(·, k) , pn(·, k)
〉 )

n≥1
≡

(
φ̃n(k)

)
n≥1

is an isomorphism of Hs(R1) with X s = L2(T1; l2,s), with the following norm:∥∥∥∥(φ̃n(k))
n≥1

∥∥∥∥2

X s

≡
∥∥∥∥(〈φ̃(·, k), pn(·, k)〉)

n≥1

∥∥∥∥2

X s

=

∫
T

dk
∑
n≥1

(1 + |n|2)s
∣∣∣〈φ̃(·, k), pn(·, k)〉∣∣∣2 .(5.17)

3. Moreover, there exist positive constants C1, C2 such that we have the norm
equivalence

(5.18) C1 ‖φ‖Hs ≤
∥∥∥∥ 〈

φ̃(·, k) , pn(·, k)
〉
n≥1

∥∥∥∥
X s

≤ C2 ‖φ‖Hs .

4. Assume φ, ψ ∈ Hs(Rd).
(a) If s > q+ d/2, then φ ∈ Cq

↓(R
d), with the space of Cq functions, f , with

|∂αf(x)| → 0 as x→ ∞, |α| ≤ q.
(b) If s > d/2, then Hs is an algebra; i.e., φψ ∈ Hs and ‖φψ‖Hs ≤

C ‖φ‖Hs ‖ψ‖Hs .
Remark 5.1. The bounds (5.15) are well known; see [20, 31]. To prove the

isomorphism, recall the operator L∗ = −Δ + V − E∗ ≥ 0; see (2.12). Standard

elliptic theory implies that φ �→ ‖L
s
2∗ φ‖L2 defines a norm equivalent to the Hs norm.

Furthermore, by (5.14)

‖φ‖2Hs ∼ ‖(I + L∗)
s
2φ‖2L2 =

∥∥∥∥∥∥
∫
[− 1

2 ,
1
2 ]

eik·
∑
n≥1

φ̃n(k) (1 + E∗ − En(k))
s
pj(·, k)

∥∥∥∥∥∥
2

L2

=
∑
n≥1

∫
[− 1

2 ,
1
2 ]

|φ̃n(k)|2|1 + E∗ − En(k)|sdk

∼
∑
n≥1

∫
[− 1

2 ,
1
2 ]

|φ̃n(k)|2(1 + |n|2)sdk

≡
∥∥∥∥(φ̃n(k))n≥1

∥∥∥∥2

X s

.(5.19)

5.2. Corrector equation and localization in Bloch variables. In this sub-
section we express the equation for the corrector

(5.20) Ψε(x) ≡ U ε
5(x)

in Floquet–Bloch variables and, in particular, decompose this equation into spectral
components near and away from the band edge E∗; see, for example, [14, 21, 22].

Applying the Bloch transform, T , to (5.4), we obtain an equation for Ψ̃ε(x; k) =
(T Ψε)(x; k):[

− (∂x + ik)2 + V (x)− E∗ + ε2
]
(T Ψε)(x; k) − 3ε2w2(x)T

[
F 2(ε·)Ψε(·)

]
(x; k)

= ε2 (T Rε) (x; k),

(5.21)
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where ε2 Rε is defined in (5.4). Here we have used that U0(x, y) = w(x)F (y).
Now Ψ̃ε(x; k) is periodic in x. Therefore,

(5.22) Ψ̃ε(x; k) =

∞∑
m=1

Ψ̃ε
m(k) pm(x; k), Ψ̃ε

m(k) ≡ 〈pm(·; k) , Ψ̃ε(·; k) 〉.

We introduce a decomposition of Ψε into spectral components near the band edge
E1(k = 0) = E∗ (low frequencies) and spectral components away from E∗ (high
frequencies) as follows. Let 1A denote the characteristic function for the set A and
define

(5.23) χ (a ≤ k ≤ b) ≡ 1{k:a≤k≤b}.

Express Ψ̃ε(x, k) as

Ψ̃ε(x; k) = χ (|k| ≤ εr)Ψε
1(k)p1(x; k)︸ ︷︷ ︸

Ψ̃ε
low

(x;k)

+χ
(
εr ≤ |k| ≤ 2−1

)
Ψε

1(k)p1(x; k) +
∑
m≥2

Ψ̃ε
m(k)pm(x; k)

︸ ︷︷ ︸
Ψ̃ε

high(x;k)

,(5.24)

where r is chosen to satisfy

(5.25) 0 < r < 1 .

Using the inverse Bloch transform, we obtain

Ψε(x) = T −1Ψε
low(x; ·) + T −1Ψε

high(x; ·)
= Ψε

low(x) + Ψε
high(x).

Taking the inner product of (5.21) with pj(·; k), we obtain

[
Ej(k)− E∗ + ε2

]
Ψ̃ε

j(k) − 3ε2
〈
pj(·; k), w2(·)T

[
F 2(ε·)Ψε(·; k)

]
(·; k)

〉
= ε2 〈pj(·, k), (T Rε)(·, k)〉 ≡ ε2(T Rε)j(k), j ≥ 1.(5.26)

The system (5.26) can be viewed as two coupled systems for the following low and
high frequencies:

Ψ̃ε
1,low(k) ≡ χ (|k| ≤ εr)Ψε

1(k) and

Ψ̃ε
high(k) ≡

(
χ
(
εr ≤ |k| ≤ 2−1

)
Ψ̃ε(k), {Ψ̃ε

j(k)}j≥2
)
.(5.27)

Low-frequency components.[
E1(k)− E∗ + ε2

]
Ψ̃ε

1,low(k) − 3ε2χ (|k| ≤ εr)
〈
p1(·; k), w2(·)T

[
F 2(ε·)Ψε

1,low(·)
]
(·; k)

〉
= 3ε2χ (|k| ≤ εr)

〈
p1(·; k), w2(·)T

[
F 2(ε·)Ψε

high(·)
]
(·; k)

〉
+ ε2R̃ε

1,low,(5.28)
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High-frequency components.[
E1(k)− E∗ + ε2

]
χ
(
εr ≤ |k| ≤ 2−1

)
Ψ̃ε

1(k)

= 3ε2 χ
(
εr ≤ |k| ≤ 2−1

) 〈
p1(·; k) , w2(·)T

[
F 2(ε·)Ψε(·)

]
(·)

〉
+ ε2R̃ε

1,high,(5.29) [
Ej(k)− E∗ + ε2

]
Ψ̃ε

j(k)

= 3ε2
〈
pj(·; k) , w2(·)T

[
F 2(ε·)Ψε(·)

]
(·; k)

〉
+ ε2 R̃ε

j,high, j ≥ 2.(5.30)

Here R̃ε
1,low and R̃ε

high = (R̃ε
j,high)j≥1 are given by

R̃ε
1,low = χ(|k| ≤ εr) 〈p1(·, k) , (T Rε)(·, k)〉,(5.31)

R̃ε
1,high = χ(εr ≤ |k| ≤ 2−1) 〈p1(·, k) , (T Rε)(·, k)〉,(5.32)

R̃ε
j,high = 〈pj(·, k) , (T Rε)(·, k)〉, j ≥ 2,(5.33)

where Rε is defined in (5.4). We study the system for Ψ̃ε
1,low(k), Ψ̃ε

high(k) using the
following.

Lyapunov–Schmidt reduction strategy.
1. Using the implicit function theorem, solve the infinite system of high-

frequency component equations for Ψ̃ε
high as a functional of Ψ̃ε

1,low: Ψ̃ε
high =

Ψ̃ε
high[Ψ̃

ε
1,low] with an appropriate bound on this mapping.

2. Substitute Ψ̃ε
high = Ψ̃ε

high[Ψ̃
ε
1,low] into (5.28) to obtain a closed equation for

the low-frequency components, which is solved via fixed-point iteration.
We now embark on implementing this strategy. Our first step is to rewrite the

low-frequency equation (5.28) in appropriately rescaled variables.

5.3. Closed equation for the low-frequency components Ψ̃ε
1,low. With a

view toward obtaining a closed equation for Ψ̃ε
1,low, we begin with several observations.

1. From our formal multiscale construction, we expect Ψε
1,low(x) ∼ Φ(εx) w(x).

This motivates the following ansatz: seek the low-frequency components in
the form

(5.34) Ψ̃ε
low (k) = χ (|k| ≤ εr)

1

ε
Φ̂

(
k

ε

)
.

Thus,

(5.35) Ψ̃ε
low(x; k) = χ (|k| ≤ εr)

1

ε
Φ̂

(
k

ε

)
p1(x; k).

Using the definition of T −1 and that p1(x; k) = p1(x; 0) + O(k) = w(x) +
O(εr), |k| ≤ εr, we have

(5.36) Ψε
low(x) = Φ(εx) w(x) + O(εr).

2. Note that for |k| < εr,

(5.37) E1(k)− E∗ −
1

2
∂2kE1(0)k

2 =
1

6
∂3kE1(k̃) k̃

3, 0 ≤ k̃ ≤ εr.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BAND-EDGE SOLITONS, NLS/GP, AND EFFECTIVE MEDIA 1083

Thus,(
E1(k)− E∗ − ε2

)
Ψ̃ε

1,low(k) =

(
1

2
∂2kE1(0)k

2 − ε2
)
χ(|k| ≤ εr)

1

ε
Φ̂

(
k

ε

)

+O
(
‖∂3kE1‖∞ε3r

1

ε
χ(|k| ≤ εr)Φ̂

(
k

ε

))
.(5.38)

This and the ansatz (5.34) suggest the scaling

(5.39) κ ≡ k

ε
.

In this scaling (5.38) becomes

(
E1(k)− E∗ − ε2

)
Ψ̃ε

1,low(k) = ε2
(
1

2
∂2E1(0)κ

2 − 1

)
χ(|κ| ≤ εr−1)

1

ε
Φ̂(κ)

+O
(
ε3rχ(|κ| ≤ εr−1)

1

ε
Φ̂(κ)

)
.(5.40)

3. Consider the last term on the left-hand side of (5.28). We have

− 3ε2χ (|k| ≤ εr)
〈
p1(·; k), w2(·)T

[
F 2(ε·)Ψε

1,low(·)
]
(·; k)

〉
=− 3ε2χ (|k| ≤ εr)

〈
p1(·; k), w2(·)T

[
F 2(ε·)χ (|∇x| ≤ εr) Φ(ε·)w(·)

]
(·; k)

〉
+O(εr+2)

=− 3ε2χ (|k| ≤ εr)
〈
p1(·; k), w3(·)T

[
F 2(ε·)χ (|∇x| ≤ εr) Φ(ε·)

]
(·; k)

〉
+O(εr+2)

=− 3ε2
∫

w4dx · χ (|k| ≤ εr)
[
F 2(ε·)χ (|∇x| ≤ εr) Φ(ε·)

]̂
(k) +O(εr+2)

=− 3ε2
∫

w4dx · χ (|k| ≤ εr)
1

ε

[
F 2χ

(
|∇y | ≤ εr−1)Φ]̂

(
k

ε

)
+O(εr+2)

=− 3ε2
∫

w4dx · χ
(
|κ| ≤ εr−1) 1

ε

[
F 2χ

(
|∇y | ≤ εr−1)Φ]̂ (κ) +O(εr+2)

Use of (5.34) and (5.39) in (5.28) yields the following closed equation for Φ̂(κ):(
1

2
E′′1 (0)κ

2 + 1

)
χ
(
|κ| ≤ εr−1

)
Φ̂(κ)− 3γeff

[
F 2χ

(
|∇y| ≤ εr−1

)
Φ
]̂
(κ)

= χ
(
|κ| ≤ εr−1

) [
R̂ε

rescaledlow

(
κ; Φ,Ψε

high

)
+O

(
‖∂3kE1‖∞ε3r|Φ̂(κ)|

)]
.(5.41)

Here E1 : [−1/2, 1/2] →
[
E∗, E1(

1
2 )

]
, k �→ E1(k) denotes the band dispersion func-

tion for the first spectral band, and γeff is given by the expression in (3.7). Since we

have assumed p1(x, 0) = w(x) to be normalized, we have γeff =
∫ 2π

0 w4.
We summarize the arguments of this subsection, which lead to the system we’ll

study.
Proposition 5.1. The coupled system, consisting of (5.41) for the rescaled low-

frequency components, Φ̂(κ), |κ| ≤ εr−1 (|k| ≤ εr), and the high-frequency equations,
(5.29) and (5.30), is equivalent to the original system.

5.4. Proof by Lyapunov–Schmidt reduction. We estimate the right-hand
sides of the high-frequency equations (5.29) and (5.30).

Proposition 5.2. Let s > d/2. For some positive constants C1 and C2, we have∥∥ 3ε2
〈
pj(·; �) , w2(·)T

[
F 2(ε·)Ψε(·)

]
(·; �)

〉 ∥∥
X s ≤ C1 ε

2 ‖Ψ̃ε‖X s ,∥∥∥ R̃ε
j,high

∥∥∥
X s

≤ C2

(
O(ε∞) + ε3‖Ψ̃ε‖X s + ε5‖Ψ̃ε‖2X s + ε8 ‖Ψ̃ε‖3X s

)
.
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Proposition 5.3. The system for Ψ̃ε
high can be solved in terms of Ψ̃ε

1,low =

χ(|k| ≤ εr)Ψ̃ε
1,low, and we have the following estimate:∥∥∥Ψ̃ε
high

[
Ψ̃ε

1,low

]∥∥∥
X s

≤ C
(
O(ε∞) + ε3−2r‖χ(|k| ≤ εr)Ψ̃ε

1,low‖X s + ε5−2r‖χ(|k| ≤ εr)Ψ̃ε
1,low‖2X s

+ε8−2r‖χ(|k| ≤ εr)Ψ̃ε
1,low‖3X s

)
.(5.42)

Proof. Consider the system for Ψ̃ε
high (5.29–5.30). The result follows from direct

estimation using ∣∣ Ej(k)− E∗ + ε2
∣∣ ≥ c > 0, j ≥ 2,∣∣ E1(k)− E∗ + ε2
∣∣ ≥ ε2r, εr ≤ |k| ≤ 1/2,(5.43)

and applying the implicit function theorem.
Using Proposition 5.3 and the rescaled low-frequency equation (5.41) yields the

following.
Proposition 5.4. Equation for φ̂(κ) follows.(
1

2
E′′1 (0)κ

2 + 1

)
χ
(
|κ| ≤ εr−1

)
Φ̂(κ)− 3γeff

[
F 2χ

(
|∇y| ≤ εr−1

)
Φ
]
(̂κ) = Ĥε,

where Ĥε = χ
(
|κ| ≤ εr−1

)
Ĥε and satisfies the bound

‖Ĥε‖L2,s ≤ ‖Ĝsym‖L2,s +O
(
‖∂3E1‖∞ε3r‖χ

(
|κ| ≤ εr−1

)
Φ̂‖L2,s

)
+ εσ

(
‖χ

(
|κ| ≤ εr−1

)
Φ̂‖L2,s + ‖χ

(
|κ| ≤ εr−1

)
Φ̂‖3L2,s

)
,(5.44)

where σ > 0 and Gsym ∈ Hs
sym.

Equivalently, by Fourier transforming one gets(
−∂yA∂y − 3γeffF

2 + 1
)
χ
(
|∇y| ≤ εr−1

)
Φ = χ

(
|∇y| ≤ εr−1

)
Hε,(5.45)

where A = 1
2E
′′
1 (0) and

‖Hε‖Hs ≤ ‖Gsym‖Hs +O
(
‖∂3E1‖∞ε3r‖χ

(
|∇y| ≤ εr−1

)
Φ‖Hs

)
+ εσ

(
‖χ

(
|∇y | ≤ εr−1

)
Φ‖Hs + ‖χ

(
|∇y| ≤ εr−1

)
Φ‖3Hs

)
.

We now complete the proof of Theorem 3.1. Denote by LA
+ the operator

LA
+ ≡ − ∂y A ∂y − 3γeff F

2(y) + 1(5.46)

and

χε = χ
(
|∇y| ≤ εr−1

)
, χε = 1− χε = χ

(
|∇y| ≥ εr−1

)
.(5.47)

We recall (see (5.25))

(5.48) 0 < r < 1.
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Equation (5.45) for Φ can be written as

(5.49) χε L
A
+ χε Φ = χεH

ε[Φ].

Since F is chosen to be centered at local extremum of the symmetric potential, V (x),
we have that the mapping

(5.50) Φ �→ χε H
ε[Φ]

maps Hs
even to itself.

We claim that for some ε0, if ε ≤ ε0, then the operator χε L
A
+ χε : Hs+2

sym → Hs
sym

has an inverse with norm bound which depends only on ε0. Thus, for 0 ≤ ε < ε1, we
can reformulate (5.49) as

(5.51) Φ =
(
χε L

A
+ χε

)−1
χε H

ε[Φ]

and show by fixed-point iteration that for some 0 < ε1 ≤ ε0 sufficiently small, equation
(5.49) has a unique Hs+2 solution, which is bounded uniformly for ε ≤ ε1. This then
implies Theorem 3.1.

Therefore, the proof boils down to establishing the invertibility of χε L
A
+ χε :

Hs+2
sym → Hs

sym. We first prove that LA
+ : Hs+2

sym → Hs
sym has a bounded inverse.

Now the operator LA
+, acting in L2(R1), has a one-dimensional kernel, spanned

by the function ∂yF . To see this, differentiate the equation for F (y)

(5.52) − ∂y A ∂yF + F − γeff F
3 = 0

and obtain LA
+F
′ = 0. Moreover, Ker(LA

+) = span{F ′}, since the eigenvalues of
a Sturm–Liouville operator are simple. Since F ′ is odd, LA

+ is an invertible and
bounded map from Hs+2

even(R
1) to Hs

even(R
1).

Finally, we turn to the invertibility of χε L
A
+ χε : Hs+2

sym → Hs
sym for ε sufficiently

small. We begin by expressing χε L
A
+ χε as a perturbation of LA

+:

χεL
A
+χε = LA

+ +Qε

Qε = −(χεL
A
+ + LA

+χε) + χεL
A
+χε.

Therefore, it suffices to prove that

(5.53) LA
+ +Qε = LA

+

(
I + (LA

+)
−1Qε

)
has a bounded inverse defined on Hs

sym. A bounded inverse

(5.54)
(
LA
+ +Qε

)−1
=

(
I + (LA

+)
−1Qε

)−1 (
LA
+

)−1
exists provided the norm of (LA

+)
−1 Qε can be made smaller than one. This can be

achieved by choosing ε sufficiently small as we show. First,

(5.55) (LA
+)
−1Qε = −(LA

+)
−1χεL

A
+χε − χε.

Concerning the second term, the mapping f �→ χεf maps Hs to Hs. If s > 0,
the operator norm tends to zero as ε → 0 by explicit calculation using the Fourier
transform.
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Finally, consider the mapping f �→ (LA
+)
−1 χε L

A
+f . We prove that this mapping

is bounded from Hk to Hk−δ for any δ > 0. We see this as follows. Denote by
〈y〉 = (1 + |y|2) 1

2 and define the operator 〈D〉a via

(5.56) 〈D〉a f =

∫
eik·x 〈k〉a f̂(k) dk.

Now, for any a > 0, we write

(LA
+)
−1 χε L

A
+ = (LA

+)
−1 〈D〉a · 〈D〉−a χε · LA

+

and estimate the norm as follows:

‖(LA
+)
−1 χε L

A
+‖Hs−a←Hs

≤ ‖(LA
+)
−1 〈D〉a‖Hs−a←Hs−2 ‖〈D〉−a χε‖Hs−2←Hs−2 · ‖LA

+‖Hs−2←Hs .

Note that the first and third factors are bounded independently of ε. We claim that
‖〈D〉−a χε‖Hs−2←Hs−2 → 0 as ε→ 0. To see this, calculate as follows:

‖〈D〉−a χε f‖2Hτ =

∫
〈κ〉−2a1{|κ|≤εr−1} 〈κ〉τ |f̂(κ)|2 dκ

≤ ε2a(1−r) ‖f‖2Hτ .

Thus for any a > 0, we have ‖〈D〉−a χε‖Hτ←Hτ → 0. This completes the proof of
Theorem 3.1.

Remark 5.2 (general spatial dimensions d ≥ 1). The proof given readily extends
to general dimension d ≥ 1. One works in spaces Hs(Rd), s > d/2. X s is constructed
taking into account the behavior of the dispersion functions, En(k), in dimension d.
As before, we choose F (y) = F (ε(x− x0)), with x0 a point of symmetry of V (x).
The kernel of LA

+ = − ∂yiA
ij∂yj + F − 3F 2(y) has dimension d and is generated by

translations; i.e., Ker(LA
+) = span{∂yjF (y), j = 1, . . . , d } [62, 39]. Since Ker(LA

+) is
orthogonal to H2

even(R
d), LA

+ is invertible mapping from Hs+2(Rn) to Hs.

6. Numerical computations in the semi-infinite gap. Our analytical re-
sults apply to solitons with frequencies in a spectral gap, which are also sufficiently
close to a spectral band edge. In this section we present the results of numerical
computations corroborating the rigorous asymptotic results near the spectral band
edge and illustrating their approximate validity further away from the band edge and
well into the spectral gap. The details of the numerical methods are discussed in
subsection 6.3.

The particular rigorous asymptotic results we explore numerically in detail are
the following:

1. the asymptotic structure of soliton’s lying near the edge of the spectral gap
(Theorem 3.1):

(6.1) u(x, μ) ≈ (E∗ − μ)
1
σ w(x) F (ε(x− x0)) ,

where x0 is a local extremum of V (x),
2. the asymptotic behavior of the soliton (nonlinear bound state ) power, P(μ),

along minima- and maxima-centered solitons as μ approaches E∗; see The-
orem 3.2 and Corollary 3.1—in particular, in the critical case σ = 2/d, we
have

(6.2) P(μ) ≈ ζ∗ Pcr.
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We focus on the one-dimensional NLS/GP equation (1.1) with critical nonlinear-
ity and periodic potential governing ψ(x, t) and nonlinear bound states: ψ(x, t) =
e−iμtu(x, μ).

For d = 1, σ = 2,

i∂tψ = −∂2xψ + V0 cos
2(2πx)ψ − |ψ|4ψ,(6.3)

μu = −∂2xu+ V0 cos
2(2πx)u − |u|4u,(6.4)

where V0 is the variation or contrast of the potential.
We have observed similar results to those presented below for the two-dimensional

critical NLS/GP with periodic potential: d = 2, σ = 1:

i∂tψt = −
(
∂2x + ∂2y

)
ψ +

V0
2

[
cos2(2πx) + cos2(2πy)

]
ψ − |ψ|2ψ,(6.5)

μu = −
(
∂2x + ∂2y

)
u+

V0
2

[
cos2(2πx) + cos2(2πy)

]
u− |u|2u.(6.6)

Theorems 3.1 and 3.2 and Corollary 3.1 apply to (6.4) with states centered at
a minimum: x0 = .25 or maximum: x0 = 0. These results also apply to (6.6) with
states centered at a minimum: x0 = (.25, .25), at a maximum: x0 = (0, 0), and at a
saddle point: x0 = (.25, 0) or x0 = (0, .25).

6.1. Soliton profiles: Asymptotic theory and computation. Figures 6.1
and 6.2 display nonlinear bound state profiles of the one-dimensional NLS/GP equa-
tion (1.1) for values of μ in the semi-infinite gap of the Schrödinger operator:
∂2x + V0 cos(Kx); i.e.,

(6.7) μ ∈ (−∞, E∗), μ < E∗ = E∗(V0,K),

both near and far from the band edge.
Plots A1, A2, and A3 in Figure 6.1 display the case of solitons centered at local

minima of the potential with, from left to right, frequency μ approaching E∗, at
distances E∗ − μ = 10, 1, and 0.01, respectively. Plots B1, B2, and B3 in Figure 6.1
correspond to the case of solitons centered at local maxima of the potential.

We first note that the figures show the expected trend toward increased localiza-
tion as μ < 0 is decreased. For μ large and negative the solitons centered at maximum
or minima approach a scaled V ≡ 0 soliton; see (1.18).

Our main analytical results apply to solitons whose frequencies lie near the band
edge, although numerical studies indicate their approximate validity some distance
away from the band edge.

Theorem 3.1 implies that nonlinear bound states are, to leading order in the
distance to the spectral band edge, a product of a linear Bloch state with band-edge
energy and a soliton in an effective homogeneous medium; see (3.3) and (1.18):

u(x, μ) ≈ w(x)F (y),

F (y) =

(
E∗ − μ

γeff

)1/4

sech
1
2

(
2
√
m∗(E∗ − μ)(x− x0)

)
.(6.8)

The centering of the soliton is x0, a point of symmetry of the potential, V (x).
The maximum of the Bloch modes w(x) (normalized to be positive and with unit

mass) occurs at the minimum of the potential. However, depending on the centering
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point x0, F (y) has a maximum (minimum) at the potential maximum (minimum).
Thus, bound states centered on a potential minimum are approximately a product
of functions that peak at the same values of x yielding a more peaked bound state;
compare the top and bottom panels of Figure 6.1 with E∗ − μ = 10.

Figure 6.1 (A2, B2) shows that for E∗ −μ = 1, the bound states have discernible
oscillations about a positive envelope, reflecting the solutions leading order behavior
(6.8). These oscillations can be understood as a result of the “underlying” Bloch
modes in (6.8). Here, as above, the asymptotic theory appears to capture the structure
of the bound states even when μ is not very close to the band edge.

We note as well: for the soliton centered at the potential’s local maximum, a
transition in the profile from single-humped to double-humped (having a dimple at
x = 0) as μ decreases through μ = μ#, the value at which P [u(·, μ)], along the branch
of solitons centered at a local maximum of V , achieves its maximum; see Figure 6.3.
A related observation is made in [1].

Comparing Figure 6.1 panels (A3) and (B3) shows that near the band edge (E∗−
μ = 0.01) there is almost no visible difference between the bound states centered at
potential minima and those centered at potential maxima. This is clear from (6.8),
since in this regime F (y) ∼ decays only on a length scale much larger than the period
of V (x) and thus, for both maxima- and minima-centered solitons, u(x) ∼ constant
×w(x).

Figure 6.2 shows a direct comparison between the asymptotic theory, i.e., the
leading order solution (3.3) near the band edge, and the “actual” bound state profiles,
computed by solving the bound state differential equation (6.4) with high accuracy.
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Fig. 6.1. Leading order asymptotic profiles obtained via Theorem 3.1 (solid lines decaying in
amplitude) for bound states that are centered on the potential minimum (top panel) and on the
potential maximum (bottom panel). Here (A1, B1) E∗ − μ = 10, (A2, B2) E∗ − μ = 1, and (A3,
B3) E∗ − μ = 0.01. For clarity only a small portion of the domain is shown and the x-axes are
zoomed in as E∗ − μ decreases. Note that the asymptotic profiles in (A3, B3) decay in amplitude
on a large scale (only visible outside the domain shown). Also shown in all six panels are the scaled
potential V (x)/V0 (solid lines that oscillate periodically in amplitude between −1 and 1), the Bloch
wave w(x) (dashed lines), and the rescaled homogeneous ground state F (y) = F [ε(x − x0)] ((6.8),
dotted lines). Geometric shapes correspond to those depicted in Figures 6.2 and 6.3.
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Fig. 6.2. Bound state profiles ((1.6), solid) computed using the renormalization method
compared with the leading order asymptotic theory ((3.3), dashes) for the same parameters as in
Figure 6.1.
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Fig. 6.3. Power μ plot for (6.4) with V0 = 10 and K = 2π for bound states centered on a
maximum (dashes) and minimum (solid) of the potential. (A1), Wide view of the semi-infinite gap
(semi-log μ-axis). (A2) and (A3), Zooming in near the band edge. The asymptotically computed
value at the band edge, Pedge = ζ∗ × Pcr ((3.15), solid line) and critical power Pcr for the homo-
geneous (translation invariant) equation (dots) are shown as well. Geometric shapes correspond to
the cases whose bound states are depicted in Figure 6.1.

6.2. Effective mass and the power curve μ �→ P[u(·, μ)]. Each plot in
Figure 6.3 shows two curves of bound state power, P [u(·, μ)], in the semi-infinite gap
as a function of μ for (6.4) with V0 = 10,K = 2π. The solid curve corresponds
to the variation of P [u(·, μ)] for the family of solitons centered at the potential’s
local minimum and the dashed curve for the family centered at the potential’s local
maximum.

We observe the following.
1. Panel (A1) of Figure 6.3 shows the variation of P over a wide range of μ in

the semi-infinite gap. As μ→ −∞, i.e., in the semi-classical limit, the power
approaches the homogeneous (V ≡ 0) power of the ground state, Pcr =√

3
2 π ≈ 2.72 .
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2. Panels (A2) and (A3) of Figure 6.3 show, as predicted by Corollary 3.1, that
as μ → E∗ the P [u(·, μ)] approaches the value ζ∗Pcr ≈ 2.2 strictly less than
Pcr ≈ 2.72. Here ζ∗ ≈ 2.2/2.72 ≈ 0.8 . This is true for solitons centered at
either potential minima or potential maxima; see Figure 6.3 (A3).

3. Although the asymptotic behavior of the P for maxima- and minima-centered
bound states is the same, across most of the gap bound states centered on
lattice minima (resp., maxima) have power below (resp., above) Pcr ≈ 2.72.

4. Panels (A1) and (A2) of Figure 6.3 show a transition in the slope of the
minima- and maxima-centered power curves at the same value μ ≡ μ#. As
discussed in section 2.1, the transition in slope of μ �→ P [μ] along the power
curve for minima-centered solitons signals a transition from the unstable (pos-
itive slope) to stable (negative slope) regime. Maxima-centered solitons, as
discussed, are unstable, and the transition in slope signals a change in the
number of unstable eigenvalues of the linearized problem [32, 27].

6.3. Numerical methods. The computation of the asymptotic bound states
and the “actual” bound states are carried out using Matlab and Octave.

Computation of the Bloch mode, inverse effective mass, and ζ∗. The
Bloch mode at the band edge, w, is computed using an eigenvalue solver within a single
lattice cell (see [53, appendix], on using Matlab’s eigenvalue solver). For convenience
we normalize the Bloch mode to have unit mass; i.e.,

∫
w2 = 1 . The inverse effective

mass tensor Aij is computed by employing Matlab’s linear system solver for L−1∗ . It is
then straightforward to compute the inverse effective mass (curvature) m−1∗ , coupling
constant γeff , and the band-edge power factor ζ∗ using (3.8) and (3.17).

Computation of the bound state at the band edge. The asymptotic bound
state is composed of the Bloch mode and the rescaled homogeneous solution. The
Bloch mode is obtained by periodically extending w from one lattice cell to the domain
over which the bound state is computed—typically several hundred lattice cells. The
rescaled homogeneous ground state, F , and its power, Pcr, are computed in one
dimension using the explicit solution, i.e., (1.18) with the rescaling in (6.8). Finally,
the asymptotic bound state is obtained by shifting F to be centered at point of
symmetry of the potential and taking its product with the Bloch mode.

Computation of the “actual” bound states. The bound states of (1.6) are
computed using renormalization method [3]. This method is based on fixed-point
iterations coupled to an algebraic condition whose role is to constraint the solution to
a suitable integral identity consistent with the bound state (otherwise, the iterative
solution would diverge). The convergence is monitored by the L∞ norm of successive
iterations and by relative change of the renormalization constant. For example, for a
one-dimensional computation with |Ω| = 0.01, the domain size is a few hundred lattice
cells. We use 216 grid points to resolve well the oscillations on the scale of the potential
period. The computation of the bound state is considered to have converged when the
difference between successive iterations satisfies ‖un+1(x) − un(x)‖∞ < 10−8. This
typically happens within fewer than 100 iterations (a few minutes).

The renormalization method needs to be seeded with an initial guess. Deep inside
the gap the renormalization method converges when seeded by a Gaussian (or sech)
profile. On the other hand, near the band edge the method diverges when seeded by
a Gaussian or sech, which are apparently too far from the basin of attraction of the
bound state. We overcome this difficulty by seeding the renormalization method with
the asymptotic solution.
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7. Summary and discussion. In this paper we have studied the bifurcation
of small amplitude (Hs(Rd), s > d/2) nonlinear bound states (solitary waves or “soli-
tons”) of the NLS/GP equation with a periodic and symmetric potential. Our results
provide insight into questions (Q1–Q3) of the introduction. We now briefly summarize
our results, with reference to (Q1–Q3).

Concerning (Q1):
1. A family of bifurcating solitons (spatially localized standing wave states) can

be constructed centered at any point of symmetry, x0, of V (x).
2. Solitons with frequencies near a spectral band edge have a two-scale structure:
uε(x) ≈ ε

1
σ F (ε(x− x0)) w(x), where ε2 = |E∗ − μ| is the distance of the

frequency to the spectral band edge.
Concerning (Q2):
1. We prove, in general, that the limit of the soliton power, along any family

of solitons centered at a point of symmetry of V (x), is strictly less than the
power of the Townes soliton:

(7.1) lim
μ→E∗

P [u(·, μ)] = ζ∗ Pcr < Pcr.

Note: This limit is independent of the centering of the soliton, x0.
2. We prove a high-order expansion, which is necessary to capture information

about the slope of the curve, μ �→ P [u(·, μ)], near the band edge. Encoded
in the slope of this curve is information on nonlinear dynamic stability. We
conjecture that for critical nonlinearities (σ = 2/d), the curve has positive
slope near the band edge; therefore, solitons with frequencies near the band
edge are unstable. We have verified this analytically for low-contrast poten-
tials and numerically for a range of potentials without a smallness constraint
on the contrast.

3. Our analytical results concerning the multiple-scale structure of solitons of
NLS/GP and the curve μ �→ P [u(·, μ)] are corroborated through careful nu-
merical experiments.

Concerning (Q3), see Remark 3.3. In particular, see Figure 1.1 and the soliton
excitation threshold conjecture.

We conclude this section with a discussion the emergent parameter, ζ∗, appearing
in (7.1). From (3.7) and (3.17) we have

(7.2) ζ∗ =

(
1

m∗

) 1
2

((
−
∫
B w

2
)σ+1

−
∫
B w

2σ+2

) 1
σ

=

(
1

m∗

) 1
2

(
1

γeff

) 1
σ 1

vol(B) .

Here m∗ denotes the determinant of the effective mass tensor; w(x), the B-periodic
Bloch (band edge) state; γeff , the effective nonlinear coupling; and vol(B), the volume
of the fundamental periodic cell.

A matter of practical/experimental interest is that the parameters γeff and m∗
are tunable via appropriate design of periodic structure, V (x), therefore making it

possible to manipulate the power curve, P vs. μ. Figure 7.1 displays m
−1/2
∗ and ζ∗ as

functions of the potential contrast V0 in one and two dimensions. All three quantities
are bounded between 0 and 1 and decrease monotonically with V0. In particular, this
means that Pedge/Pcr decreases with V0. This decrease is “faster” in one dimension
than in two dimensions, at least for V0 < 40.
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Fig. 7.1. Power factor ζ∗ (solid) and m
− 1

2∗ (dashes) as functions of the potential contrast V0
in (A) one dimension with σ = 2 ((6.4) with K = 2π) and (B) two dimensions with σ = 1 ((6.6)
with Kx = Ky = 2π).

Appendices.

A. Effective mass tensor. In this section we prove (3.6), which relatesD2E1(0),
the Hessian matrix of the band dispersion function E1, to the matrix Aij arising in
the multiple-scale analysis.

Denote by eik·xφ(x;k) the Bloch state associated with E1(k) : k ∈ B∗ → R; see
subsection 2.2. Here, φ(x;k) is periodic. Thus,(

−Δ− 2ik · ∇+ |k|2 + V
)
φ = E1(k)φ,(A.1)

φ(x+ qj ;k) = φ(x;k), j = 1, . . . , d.

At the band gap edge, one has

(A.2) E1(0) = E∗ , φ(x; 0) ≡ w(x) ,

where w(x) is the ground state of −Δ+ V subject to periodic boundary conditions
on B.

We denote f,kj ≡ ∂kjf and f,r ≡ ∂xrf . Differentiation of (A.1) with respect to
ki gives (

−Δ− 2iki∂xi + |k|2 + V
)
φki(A.3)

= E1,kiφ+ E1φ,ki + 2iφ,xi − 2kiφ .

At k = 0, (A.2) and (A.3) yield

(A.4) L∗φ,ki(x; 0) = E∗,kiw + 2iw,i .

Removing secular terms from (A.6) leads to

(A.5) E∗,ki = 0.

It follows from (A.4) and (A.5) that

(A.6) φ,ki(x; 0) = 2iL−1∗ w,i .

Differentiating (A.3) with respect to kj , setting k = 0 and using (A.2), we arrive at

L∗φ,kikj (x; 0) =
(
E∗,kikj − 2δij

)
w +

[
E∗,kiφ,kj (x; 0) + E∗,kjφ,ki(x; 0)

]
+2i

[
φ,xikj (x; 0) + φ,xjki(x; 0)

]
.
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Using (A.5) and (A.6) gives

L∗φ,kikj (x; 0) =
(
E∗,kikj − 2δij

)
w − 4

(
∂xiL

−1
∗ ∂xjw + ∂xjL

−1
∗ ∂xiw

)
.

Removing the secular growth requires that the inner product of the right-hand side
with w(x) vanish, i.e., (

E∗,kikj − 2δij
)
〈w,w〉 − 4

〈
∂xiL

−1
∗ ∂xjw,w

〉
−4

〈
∂xjL

−1
∗ ∂xiw,w

〉
= 0 .

Using the fact that L−1∗ is self-adjoint, the last two terms are equal to each other.
Therefore, using integration by parts leads to

1

2

∂2E1

∂ki∂kj

∣∣∣∣
k=0

= δij − 4

〈
L−1∗ ∂xjw, ∂xiw

〉
〈w,w〉 ≡ Aij .

This proves the relation (3.6). �
B. Bound on determinant of effective mass tensor.
Proposition B.1. m−1∗ ≡ det

(
2−1 E1,kikj (0)

)
≤ 1, with m∗ = 1 only if

V (x) is constant.
Proof. For the proof we use m∗ > 0; see [34]. Recall that

(B.1)
1

2
E∗,kikj = δij −Bij , Bij ≡

4
〈
L−1∗ w,j , w,i

〉
〈w,w〉 .

We claim that Bij is positive definite. To see this, first recall that L∗ ≥ 0 with one-
dimensional L2(Td) kernel spanned by w. Clearly, w ⊥M ≡ span {w,i : i = 1, . . . , d},
and therefore, B is well defined.

Let v = (v1, . . . , vd) ∈ R
d be arbitrary. Then

(B.2) v · Bv = 〈 L−1∗ v · ∇w,v · ∇w 〉 ≥ λ−12 ‖ v · ∇w ‖2 ≥ C ‖v‖2,

where λ2 > 0 denotes the second eigenvalue of L∗ acting on L2(Td).
The matrix E∗,kikj is positive definite [34]. Therefore, E∗,kikj can be diagonalized

by a unitary transformation pij such that

priE∗,kikjplj = 2 (1− βr) δrl ,

where λi (i = 1 . . . d) are the eigenvalues of Bij . It follows that

(B.3) m−1∗ = det

(
E∗,kikj

2

)
= Πd

i=1 (1− βi) ,

where βi > 0, i = 1, . . . , d. In order to bound m−1∗ from above, we will show βi ∈
(0, 1), i = 1, . . . , d, and therefore m−1∗ ≤ 1.

We argue by continuity. Consider the self-adjoint operator Lθ∗ = −Δ + V (x; θ)
with the one-parameter family of potentials V (x; θ) ≡ θV (x), where θ ∈ [0, 1], as
well as the associated matrix Bij(θ). Since Lθ

∗ is self-adjoint and w(x; θ), its ground
state, is simple, there are d continuous functions θ → βi(θ), i = 1, . . . , d, defining
the eigenvalues of Bij(θ). For θ = 0 (homogeneous medium), E∗ = 0, E1(k) = k2,
and E∗,kikj = 2δij . Therefore, Bij = 0 and βj(0) = 0, j = 1, . . . , d. In this case (and
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only in this case!), m−1∗ = det I = 1. Next, consider θ = 1, i.e., the original problem.
We claim that βi(1) < 1, i = 1, . . . , d. Otherwise, at some value of θ = θ∗ > 0
an eigenvalue of B(θ∗) would attain the value 1. This would contradict the positive
definiteness of Eθ

∗,kikj
.

C. Effective mass for d = 1 and the Floquet–Hill discriminant. In
one space dimension the endpoints of the spectral bands are obtained by studying
the periodic and antiperiodic eigenvalue problems [23]. Very briefly, for each E one
constructs a 2 × 2 fundamental solution matrix, M(x;E), and considers the values
of E for which M(q;E) has an eigenvalue +1 or −1, corresponding to periodic or
antiperiodic eigenvalues. This is equivalent to Δ(E) = ±2, where

(C.1) Δ(E) ≡ trace (M(q;E)) ≡ 2 cos[k(E)q]

is the Floquet discriminant.
The band edge, E = E∗, corresponds to k = 0, at which we have Δ(E∗) = 2.

Expanding (C.1) in Taylor series around k = 0 and E = E∗ gives

(C.2) Δ(E∗) + Δ′(E∗)(E − E∗) +O[(E − E∗)2] = 2

(
1− k2q2

2

)
+O(k4).

Using Δ(E∗) = 2 and solving for the second term on the left-hand side gives to leading
order

(C.3) E − E∗ = − k2q2

Δ′(E∗)
+ O(k4)

which yields the relation

(C.4) m−1∗ = E
′′
1 (0) = − 2q2

Δ′(E∗)
.

Since Δ′(E∗) < 0, m∗ > 0. More generally, we have that E′′j (0) > 0 at the left edge
of each band and E′′j (0) < 0 at the right edge of each band.

D. Power and slope for small potentials. In this section we use a regular
perturbation expansion to derive the power and slope constants near the band edge,
i.e., ζ∗ and ζ1∗, assuming a small potential. Such an expansion can be made rigorous
by an argument based on the implicit function theorem. The derivation is composed
of preliminary calculations in any dimension of the Bloch function, an inverse linear
operator, and the inverse effective mass tensor and coupling constant. To simplify
notation, subsequent calculations are carried out explicitly in the critical case (d =
1, σ = 2).

Remark D.1. In the derivation below δ is assumed to be a small constant
independently of ε. The calculations are done to order O(ε2δm) for suitable m. For
convenience, the ε2 is suppressed from O(·).

Let V (x) = δV1(x), where |δ| 
 1. Without loss of generality we assume that
〈V1〉 ≡

∫
B V1(x) dx = 0 . Let wδ ≡ w∗(x; δ) and E∗ = E∗(δ) be the ground state

eigenpair of

(D.1) Lδw∗(x; δ) = 0 , Lδ ≡ L0 + δV1 − E∗(δ) , L0 ≡ −Δ,

with B-periodic boundary conditions.
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We expand wδ(x) and E∗(δ) in a Taylor expansion in δ,

wδ ≡ w0 + δw1 + δ2w2 + · · · , E∗(δ) = δE1 + δ2E2 + · · · ,

where wk ≡ wk(x), and we set E0 = 0 since we are interested in bifurcation from the
lowest band edge. The first three terms in the hierarchy are

O(δ0) :L0w0 = 0 ,(D.2)

O(δ1) :L0w1 = (E1 − V1)w0 ,(D.3)

O(δ2) :L0w2 = E2w0 + (E1 − V1)w1 .(D.4)

Corresponding to the lowest band edge, (D.2) admits a constant solution w0(x) =
const that spans the kernel of L0. Without loss of generality we may choose this con-
stant such that 〈w0(x)〉=1. In order to remove secular growth the nonhomogeneous
terms in (D.3) and (D.4) must be orthogonal to w0(x). Therefore, their cell-average
must vanish. Removing secular terms at O(δ1) gives

E1 = 〈V1〉 = 0 , w1 = −L−10 V1 .

Substituting the above results into (D.4) and removing secular growth yields

E2 = −
〈
V1L

−1
0 V1

〉
, w2 = {L−10 (V1L

−1
0 V1)} ,

where the brace is a projection symbol defined as

{ f } ≡ f − 〈 f 〉 .

Summarizing the above results gives

Lδ = L0 + δV1 +O(δ2) ,(D.5)

wδ = 1− δL−10 V1 + δ2{L−10 (V1L
−1
0 V1}+ O(δ3) ,(D.6)

E∗(δ) = −δ2
〈
V1L

−1
0 V1

〉
+ O(δ4) .(D.7)

We now approximate the inverse operator L−1δ . It is expedient to make the
following definitions.

Definition D.1. We denote the domains of L−10 and L−1δ as

K0 ≡ {f(x)|x ∈ B, f is periodic in B, f ∈ Ker⊥L0} ,
Kδ ≡ {f(x)|x ∈ B, f is periodic in B, f ∈ Ker⊥Lδ} ,

respectively. We denote the projection operator into Kδ as

(D.8) PδFδ ≡ Fδ −
〈 Fδ, wδ〉
〈wδ, wδ〉

wδ .

Using the above definitions we obtain the following.
Lemma D.2. Let Fδ = F0 + δF1 +O(δ2) . Then

L−1δ PδFδ = L−10 {F0}+ δ
[
L−10 {F1}+ 〈F0〉L−20 V1 − L−10 {V1L−10 {F0}}

]
+O(δ2) .

Proof. The proof of Lemma D.2 follows directly from expanding the pro-
jection operator (D.8) in powers of δ, using (D.6), L−10 : K0 → K0, and〈
L−10 f

〉
= 0.
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In the derivations of ζ∗ and ζ∗1, in each and every case that L−1δ is applied, one
has F0 = 0 and 〈F1〉 = 0. Hence, we shall use Corollary D.1.

Corollary D.1. It follows from Lemma D.2 that

(D.9) F0 = 0, 〈F1〉 = 0 =⇒ L−1δ Fδ = δL−10 F1 +O(δ2) .

In addition, the following approximations of the expressions related to the in-
verse effective mass tensor and effective nonlinear coupling constant are used in the
approximation of ζ1∗:

X ij
1 (x) =

(
δij + 4∂xjL

−1
∗ ∂xi − Aij

)
w(x)(D.10)

(3.6)
= 4

(
∂xjL

−1
∗ ∂xi +

〈
∂xjw,L

−1
∗ ∂xiw

〉
〈w,w〉

)
w(x)

(D.8)
= Pδ

(
4∂xi L

−1
δ ∂xjwδ

) (D.6),(D.9)
= − 4δ∂xi∂xjL

−2
0 V1 +O(δ2) ,

(D.11) γeff
(3.7)
=

∫
B w

2σ+2 dx∫
B w

2 dx

(D.6)
= 1 +O(δ2) ,

and therefore,

(D.12) X2(x) = w2σ+1 − γeff w
(D.6),(D.11)

= 2σδL−10 V1 +O(δ2) .

We proceed to calculate the power and its slope. For simplicity we consider the
critical case (d = 1, σ = 2).

Calculation of the power constant ζ∗. Expanding, using (D.6) with (d = 1,
σ = 2), gives

w2
δ = 1− 2δL−10 V1 + 2δ2{L−10 (V1L

−1
0 V1)}+ δ2(L−10 V1)

2 + O(δ3) ,

w6
δ = 1− 6δL−10 V1 + 6δ2{L−10 (V1L

−1
0 V1)}+ 15δ2(L−10 V1)

2 + O(δ3) .

When integrating these functions, the contributions of the second and third terms
vanish, as they are in K0. Therefore, the first factor in ζ∗ can be approximated by

(D.13)

√√√√(
−
∫
B w

2
)3

−
∫
B w

6
∼

√
−
∫
B
(
1 + 3δ2L−10 V1

)
−
∫
B
(
1 + 15δ2L−10 V1

) ∼ 1− 6δ2−
∫
B

(
L−10 V1

)2
.

Similarly, the inverse effective mass (Gaussian curvature) is

m−1∗ = 1− 4

〈
∂xw,L

−1
∗ ∂xw

〉
〈w,w〉

(D.6)
= 1− 4−

∫
B
(−δ∂xL−10 V1)(−δ∂xL−20 V1) +O(δ3)

∼ 1− 4δ2−
∫
B

(
∂xL

−3/2
0 V1

)2

,

where in the last step we used the self-adjointness of L−10 . The operator in the above

integral can be simplified as ∂xL
−3/2
0 ≡ L−10 . Thus, the second factor in ζ∗ can be

approximated with

1
√
m∗

∼ 1− 2δ2−
∫
B

(
L−10 V1

)2
.

Combining with (D.13) yields (3.19).
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Calculation of the slope constant ζ1∗. In one dimension (3.18) reduces to

(D.14) ζ1∗ =
∫
R

−
∫
B
|U1(x, y)|2 dxdy +−

∫
B
w2 dx

∫
R

S(y) ∂ΩF (y; Ω)|Ω=−1 dy .

As we shall see, U1 = O(δ) and S(y) = O(δ2). Therefore, both integral terms are
O(δ2). It follows from (3.5), (D.10), and (D.11) that to leading order in δ, F (y) is
the Townes mode; i.e.,

(D.15) F (y; Ω, δ) = R(y; Ω) +O(δ2) .

Furthermore, we shall use (1.18) with σ = 2 to explicitly evaluate the y-integrals.
The first integral term (D.14) depends on

U1(x, y)
(3.12)
= 2L−1δ ∂xw∂yF

(D.6)
= −2L−1δ (δ∂xL

−1
0 V1)Ry +O(δ2)

(D.9)
= −2δ∂xL

−2
0 V1Ry +O(δ2) .(D.16)

Therefore,∫
R

−
∫
B
|U1(x, y)|2 dxdy = 4δ2−

∫
B
(∂xL

−2
0 V1)

2 dx

∫
R

R2
y dy +O(δ3)

(1.18)
=

√
3 πδ2−

∫
B
(∂xL

−2
0 V1)

2 dx+O(δ3) .

The operator in the above integral can be simplified as ∂xL
−2
0 = (−∂xxx)−1. Hence,

(D.17)

∫
R

−
∫
B
|U1(x, y)|2 dxdy =

√
3 πδ2−

∫
B

[
(−∂xxx)−1V1

]2
dx+O(δ3) .

For the second integral term in (D.14), we need to calculate S(y). We use

(D.18) U0(x, y)
(4.6)
= w(x)F (y) = R(y) +O(δ2).

The first two terms in (3.14) are negligible. This follows from Lemma D.3.
Lemma D.3. 〈U2p, w〉 = 0 .
Proof. Equation (4.16) shows that the x-dependence of U2p is of the form

L−1∗ Xk(x) for suitable Xk(x), k = 1, 2. As L−1δ is into the orthogonal space to w(x),
the lemma follows.

That the first term in (3.14) is zero follows immediately from Lemma D.3. The
second term in (3.14) has an additional U2σ

0 . However, in light of (D.18) the x-
dependence of U2σ

0 is constant to leading order. Therefore, the second term in S(y)
is O(δ3). It remains to calculate the two last terms in S(y). Note that the coefficient
preceding the square brackets in (3.14) cancels with the w-integral in (D.14). This
leaves (assuming d = 1, σ = 2)

(D.19) S(y) = 10
〈
w,U3

0U
2
1

〉
− 2

〈
∂xw, ∂yŨ3

〉
+ O(δ2) ,

where

Ũ3
(4.19)
= 2L−10

[
∂xL

−1
0 X1∂yyyF + ∂xL

−1
0 X2∂yF

5

+L−10 ∂xw(∂yy − 1)∂yF + 2w4L−10 ∂xw∂yF
5

]
,
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and in one dimension X1 ≡ X ij
1 . We denote by Sk the various terms in S(y) when Ũ3

is explicitly inserted into it, and by Ik their corresponding contributions to (D.14).
Using (D.6), (D.16), and (D.18), the first term in (D.19) is

S1 ≡ 10
〈
w,U3

0U
2
1

〉
= 10

〈
U2
1

〉
+O(δ3) .

Therefore, its contribution to the slope is 10 times the first term in (D.14); i.e.,

(D.20) I1
(D.17)
= 10

√
3 πδ2−

∫
B

[
(−∂xxx)−1V1

]2
dx+O(δ3) .

The first term arising from substituting Ũ3 into S(y) is

S2 ≡ −2
〈
∂xw, ∂y2L

−1
0 ∂xL

−1
0 X1∂yyyyF

〉
(D.6),(D.10)

= 2
〈
−δL−10 ∂xV1, 2L

−1
0 ∂xL

−1
0

(
−4δ∂xxL

−2
0 V1

)〉
∂yyyyF +O(δ3)

(D.15)
= −16δ2−

∫
B

(
∂xxL

−5/2
0 V1

)2

dx ∂yyyyR+O(δ3) ,

where in the last step we used the skew self-adjointness of ∂x and the self-adjointness
and positivity of L−10 . Simplifying the operator in the above integral, we obtain7

S2 = −16δ2−
∫
B

[
(−∂xxx)−1V1

]2
dx ∂yyyyR+O(δ3) .

Substituting S2 into (D.14) gives

I2 = −16δ2−
∫
B

[
(−∂xxx)−1V1

]2
dx

∫
R

∂yyyyR ∂ΩR(y; Ω)|Ω=−1 dy +O(δ3) .

The following explicit integral can be obtained from (1.18):∫
R

∂yyyyR ∂ΩR(y; Ω)|Ω=−1 dy = −11
√
3 π

16
.

Using this gives

(D.21) I2 = 11
√
3 πδ2−

∫
B

[
(−∂xxx)−1V1

]2
dx + O(δ3) .

Similar calculations can be carried out for I3, I4, and I5 using the explicit integral∫
R

∂yyR
5 ∂ΩR(y; Ω)|Ω=−1 dy =

13
√
3 π

16
.

Thus, to O(δ3), we get

I3 = 13
√
3 πδ2−

∫
B

[
(−∂xxx)−1V1

]2
dx

and I5 = −I4 = 1
4I3. Summing the contributions from I1 . . . I5 gives

ζ1∗ = 34
√
3 πδ2−

∫
B

[
(−∂xxx)−1V1

]2
dx + O(δ3) > 0 .

This concludes the proof of Corollary 3.1.

7Note that the Fourier representations of ∂xL
−2
0 and ∂xxL

−5/2
0 are the same only in d = 1.
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