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We introduce the one-way radiative transfer equation (RTE) for modeling the transmis-
sion of a light beam incident normally on a slab composed of a uniform forward-peaked
scattering medium. Unlike the RTE, which is formulated as a boundary value problem, the
one-way RTE is formulated as an initial value problem. Consequently, the one-way RTE is
much easier to solve. We discuss the relation of the one-way RTE to the Fokker–Planck,
small-angle, and Fermi pencil beam approximations. Then, we validate the one-way RTE
through systematic comparisons with RTE simulations for both the Henyey–Greenstein
and screened Rutherford scattering phase functions over a broad range of albedo, aniso-
tropy factor, optical thickness, and refractive index values. We find that the one-way RTE
gives very good approximations for a broad range of optical property values for thin to
moderately thick media that have moderately to sharply forward-peaked scattering.
Specifically, we show that the error made by the one-way RTE decreases monotonically as
the anisotropic factor increases and as the albedo increases. On the other hand, the error
increases monotonically as the optical thickness increases and the refractive index mis-
match at the boundary increases.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Radiative transfer theory governs the propagation of
light in a multiple scattering (turbid) medium [1,2]. One
particularly important problem in radiative transfer is
determining the transmission of a collimated beam inci-
dent normally on a plane-parallel slab. This problem has
important applications in atmospheric and ocean optics
[3,4], and biomedical optics [5], among others. In all of
these applications, one seeks to determine optical prop-
erties of the medium from spatially-resolved transmission
measurements. This problem remains a challenge because
the governing boundary value problem for the radiative
transfer equation (RTE) is difficult to solve. For this reason,
).
developing accurate approximations that are easier to
solve is useful.

A prominent feature that clouds, oceans and biological
tissues often exhibit is forward-peaked scattering, i.e.,
most of the power scattered by the medium flows in the
same direction as it is incident. Forward-peaked scattering
is challenging computationally because it requires exten-
sive resources to adequately resolve the sharp peak in the
scattering phase function. Therefore, a number of useful
approximations have been derived to deal with this sce-
nario. In particular, the asymptotic limit of sharply
forward-peaked scattering has been studied extensively
leading to the Fokker–Planck approximation [6,7] and its
generalizations [8–11]. However, these approximations all
lead to the same kind of boundary value problem as for the
RTE. In this respect, the Fokker–Planck type approxima-
tions are also relatively complicated to solve. Moreover,
these approximations are derived for the extreme case of a
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very sharply peaked forward scattering. Therefore, rather
than being broadly applicable, the accuracy of these
models tends to be case-dependent.

An alternative approach is to approximate the RTE with
an initial value problem, which is much easier to solve. In
particular, the small-angle approximation [2] has been
studied extensively with recent applications to polarized
media [12] and atmospheric optics [13]. In the small-angle
approximation, the transport operator in the RTE is sim-
plified with a purely advective operator in the forward
direction. A further reduction of the small-angle approx-
imation leads to the Fermi pencil-beam approximation
[14–17], which can be solved analytically. However, as the
beam penetrates deeply into a turbid medium, it spreads
in both space and angle beyond the region of validity of
these approximations. Consequently, the small-angle and
Fermi pencil-beam approximations become inaccurate in
optically thick media.

Here, we introduce the one-way RTE, which is derived
by restricting the limits of integration in the scattering
operator to the hemisphere of directions aligned with the
incident direction of the collimated beam. This truncation
is tantamount to neglecting multiple backscattering in the
problem. This approach has been used extensively in wave
equation migration problems in geophysics [18,19], for
example, from which we inherit the “one-way” terminol-
ogy. The result from this approximation is an initial-value
problem that is easier to solve, allows for forward peaked
scattering that need not be sharp, and retains dependence
between the angular and spatial nature of the radiation in
the forward hemisphere. In this way, the one-way RTE
addresses the limitations of the aforementioned approx-
imations. In fact, this approximation has been recently
applied to study diffuse optical tomography in biological
tissues [20] and shown to be useful. Additionally, the one-
way RTE has been derived rigorously using the theory of
waves in random media [21].

The outline of the paper is as follows. Section 2 describes
the boundary value problem for the (full) RTE that governs a
beam incident normally on a slab, which is composed of a
uniform scattering and absorbing medium. We consider here
the general case in which the refractive index within the slab
is different from that outside of the slab. In Section 3 we
introduce the one-way RTE and the associated initial value
problem for beam transmission through the slab. Section 4
contains numerical results that compare simulations using
the full RTE with solutions of one-way RTE over a broad
range of optical parameters. Section 5 contains the conclu-
sions and discussion of the results.
2. The radiative transfer equation

Let I denote the intensity that depends on direction, ŝ,
which is a vector on the unit sphere, S2, and position r. In
a multiple scattering medium, I is governed by the RTE,

ŝ �∇Iþ I¼ϖ0

Z
S2
pðŝ � ŝ 0ÞIðŝ 0; rÞ dŝ 0; ð2:1Þ

where ϖ0 is the single scattering albedo. In (2.1) we have
used the standard non-dimensional spatial variables,
which are rescaled according to r¼ ðμaþμsÞ~r, with μa and
μs denoting the absorption coefficient. The scattering
phase function, pðŝ � ŝ 0Þ, gives the fraction of light scattered
in direction ŝ due to light incident in direction ŝ 0. Here, we
consider two different scattering phase functions: the
Henyey–Greenstein and screened Rutherford scattering
phase functions. The Henyey–Greenstein scattering phase
function is defined as

p ŝ � ŝ 0� �¼ 1
4π

1�g2

ð1þg2�2gŝ � ŝ 0Þ3=2
; ð2:2Þ

with g denoting the anisotropy factor. For different media,
the value of g can range between 0 and 1. In particular,
g¼0 corresponds to an isotropic scattering medium,
whereas the limit g-1 corresponds to scattering only in
the forward direction. This scattering phase function is
particularly useful since it allows one to continuously vary
a single parameter, g, which controls the sharpness of
forward-peaked scattering. The screened Rutherford phase
function is defined as

p ŝ � ŝ 0� �¼ 2ηðηþ1Þ
ð1þ2η� ŝ � ŝ 0Þ2

; ð2:3Þ

where η40 is a typically small constant called the
screening parameter. As η-0, (2.3) becomes more
forward-peaked. Both of these scattering phase functions
are normalized according toZ
S2
pðŝ � ŝ 0Þdŝ 0 ¼ 1: ð2:4Þ

We are interested in studying the transmission of a
Gaussian beam incident normally on the three-dimensional
slab, fðx; y; zÞj�1ox; yo1;0ozoz0g, composed of a
uniform absorbing and scattering medium. The refractive
index inside the slab can be different from medium on either
side of the slab. For that reason, we must take into account
partial reflections at the boundaries due to this refractive
indexmismatch. For this problemwe seek the solution of (2.1)
in 0ozoz0 subject to the boundary conditions that we
specify below.

The collimated beam is incident on the boundary, z¼0,
and the associated boundary condition is

Iðŝ; x; y;0Þ ¼ t1ðẑÞδðŝ� ẑÞbðx; yÞþr1ðŝ1-ŝÞIðŝ1; x; y;0Þ on

ŝ � ẑ40; ð2:5Þ

where δð�Þ is the Dirac delta function, and

b x; yð Þ ¼ 2P0

πR2 exp �2 x2þy2
� �

=R2
h i

: ð2:6Þ

The first term in boundary condition (2.5) corresponds to
the Gaussian beam defined in (2.6) incident normally on
and transmitted across the boundary z¼0. Here, t1ðẑÞ
denotes the Fresnel transmission coefficient for light inci-
dent on the boundary from outside of the slab in direction
ẑ. The total power of the beam is denoted by P0, and the
1=e2 radius of the beam is denoted by R. The second term
in boundary condition (2.5) corresponds to the reflection
of light incident on the z¼0 boundary fromwithin the slab
in direction ŝ1 with ŝ1 � ẑo0 and reflected in direction ŝ as
governed by Snell's law. Here, r1ðŝ1-ŝÞ denotes the
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Fresnel reflection coefficient for light incident on the
boundary from within the slab.

There is no incident radiation on the boundary, z¼ z0,
from outside of the slab. Thus, the boundary condition on
z¼ z0 is

Iðŝ; x; y; z0Þ ¼ r2ðŝ2-ŝÞIðŝ2; x; y; z0Þ on ŝ � ẑo0: ð2:7Þ
Here, r2ðŝ2-ŝÞ denotes the Fresnel reflection coefficient
for light incident on the z¼ z0 boundary from within the
slab in direction ŝ2 with ŝ2 � ẑ40 as governed by
Snell's law.

Upon solution of the boundary value problem consist-
ing of (2.1) subject to boundary conditions (2.5) and (2.7),
we obtain Iðŝ; x; y; zÞ. To study the transmission of this
beam, we compute the transmittance, defined as

Tðx; yÞ ¼
Z
ŝ�ẑ40

t2ðŝ 0-ŝÞIðŝ 0; x; y; z0Þŝ � ẑ dŝ: ð2:8Þ

Here, t2ðŝ 0-ŝÞ is the Fresnel transmission coefficient for
light incident on the z¼ z0 boundary from within the slab
in direction ŝ 0 with ŝ 0 � ẑ40 transmitted in direction ŝ as
governed by Snell's law. In the results that follow, we
compute the diffuse transmittance, Td, which is defined by
(2.8) with I replaced by the diffuse intensity Id.
3. The one-way radiative transfer equation

Let μ¼ cos θ denote the cosine of the polar angle and
φ denote the azimuthal angle. Then (2.1) can be written in
terms of μ and φ as

μ∂zIþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�μ2

q
ð cos φ∂xIþ sin φ∂yIÞþ I

¼ϖ0

Z 2π

0

Z 1

�1
pðμ;μ0;φ�φ0ÞIðμ0;φ0; x; y; zÞ dμ0 dφ0:

ð3:1Þ
Boundary condition (2.4) becomes

I μ;φ; x; y;0
� �¼ t1 ẑ

� �δðμ�1Þ
2π

b x; yð Þþr1 μ
� �

I �μ;φ; x; y;0
� �

on

0oμr1: ð3:2Þ
Boundary condition (2.6) becomes

Iðμ;φ; x; y; z0Þ ¼ r2ðμÞIð�μ;φ; x; y; z0Þ on �1rμo0:

ð3:3Þ
Note that we have incorporated Snell's law explicitly in
boundary conditions (3.2) and (3.3).

3.1. Deriving the one-way RTE

We now introduce the forward and backward half-
range intensities, defined as

I7 ¼ Ið7μ;φ; x; y; zÞ for 0oμr1; ð3:4Þ
respectively. It follows from (3.1) that I7 satisfy two cou-
pled RTEs,

7μ∂zI7 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�μ2

q
ð cos φ∂xI7 þ sin φ∂yI7 Þþ I7

¼ϖ0Pf I
7 þϖ0PbI

8 : ð3:5Þ
Here, we have defined the forward and backward
scattering operators,

Pf ;b ¼
Z 2π

0

Z 1

0
pf ;bðμ;μ0;φ�φ0Þ½�� dμ0 dφ0 ð3:6Þ

with pf and pb denoting the forward and backward scat-
tering phase functions, respectively, which are restrictions
of the original scattering phase function, i.e., pf ¼ pðμ;μ0;
φ�φ0Þ ¼ pð�μ; �μ0;φ�φ0Þ and
pb ¼ pðμ; �μ;φ�φ0Þ ¼ pð�μ; μ0;φ�φ0Þ for 0oμ;μ0r1.
Note that the two equations in (3.5) are coupled because
I8 appears on the right-hand side. In terms of I7 ,
boundary condition (3.2) is given as

Iþ μ;φ; x; y;0
� �¼ t1 ẑ

� �δðμ�1Þ
2π

b x; yð Þþr1 μ
� �

I� μ;φ; x; y;0
� �

;

ð3:7Þ

and boundary condition (3.3) is given as

I� ðμ;φ; x; y; z0Þ ¼ r2ðμÞIþ ðμ;φ; x; y; z0Þ: ð3:8Þ

Both boundary conditions (3.7) and (3.8) are on 0oμr1.
It is important to note that no approximations of the
problem have been introduced thus far. In fact, the
boundary value problem comprised of (3.5) subject to
boundary conditions (3.7) and (3.8) is equivalent to the
boundary value problem for the RTE given above.

Now we consider anisotropic scattering which is for-
ward peaked. Because of the normalization given in (2.3),
the “mass” contained in the forward hemisphere, ŝ � ẑ40,
is defined as

Mf ¼
Z
ŝ 0 �ẑ40

pðẑ � ŝ 0Þ dŝ 0 ¼ 2π
Z 1

0
pðξÞ dξ: ð3:9Þ

For isotropic scattering, i.e., when g¼0, Mf ¼ 1=2. For
purely forward scattering, i.e., when g-1,Mf-1. Fig. 1 is a
plot of Mf for the Henyey–Greenstein scattering phase
function (2.2) for 0rgr1, and for the screened Ruther-
ford scattering phase function (2.3) for values of η that
yield an effective anisotropy factor, geff , to be 0rgeff r1.

For g40:65, we find that Mf contains over 90% of the
total mass for both scattering phase functions. Therefore,
for these values of g it follows that JPf I

7 J⪢JPbI
8 J . In

light of this observation, we neglect the PbI
� term in (3.5),

and find that Iþ satisfies the approximate equation,

μ∂zIþ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�μ2

q
ð cos φ∂xIþ þ sin φ∂yIþ Þþ Iþ ¼ϖ0Pf I

þ :

ð3:10Þ

We call (3.10) the one-way RTE, because it describes the
(approximate) behavior of Iþ . Notice that I� does not
appear at all in (3.10) for a collimated beam transmitting
through a forward-peaked medium. Similarly, by neglect-
ing the second term in boundary condition (3.7), we obtain
the “initial” condition,

Iþ μ;φ; x; y;0
� �¼ t1 ẑ

� �δðμ�1Þ
2π

b x; yð Þ on 0oμr1: ð3:11Þ

Eq. (3.10) together with the initial condition (3.11) com-
prise an initial value problem for the forward intensity.
Upon solution of this initial value problem, we compute



Fig. 1. The mass contained in the forward hemisphere of the Henyey–
Greenstein (2.2), and the screened Rutherford scattering phase functions
(2.3) [see (3.9)].
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the transmittance through the slab through evaluation of

T x; yð Þ ¼
Z 2π

0

Z 1

0
t2 μ0→μ
� �

Iþ μ0;φ; x; y; z0
� �

μ dμ dφ: ð3:12Þ

3.2. The one-way RTE as a first-iteration of the RTE

It is interesting to point out that the initial value pro-
blem comprised of (3.10) subject to initial condition (3.11)
is the first iteration of the following iteration scheme for
solving the coupled system (3.5).

1. Set Ið0Þ� ¼ 0 (corresponding to n¼0) and n¼1.
2. Solve the initial value problem for the forward propa-

gating radiance

μ∂zIðnÞþ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�μ2

q
ð cos φ∂xIðnÞþ þ sin φ∂yIðnÞþ Þþ IðnÞþ

�ϖ0Pf I
ðnÞþ ¼ϖ0PbI

ðn�1Þ� ;

in 0ozrz0 subject to

IðnÞþ μ;φ; x; y;0
� �¼ t1 ẑ

� �δðμ�1Þ
2π

b x; yð Þ
þr1ðμÞIðn�1Þ� ðμ;φ; x; y;0Þ:

3. Solve the final value problem for the backward propa-
gating radiance

�μ∂zIðnÞ� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�μ2

q
ð cos φ∂xIðnÞ� þ sin φ∂yIðnÞ� Þþ IðnÞ�

�ϖ0Pf I
ðnÞ� ¼ϖ0PbI

ðnÞþ

in z04zZ0 subject to

IðnÞ� ðμ;φ; x; y; z0Þ ¼ r2ðμÞIðnÞþ ðμ;φ; x; y; z0Þ:

4. Repeat Steps 2 through 4 for n’nþ1 until convergence
is reached.

The complete solution of the original RTE problem is given
by (3.4).

In contrast to the conventional source iteration method
[22], which computes the scattering integral over all
directions, this iteration scheme is the same as the
improved source-iteration introduced by Gao and Zhao
[23].

3.3. Numerical method

We focus our attention on computation of the diffuse
forward intensity, Iþd , which satisfies

μ∂zIþd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�μ2

q
ð cos φ∂xIþd þ sin φ∂yIþd Þþ Iþd

¼ϖ0Pf I
þ
d þQ þ

ri ; ð3:13Þ

with

Q þ
ri ¼Pf I

þ
ri ¼ t1ðẑÞϖ0pf ðμ;1; �Þbðx; yÞe� z; ð3:14Þ

subject to initial condition

Idðμ;φ; x; y;0Þ ¼ 0 on 0oμr1: ð3:15Þ
Upon solution of the initial value problem for Iþd com-
prised of (3.13) subject to initial condition (3.15), we then
compute the one-way RTE approximation of the diffuse
transmittance through evaluation of

Td x; yð Þ ¼
Z 2π

0

Z 1

0
t2 μ0→μ
� �

Iþd μ0;φ; x; y; z0
� �

μ dμ dφ: ð3:16Þ

The one-way RTE offers high potential for efficiency
gains since numerical methods for initial value problems
are generally simpler and more efficient than those for
boundary value problems. For example, no iterations such
as those described in Section 3.2 are needed to solve the
one-way RTE. All that is required is a “time-stepping”
method that advances the solution from z¼0 to z¼ z0. One
such method is used in [20]. In contrast, solving the full
RTE requires several iterations which depends on both the
optical thickness and the value of the single scattering
albedo for a given problem. However, we do not take on
the matter of gaining the most efficiency from the one-
way RTE here. Rather, we are focused solely on deter-
mining the accuracy of the one-way RTE in approximating
the full RTE. To that end, we apply the method described in
[24] to solve the initial value problem for the one-way RTE
consisting of (3.13) with initial condition (3.15). A sum-
mary of this procedure is as follows.

1. Fourier transform (3.13) in x and y and make use of the
axisymmetry inherent in this problem.

2. Solve the resulting problem using the discrete ordinate
method described in several radiative transfer texts, e.g.
[2,22,25,26].

3. Compute the diffuse transmittance given in (3.16) using
a quasi-fast Hankel transform [27].

The procedure described above does not fully take
advantage of the potential efficiency gains that the one-
way RTE offers. Rather, we have chosen it because it allows
us to solve both the full and one-way RTE using the same
method. Consequently, we are able to compare the per-
formance of the one-way RTE approximation without
having to consider any additional issues introduced by
using different methods. That being said, a key parameter
to consider here is the order of the Gauss–Legendre
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quadrature rule, M, used in the discrete ordinate method
for the full RTE. Because the one-way RTE uses only the
half-range of directions corresponding to the forward
hemisphere, it only uses M=2 quadrature points, in com-
parison. Even though we have not explicitly sought to take
advantage of the efficiency gains for the one-way RTE
here, this reduction leads to an overall factor of 4 efficiency
gain in solving the one-way RTE. For the various problems
we study, we will have to vary M to ensure accurate
results.
Fig. 3. Comparisons of the diffuse transmittance computed using simu-
lations of the full RTE (solid curves) and the one-way RTE (dashed curves)
as a function of the radial coordinate ρ for varying screening parameters:
η¼ 0:085, 0.043, and 0.015. Here, ϖ0 ¼ 0:9, z0 ¼ 2, R¼1, and m¼1. The
inset shows the on-axis relative errors made by the one-way RTE.
4. Numerical results

For all of the numerical results shown here, we have
used 128 radial grid points to compute the quasi-fast
Hankel transform. We assume that the refractive index
on either side outside of the slab is the same, so any index-
mismatch on both of the boundaries is solely determined
by the relative refractive index, m, given by the ratio of the
refractive index inside the slab over that outside the slab.
In what follows, we evaluate comparisons of the full and
one-way RTE as we vary (i) the anisotropy factor, g and the
screening coefficient η, (ii) the single scattering albedo,
ϖ0, (iii) the optical thickness, z0, and (iv) the relative
refractive index, m.

4.1. Anisotropy factor

To study the one-way RTE as the anisotropy factor, g,
varies, we study the diffuse transmittance with ϖ0 ¼ 0:9,
z0 ¼ 2, m¼1, and beam radius R¼0.5. To ensure highly
accurate results, we used a highly resolved angle grid with
M¼64. Fig. 2 shows comparisons of the diffuse transmit-
tance using the Henyey–Greenstein scattering phase func-
tion with g¼0.7, 0.8, and 0.9. The x-axis is the radial coor-
dinate, ρ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
. For all the results shown in Fig. 2, we

find that the qualitative agreement between one-way RTE
and the full RTE is excellent. Indeed these results are all
nearly indistinguishable from the full RTE results. In
Fig. 2. Comparisons of the diffuse transmittance computed using simu-
lations of the full RTE (solid curves) and the one-way RTE (dashed curves)
as a function of the radial coordinate ρ for varying anisotropy factors:
g¼0.7, 0.8, and 0.9. Here, ϖ0 ¼ 0:9, z0 ¼ 2, R¼0.5, and m¼1. The inset
shows the on-axis (ρ¼ 0) relative errors made by the one-way RTE.
general, we find that the one-way RTE underestimates the
diffuse transmittance, especially near its peak. To quantify
this error, we have computed the on-axis error made by the
one-way RTE defined as the absolute difference between
the one-way RTE and the full RTE results divided by the full
RTE result. Those on-axis error results are shown as an inset
in Fig. 2. We see that on-axis relative error is less that 0.5%
and decreases monotonically as g increases.

In Fig. 3, we show the diffuse transmittance using the
screened Rutherford scattering phase function with
screening parameters η¼ 0:085, 0.043, and 0.015. The
beam radius is R¼1, but all other parameters are the same
that were used for Fig. 2. These results are consistent with
those shown in Fig. 2. These results for the one-way RTE
with screened Rutherford scattering are also nearly indis-
tinguishable from those of the RTE. The on-axis relative
errors are all less that 1%. The inset of Fig. 3 shows that
these on-axis relative errors grow monotonically with η.

4.2. Single scattering albedo

In deriving the one-way RTE, we have only assumed
that scattering was forward peaked. We have made no
assumption on the size of the single scattering albedo.
Therefore, we anticipate that the one-way RTE should be
valid across a broad range of single scattering albedo
values. To verify this, we study the one-way RTE as the
single scattering albedo, ϖ0, varies.

Fig. 4 shows comparisons of the diffuse transmittance
with Henyey–Greenstein scattering for ϖ0 ¼ 0:5, 0.7, and
0.9. The anisotropy factor is g¼0.9, the optical thickness is
z0 ¼ 2, the relative refractive index is m¼1, and beam
radius R¼1. We used a moderately resolved angle grid
withM¼32 for these results since the demands on angular
resolution are not too great for these problems.

Fig. 4 shows that the one-way RTE is accurate over this
broad range of single scattering albedo values. The inset of
Fig. 4 shows that the on-axis relative error is below 1% and
monotonically decreases as ϖ0 increases. This behavior is
to be expected since stronger scattering increases the



P. González-Rodríguez et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 176 (2016) 122–128 127
importance of the forward-peak of the scattering phase
function in the solution of the RTE.

4.3. Optical thickness

To study the one-way RTE as the optical thickness, z0,
varies, we compute the diffuse transmittance with
ϖ0 ¼ 0:9, g¼0.9, R¼1, and m¼1. Fig. 5 shows comparisons
of the diffuse transmittance with Henyey–Greenstein
scattering for z0 ¼ 2, 5, and 10. For these results, we used a
slightly higher resolved angle grid with M¼40 since a
higher accurate solution is needed to accurately capture
the behavior of the solution as z0 increases.

In all of the results shown in Fig. 5, we find that the
one-way RTE and full RTE simulations agree rather well.
Indeed, the results are nearly indistinguishable from one
another. The inset of Fig. 5 shows that the on-axis error
increases monotonically as z0 increases. However, the off-
axis errors become substantially large even though that is
not apparent in Fig. 5.

This degradation of accuracy of the one-way RTE
approximation as z0 increases can be understood as fol-
lows. As the beam penetrates more deeply in an optically
thick medium, more power is continually exchanged
between forward and backward directions. Eventually, this
continual exchange of power flow saturates which, in turn,
leads to the intensity becoming nearly isotropic. This
Fig. 4. Same as Fig. 2, but for varying albedo, ϖ0 ¼ 0:5, 0.7, and 0.9. Here,
g¼0.9, z0 ¼ 2, R¼1, and m¼1.

Fig. 5. Same as Fig. 2, but for varying thickness, (a) z0 ¼ 2, (b) z0 ¼ 5, and
(c) z0 ¼ 10. Here ϖ0 ¼ 0:9, g¼0.9, R¼1, and m¼1.
saturation limit corresponds to the diffusion approxima-
tion, which applies when the scattering medium is opti-
cally thick [2]. Because it only governs the forward half-
range intensity, the one-way RTE has no mechanism to
take into account this exchange between forward and
backward flowing powers. As a result, the one-way RTE is
inherently unable to describe an isotropic intensity and,
therefore, does not approach to the diffusion approxima-
tion for optically thick media. Nonetheless, we find that
the one-way RTE is fairly accurate for small to moderate
optical thicknesses.

We remark that the diffusion approximation reduces
the RTE to a partial differential equation, which is sig-
nificantly easier to solve. For this reason, the diffusion
approximation has been used extensively, especially for
biomedical optics. However, the diffusion approximation is
only valid for optically thick media, and even then, it suf-
fers from large errors near sources and boundaries. To
address the errors made by the diffusion approximation
near sources, Vitkin et al. [28] introduced the so-called
phase function corrected diffusion approximation. By
decomposing the scattering phase function into three
terms: a delta function, an isotropic part, and an aniso-
tropic part, Vitkin et al. derive an additive correction to the
diffuse reflectance that improves the accuracy near the
point-of-entry. Alternatively, one can correct the errors
made by the diffusion approximation near sources and
boundaries using boundary layer analysis [29]. However,
this formal and systematic analysis necessarily adds some
complexity back into the problem. Regardless, the diffu-
sion approximation is limited only to optically thick media.
In contrast, the one-way RTE approximation is valid for
small to moderate optical thicknesses. In that way, it is
complimentary to the diffusion approximation.

4.4. Refractive index

We study the one-way RTE as the relative refractive
index, m, varies. In particular, we study the diffuse trans-
mittance with ϖ0 ¼ 0:9, g¼0.9, z0 ¼ 2, and R¼1. We used
a moderately resolved angle grid with M¼32 for these
results. Fig. 6 shows comparisons of the diffuse transmit-
tance with Henyey–Greenstein scattering for m¼1.0, 1.2,
and 1.4.
Fig. 6. Same as Fig. 2, but for varying refractive index mismatch, m¼1.0,
1.2, and 1.4. Here, ϖ0 ¼ 0:9, g¼0.9, and z0 ¼ 2.
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In each of these results, we find that the one-way RTE
qualitatively captures the RTE results. However, visible
quantitative errors appear for m41. Since the partial
reflection due to the index-mismatched boundaries pro-
vides another mechanism to exchange power from for-
ward to backward flowing directions, one might assume
that the one-way RTE will not be accurate for index-
mismatched boundaries. In fact, the index-mismatched
boundary at z¼ z0, where light is transmitted, will redis-
tribute a fraction of the forward flowing power backward.
However, for this reflected light to eventually contribute to
the diffuse transmittance, it must either backscatter
thereby being redirected as forward flowing light, or be
partially reflected by the boundary z¼0. Provided that the
assumptions making the one-way RTE are valid, both of
these effects are negligible. The results shown in Fig. 6 are
consistent with this reasoning. The inset of Fig. 6 shows
the on-axis errors to be less that 2% and that this error
grows monotonically with m.
5. Conclusions and discussion

We have introduced the one-way RTE for modeling the
transmission of a beam in a forward-peaked scattering
medium. This approximation neglects the backscattered
radiation. Unlike Fokker–Planck type approximations, the
one-way RTE is not limited to sharply-peaked forward
scattering. On the other hand, as an initial value problem,
the one-way RTE is much easier to solve. The one-way RTE
resembles the small-angle approximation, inasmuch as
both are initial value problems. However, the one-way RTE
retains a more accurate dependence between the angular
and spatial nature of the radiation. The one-way RTE can
also be interpreted as the first iteration in the improved
source-iteration method for solving the full RTE. In this
sense, the one-way RTE model is a physically meaningful
manifestation of an improved numerical method.

Our numerical results show that the one-way RTE
effectively approximates the diffuse transmittance of a
Gaussian beam incident on a slab composed of a uniform
absorbing and scattering medium. In particular, the one-
way RTE accurately approximates the diffuse transmit-
tance for (i) moderately large anisotropy factors, (ii) a
broad range of single scattering albedo values, (iii) small-
to-moderate optical thicknesses, and (iv) index-
mismatched boundaries. The on-axis error monotonically
decreases as the anisotropy factor and the single scattering
albedo increase. It monotonically increases as the optical
thickness and relative refractive index increase. Among
these parameters, the error made by the one-way RTE is
largest with respect to the relative refractive index.

These results are encouraging for using the one-way RTE
to model the transmission of light in forward scattering
media. One apparent limitation is that the one-way RTE is
limited to studying transmission problems. For reflectance
problems, one may consider extending the one-way RTE by
using the results here to inform the computation of another
one-way RTE for the backward half-range intensity. This
extension is essentially Step 3 of the iteration method
described in Section 3.2. Applying these ideas to the vector
radiative transfer equation that models multiple scattering of
partially polarized light is also straight forward extension of
what we have done here.
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