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FIG. 1: Longitudinal analysis of publication and citation growth patterns. (a,b) Growth curves, appropriately rescaled to start from
unity, show the characteristic career trajectories of the scientists in each cohort. The characteristic ↵ and ⇣ exponents shown in each legend
are calculated over the growth phase of the career, in (a) over the first 30 years and in (b) over the first 20 years. The mathematicians [E]
have distinct career trajectories, with ↵ ⇡ 1 since collaboration spillovers play a smaller role in their production growth. (c) Schematic
illustration of the multiplex scientific network surrounding career i. Links in the upper network represent the dynamic collaborations between
scientists (nodes); links within the lower network represent the citation network between papers (nodes); the cross-links between the networks
represent the association between individual careers and the corresponding publication portfolio, serving as a platform for reputation signaling
[14, 21, 23].

 coevolutionary system: 
• knowledge 
• institutions 
• researchers

 social phenomena:
• behavioral aspects
• economic incentives
• cumulative advantage 
mechanisms 
• collaboration / competition

Science careers are embedded in a co-evolving network of networks

(Intellectual Capital)

Researcher

(Human Capital)

Collaboration 
Network

(Social Capital)

Citation Network
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unity, show the characteristic career trajectories of the scientists in each cohort. The characteristic ↵ and ⇣ exponents shown in each legend
are calculated over the growth phase of the career, in (a) over the first 30 years and in (b) over the first 20 years. The mathematicians [E]
have distinct career trajectories, with ↵ ⇡ 1 since collaboration spillovers play a smaller role in their production growth. (c) Schematic
illustration of the multiplex scientific network surrounding career i. Links in the upper network represent the dynamic collaborations between
scientists (nodes); links within the lower network represent the citation network between papers (nodes); the cross-links between the networks
represent the association between individual careers and the corresponding publication portfolio, serving as a platform for reputation signaling
[14, 21, 23].
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Variable collaboration life-cycles reveal 
tie-formation dynamics characterized 
by a complex dichotomy of burstiness 
and persistence. 

link dynamics

Quantifying the impact of weak, strong, and super ties in scientific careers — PNAS (2015)

Dynamic network characterized by life-cycles



• Collaboration (attractive)

• Competition (repulsive)

• Knowledge (an “exchange particle”)

Interactions mediated by social “forces”:

* Michael Stuart Brown 
* Joseph L. Goldstein 

Recipients of the 1985 Nobel Prize in 
Physiology or Medicine for describing 
the regulation of cholesterol metabolism.

458 
publications

451 
publications

434
(95%)

   
* Marilyn Kozak (also cell biologist)

   N = 70, Nsolo = 59 

Solo-artist strategy:

Binary-star strategy:
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central
author i

An ego-centric perspective reveals a wide 
range of collaboration strategies
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— even among Nobel Laureates —



• Measuring the duration Lij of the tie 
(time b/w 1st and last copublication)

• Measuring the intensity Kij of the tie 
(# of copublications)

• Measuring the net scientific impact Cij 
of the tie (net citation tally for pubs. 
between i and j)

Sir Andre K. Geim
# publications, Ni (2012) = 217 

Si = 303 coauthors
The average copublication duration  
⟨Li⟩ = 2.1 years, ⟨Ki⟩ = 3.7 pubs.

Ego collaboration network: 
quantifying dynamic & heterogenous patterns 

of collaboration within scientific careers

I, Grigorieva

K, Novoselov



Is there a characteristic collaboration intensity scale?

P(≥x) is well-described by an exponential distribution, for which 
there is a closed-form solution to the extreme value equation: 

In order to aggregate across careers with varying coauthorship 
patterns, we use the normalized variable x = Kij /⟨Ki⟩

which has the simple solution

 “super tie” threshold Kic = (〈Ki〉-1) Ln(Si)

that roughly 2/3 of the ties we analyzed are weak (the fraction of
observations with xij < 1 is given by 1� 1/e ⇡ 0.63).

Based upon this empirical evidence, we use the discrete exponen-
tial distribution as our baseline model, P (Kij) / exp(�iKij). We
then use extreme statistics arguments to precisely define the author-
specific super-tie threshold Kc

i . The extreme statistic criteria posits
that out of the Si empirical observations there should be just a sin-
gle observation with Kij > Kc

i . The threshold Kc
i is operational-

ized by integrating the tail of P (Kij) according to the equation
1/Si =

P1
Kij>Kc

i
P (Kij) = exp(�iK

c
i ), with the analytic re-

lation hKii =
P1

Kij=1 KijP (Kij) = ei/(ei � 1) ⇡ 1 + 1/i

for small i. In the relatively large Si limit, Kc
i is given by the simple

relation

Kc
i = (hKii � 1) lnSi . [4]

The advantage of this approach is that Kc
i depends only on exactly

calculable observables, hKii and Si. Thus, the super-tie threshold is
proportional to hKii � 1 (the �1 arises because the minimum Kij

value is 1), with a logarithmically factor lnSi reflecting the sample
size dependence. This extreme value criteria is generic, and can be
derived for any data following a baseline distribution; for a succinct
explanation of this analytic method see page 17 of ref. [32].

In what follows, we label each coauthor j with Kij > Kc
i a

super tie, with indicator variable Rj ⌘ 1. The rest of the ties with
Kij  Kc

i have an indicator variable Rj ⌘ 0. This method has limi-
tations, specifically in the case that the collaboration profile does not
follow an exponential P (Kij). For example, consider the extreme
case where every Kij = 1, meaning that Kc

i = 0 (independent of
Si), resulting in all coauthors being super ties (Rj = 1 for all j).
This scenario is rare and unlikely to occur for researchers with rela-
tively large Ni and Si, as in our researcher sample.

Quantifying the prevalence and impact of super ties. How com-
mon are super ties? For each profile we denote the number of
coauthors that are super ties by SR,i (with complement S!R,i =
Si � SR,i). SI Text Fig. S4 shows that the distribution of SR,i is
rather broad, with mean and standard deviation SR,i values: 18± 13
(top bio.), 16 ± 13 (other bio.), 7.3 ± 4.8 (top phys.), 6.8 ± 5.1
(other phys.). The super-tie coauthor fraction, fR,i = SR,i/Si, mea-
sures the super-tie frequency on a per-collaborator basis. Fig. 5(A)
shows that the distribution P ( fR), with mean value hfRi ⇡ 0.04,
is common across the four datasets, indicating a characteristic fre-
quency of super ties at 1 in 25 coauthors. We tested the stability of the
probability distribution P (fR) between the top and other researcher
datasets using the Kolmogorov-Smirnov (K-S) statistic, which tests
the null hypothesis that the data come from the same underlying pdf.
The smallest pairwise K-S test p-value between any two P (fR) is
p = 0.21, indicating that we fail to reject the null hypothesis that the
distributions are equal, highlighting that the four datasets are remark-
ably well-matched with respect to the distribution of fR,i.

On a per paper basis, Fig. 5(B) shows that the fraction of a re-
searcher’s portfolio coauthored with at least one super tie, fN,i, can
vary over the entire range of possibilities, with mean and standard de-
viation 0.50± 0.18 (top bio.), 0.74± 0.13 (other bio.), 0.42± 0.19
(top phys.), 0.58 ± 0.23 (other phys.). Furthermore, we found that
41% of the top scientists have fN,i � 0.5. Interestingly, the distribu-
tions of fK,i and fN,i indicate that top scientists have lower levels of
super-tie dependency than their counterparts.

We also analyzed the arrival rate of super-ties. For each profile
we tracked the number of super ties initiated in year t, and normalized
this number by the total number of new collaborations initiated in the
same year. This ratio, �R,i(t), estimates the likelihood that a new col-
laboration eventually becomes a super tie as a function of career age
t. For example, using the set of collaborations initiated in each scien-
tist’s first year, we estimate the likelihood that a first-year collabora-
tor (likely a thesis advisor) becomes a super tie at �R(t = 1) = 8%

(top bio.), 16% (other bio.), 14% (top phys.), and 15% (other phys.).
Figure 5(D) shows the mean arrival rate, h�R(t)i, calculated by av-
eraging over all profiles in each dataset. The super tie arrival rate
declines across the career, reaching a 5% likelihood per new collab-
orator at t = 20 and 2.5% likelihood by t = 30. The decay is not as
fast for the top-cited scientists, possibly reflecting their preferential
access to outstanding collaborators. However, the estimate for large
t is biased toward smaller values because collaborations initiated late
in the career may not have had sufficient time to grow.

In the next two subsections, we investigate the role of super ties
at the micro level by analyzing productivity at the annual time resolu-
tion and citation impact at the scale of individual publications. In the
SI Text we provide additional evidence for the advantage of super ties
by developing descriptive methods that measures the net productivity
and citations of the super ties relative to all other ties.

The Apostle effect I: Quantifying the impact of super ties on
annual productivity. We analyzed each research profile over the
career years ti 2 [6,Min(29, Ti)], separating the data into non-
overlapping �t-year periods, and neglecting the first 5 years to allow
the Lij(t) and Kij(t) sufficient time to grow. We then modeled the
dependent variable, ni,t/hnii, which is the productivity aggregated
over �t-year periods, normalized by the baseline average calculated
over the period of analysis. Recent analysis of assistant and tenured
professors has shown that the annual publication rate is governed by
slow but substantial growth across the career, with fluctuations that
are largely related to collaboration size [24].

To better understand the factors contributing to productivity
growth, we include controls for career age t along with four ad-
ditional variables measuring the composition of collaborators from
each �t-year period. First, we calculated the average number of au-
thors per publication, ai,t, a proxy for labor input, coordination costs,
and the research technology level. Second, we calculated the mean
duration, Li,t, by averaging the Lij(t��t) values (from the previ-
ous period) across only the j who are active in t – i.e. those coau-
thors with �Kij(t) > 0. In this way, we account for the possibility
that j was not active in the previous period (t � �t), in which case
Lij(t��t) is even smaller than Lij(t) ��t. Thus, Li,t measures
the prior experience between i and his/her collaborators. Third, for
the same set of coauthors as for Li,t, we calculated the Gini index
of the collaboration strength, GK

i,t, using the tie strength values up
to the previous period, Kij(t � �t). Thus, GK

i,t provides a stan-
dardized measure of the dispersion in coauthor activity, with values
ranging from 0 (all coauthors published equally in the past with i)
to 1 (extreme inequality in prior publication with i). Thus, while
Li,t measures the lifetime of the group’s prior collaborations, GK

i,t

measures the concentration of their prior experience. And finally, for
each period t, we calculated the contribution of super tie collabora-
tors normalized by the contribution of all other collaborators,

⇢i,t ⌘
P

j|R=1 �Kij(t)
P

j|R=0 �Kij(t)
, [5]

accounting for the possibility that the relative contribution of super
ties may affect productivity. While the total coauthor contributionP

j �Kij(t) is highly correlated with ni,t, the correlation coeffi-
cient between ⇢i,t and ni,t is only 0.07. We only include researchers
in this analysis if there are � 4 data points for which the denominator
of Eq. [5] is nonzero.

We implemented a fixed effects regression of the model

ni,t

hnii
= �i,0 + �a ln ai,t + �LLi,t +

�GG
K
i,t + �⇢⇢i,t + �tti,t + ✏i,t , [6]

which accounts for author-specific time-invariant features (�i,0), us-
ing robust standard errors to account for autocorrelation within each

4 www.pnas.org — — Footline Author
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FIG. 4: Visualizing the broad variation in the collaboration
profile of individual researchers. For each discipline, we show
two profiles (A.K. Geim and J. L. Goldstein) whose top-cited work
was done with their most intense collaborator (corresponding to
K(1, Ti)), and two profiles (P. W. Anderson and E. H. Blackburn)
whose top-cited research was not performed with their most intense
collaborator. Each scientist shown is a Nobel Prize recipient. (A-D)
Growth in the cumulative number of copublications between central
scientist i and collaborator j. (E-H) Evolution of the rank-coauthor
profile K(r, t) over time. Shown are K(r, t = 5) (small grey dots),
K(r, t = 10) (medium gray dots), K(r, t = 20) (large black dots),
and K(r, Ti). Curves and dots are colored and have thickness and ra-
dius, respectively, proportional to log C̃i,j , the logarithm of the total
citation share of coauthor j in profile i (see Eq. 7).

Figures 5(C,D) show the cumulative distribution P ( x) of
the normalized collaboration intensity x ⌘ Kij(Y )/hKii, ag-
gregating the data across all scientists in each discipline. Each
P ( x) is in good agreement with the exponential distribution
E(x) = exp[�x] (with mean value hxi = 1 by construction),
with the major exception in the tail for P (� x) < 10�3 which
is home to the extreme super tie outliers.

Using the exponential distribution as our baseline model for
the tie-strength distribution P (Kij) / exp(�Kij), we use
extreme statistics arguments to define the super-tie threshold
Kc

i specific to each i. Our extreme statistic definition posits
that out of Si observations there should be just a single ob-
servation with Kij > Kc

i . This definition is operationalized
by integrating the tail of P (Kij) according to the equation
1/Si =

P1
Kij>Kc

i
P (Kij) = exp(�Kc

i ) with the analytic
relation hKiji =

P1
Kij=1 KijP (Kij) = e/(e � 1) ⇡

1 + 1/ for small  ⌧ 1. In the large Si and Ni limit the

FIG. 5: Universal patterns in the distribution of collabora-
tion tie-strength Kij . (A) Cumulative distribution of hKiji. The
Kolmogorov-Smirnov (K-S) test indicates that the distributions of
hKiji are significantly different in each pairwise comparison. Verti-
cal lines indicate median value. (B) Cumulative distribution of Gi.
Comparison of the biology data yields a K-S p = 0.14 meaning
that the data are likely drawn from the same distribution, whereas
the physics datasets indicate the contrary, with K-S p = 0.02. Ver-
tical lines indicate the mean value, with the physics profiles indi-
cating significantly higher Gi than the biology profiles. (C,D) For
each dataset, the cumulative distribution of normalized collaboration
intensity x ⌘ Kij(Y )/hKii shows excellent agreement with the ex-
ponential distribution E(x) = exp[�x] (gray line) over the bulk of
the distribution, with the only deviations in the tail regime represent-
ing less than 0.1% of the data.

extreme value threshold is

Kc
i = (hKii � 1) lnSi . (4)

Hence, in what follows, we label a coauthor with Kij > Kc
i a

super tie, indicated by the dummy variable value Rj ⌘ 1. The
rest of the ties with Kij  Kc

i have an indicator value Rj ⌘ 0.
SR,i denotes the number of coauthors within a profile with the
super-tie distinction, with the complement S!R,i = Si � SR,i.
Figure S2 shows the distributions of SR,i within each dataset.
We use the Kolmogorov-Smirnov (K-S) test statistic to estab-
lish that the top and other researcher datasets are well-matched
with respect to the SR,i variable, since each paired K-S test
yields a p-value > 0.05 indicating that the data are likely
drawn from the same distribution. The mean and standard de-
viation of SR,i are 18± 13 (top biology), 16± 13 (other biol-
ogy), 7.3±4.8 (top physics), 6.8±5.1 (other physics). Figure
6(A) shows the super-tie coauthor fraction fR,i = SR,i/Si,
with mean value hfR,ii ⇡ 0.04 for each dataset setting the
characteristic frequency of super ties at 1 in 25 coauthors. The
K-S test confirms that the fR,i belong to the same distribution.

We also divide the total coauthor input KT
i ⌘

P
j Kij =

KT
R,i + KT

!R,i into the contribution from super-ties (KT
R,i =P

j|Rj=1 Kij) and the complementary contribution KT
!R,i =

KT
i �KT

R,i. The productivity premium is then defined as the

Extreme outlier based upon the exponential distribution:  

“super tie” threshold       = (〈Ki〉-1) Ln(Si)

Citations from Pubs 
w/ HE Stanley
[log scale]

5

FIG. 4: Visualizing the broad variation in the collaboration
profile of individual researchers. For each discipline, we show
two profiles (A.K. Geim and J. L. Goldstein) whose top-cited work
was done with their most intense collaborator (corresponding to
K(1, Ti)), and two profiles (P. W. Anderson and E. H. Blackburn)
whose top-cited research was not performed with their most intense
collaborator. Each scientist shown is a Nobel Prize recipient. (A-D)
Growth in the cumulative number of copublications between central
scientist i and collaborator j. (E-H) Evolution of the rank-coauthor
profile K(r, t) over time. Shown are K(r, t = 5) (small grey dots),
K(r, t = 10) (medium gray dots), K(r, t = 20) (large black dots),
and K(r, Ti). Curves and dots are colored and have thickness and ra-
dius, respectively, proportional to log C̃i,j , the logarithm of the total
citation share of coauthor j in profile i (see Eq. 7).

Figures 5(C,D) show the cumulative distribution P ( x) of
the normalized collaboration intensity x ⌘ Kij(Y )/hKii, ag-
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servation with Kij > Kc
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tion tie-strength Kij . (A) Cumulative distribution of hKiji. The
Kolmogorov-Smirnov (K-S) test indicates that the distributions of
hKiji are significantly different in each pairwise comparison. Verti-
cal lines indicate median value. (B) Cumulative distribution of Gi.
Comparison of the biology data yields a K-S p = 0.14 meaning
that the data are likely drawn from the same distribution, whereas
the physics datasets indicate the contrary, with K-S p = 0.02. Ver-
tical lines indicate the mean value, with the physics profiles indi-
cating significantly higher Gi than the biology profiles. (C,D) For
each dataset, the cumulative distribution of normalized collaboration
intensity x ⌘ Kij(Y )/hKii shows excellent agreement with the ex-
ponential distribution E(x) = exp[�x] (gray line) over the bulk of
the distribution, with the only deviations in the tail regime represent-
ing less than 0.1% of the data.

extreme value threshold is

Kc
i = (hKii � 1) lnSi . (4)

Hence, in what follows, we label a coauthor with Kij > Kc
i a

super tie, indicated by the dummy variable value Rj ⌘ 1. The
rest of the ties with Kij  Kc

i have an indicator value Rj ⌘ 0.
SR,i denotes the number of coauthors within a profile with the
super-tie distinction, with the complement S!R,i = Si � SR,i.
Figure S2 shows the distributions of SR,i within each dataset.
We use the Kolmogorov-Smirnov (K-S) test statistic to estab-
lish that the top and other researcher datasets are well-matched
with respect to the SR,i variable, since each paired K-S test
yields a p-value > 0.05 indicating that the data are likely
drawn from the same distribution. The mean and standard de-
viation of SR,i are 18± 13 (top biology), 16± 13 (other biol-
ogy), 7.3±4.8 (top physics), 6.8±5.1 (other physics). Figure
6(A) shows the super-tie coauthor fraction fR,i = SR,i/Si,
with mean value hfR,ii ⇡ 0.04 for each dataset setting the
characteristic frequency of super ties at 1 in 25 coauthors. The
K-S test confirms that the fR,i belong to the same distribution.

We also divide the total coauthor input KT
i ⌘

P
j Kij =

KT
R,i + KT

!R,i into the contribution from super-ties (KT
R,i =P

j|Rj=1 Kij) and the complementary contribution KT
!R,i =

KT
i �KT

R,i. The productivity premium is then defined as the
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ratio of the mean number of coauthors with R = 1 to R = 0,

pN,i ⌘
hKij |Rj = 1i
hKij |Rj = 0i =

KT
R,i/SR,i

KT
!R,i/S!R,i

. (5)

Figure 6(C) shows the cumulative distribution P ( pN ),
where the smallest value observed was pN = 2.5, meaning
that in all cases the premium was significantly greater than
unity. In fact, the average pN is between 7 and 10, with the
top scientists having on average smaller pN values.

Similarly, we separate the total citation impact between the
SR,i super ties and the S!R,i other collaborators. However,
measuring citation impact requires accounting for the time-
dependence of citations as well as accounting for the distri-
bution of credit across the ap coauthors of the publication p.
The credit distribution problem has received recent attention
from the perspectives of institutional policy [8], team ethics
[7], and practical algorithmic implementation [29–31]. Here
we choose a naive method which divides the cp citations into
equal shares among the ap coauthors [32]. The citations are
counted in the census year Y (the year in which the total cita-
tions are measured) and “deflated” in terms of year y = 2000
citation values. We define the normalized citation impact of a
publication p published in year y as

c̃j,p(y) ⌘
cj,p,Y (y)

ap

hcmY (2000)i
hcmY (y)i , (6)

where hcmY (y)i is the average number of citations for publica-
tions published in a benchmark set of publications m from the
same year y. We choose m to be the aggregation of articles
appearing in the multidisciplinary journals Nature, Proceed-
ings of the National Academy of Sciences, and Science. We
use these high-impact journals since they have high citation
rates and hence provide a robust detrending baseline for the
time-dependent component of cp(y) (see the Data & Methods
section for further details). The main advantage of c̃j,p(y) is
that it can be aggregated across time yielding a cumulative
measure of binary impact for coauthors i and j, defined as

C̃i,j ⌘
X

p\(i,j)

c̃j,p(y) , (7)

where the sum includes only papers with i and j.
The total number of citation shares for coauthors with R =

1 is C̃R,i ⌘
P

j|R=1 C̃i,j , and for the remaining coauthors is
C̃!R,i ⌘

P
j|R=0 C̃i,j . We then define the citation premium to

be the ratio of the average citation shares,

pC,i ⌘
hC̃R,ii
hC̃!R,ii

=
C̃R,i/SR,i

C̃!R,i/S!R,i

. (8)

Figure 6(D) shows the distribution of pC across each sample,
with all values except for 2 being greater than unity. The pC
mean, median, and maximum value across all datasets are
14.1, 11.3, and 134, respectively. Hence, at the aggregate
career level, we observe a strong premium attributable to
super ties for both productivity and citation impact. In the

FIG. 6: The frequency and premium of super ties. (A) Cumula-
tive distribution of the fraction fR,i of the Si coauthors that qualify
as super ties (Kij > Kc

i ). All pairwise comparisons of the distri-
butions have K-S p-value greater than 0.2, meaning that the data are
likely drawn from the same P (fR,i) distribution. Vertical lines indi-
cate mean value. (B) Cumulative distribution of the fraction fN of
papers that include at least one strong-tie coauthor. Vertical lines in-
dicate mean value. The top scientist distributions show mean values
(vertical lines) that are significantly smaller than their counterparts.
(C) Cumulative distribution of the productivity premium pN defined
in Eq. (6). Only the two physics datasets are significantly similar
(K-S p = 0.35). The top scientists distributions have smaller mean
value (vertical line) than their counterparts. (D) Cumulative distri-
bution of the citation premium pC defined in Eq. (8). Vertical lines
indicate the mean value within each dataset.

next two subsections, we investigate the role of super ties at
a more microscopic level by analyzing productivity at the
annual level and citation impact at the paper level.

The Apostle effect I: Quantifying the impact of super ties
on annual productivity. Here we analyze each profile i over
the range ti 2 [6,Min(29, Li)], where Li is the career length
of the central author. We separate the collaboration profile into
non-overlapping �t-year periods, neglecting the first 5 years
to allow the Lij(t) and Kij(t) sufficient time to grow. For
each period we calculated the average number of authors per
publication, ap,t,i, a proxy for team management costs as well
as the technological level of the research. For each subperiod
we calculated the mean longevity, Lt,i, using the Lij(t � 1)
values for only the coauthors with �Kij(t) > 0 over the
same �t-year period. Lt,i provides a measure of team ex-
perience. Similarly, we calculated the Gini index, GK

t,i, using
the Kij(t � 1) values for the same coauthors as in the calcu-
lation of Lt,i. GK

t,i provides a standardized measure of col-
laboration strength variability, ranging from 0 (all coauthors
contributed equally) to 1 (extreme inequality in the coauthor
participation). And finally, we calculated the ratio of collabo-
ration inputs from super ties to non-super ties,

⇢t,i ⌘
P

j|R=1 �Kij(t)P
j|R=0 �Kij(t)

, (9)

measuring the relative intensity of super tie collaborators.
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Apostle effect: citation model (zi,p)
Dataset A ln ap Rp tp lnNi(tp) lnSi(tp) Nobs. Adj. R2

All 373 0.251± 0.024 0.205± 0.024 �0.062± 0.004 0.075± 0.066 0.050± 0.072 65513 0.265
p-value 0.000 0.000 0.000 0.256 0.491

Biology (top) 100 0.269± 0.041 0.203± 0.034 �0.033± 0.007 �0.104± 0.106 0.050± 0.114 21398 0.113
p-value 0.000 0.000 0.000 0.327 0.661

Biology (other) 52 0.579± 0.056 0.127± 0.071 �0.037± 0.016 �0.192± 0.103 0.230± 0.106 4303 0.201
p-value 0.000 0.079 0.023 0.069 0.034

Physics (top) 100 0.121± 0.043 0.239± 0.044 �0.072± 0.007 0.277± 0.120 �0.115± 0.137 21819 0.188
p-value 0.006 0.000 0.000 0.022 0.402

Physics (other) 121 0.253± 0.041 0.243± 0.049 �0.061± 0.008 0.073± 0.092 0.016± 0.101 17993 0.187
p-value 0.000 0.000 0.000 0.427 0.874

TABLE II: Parameter estimates for the fixed-effects regression model in Eq. (12) calculated with STATA using robust standard errors
(“vce(robust)”) to implement the Huber/White/sandwich method. Values significant at the p < 0.01 level are indicated in boldface. Only
papers with yp  2002 were analyzed so that the dependent variable zi,p has time to become a robust measure of relative citation impact.

the parameters of the citation impact model,

zi,p,y = �i,0 + �a ln ai,p + �RRi,p + �tti,p +

�N lnNi(tp) + �S lnSi(tp) + ✏i,y , (12)

to quantify the effect of super ties on the long-term citation
impact of individual papers. This fixed-effects model ac-
counts for the unobserved heterogeneity in time-independent
variables related to each researcher profile, assuming that the
systemic citation processes are the same for all researchers.
Furthermore, we use robust standard errors to account for pos-
sible heteroskedasticity or within-panel serial correlation in
the idiosyncratic error term ✏i,y . Table II shows the parameter
estimates calculated using the “xtreg , vce(robust) fe” function
in STATA11 for each dataset.

The regression results indicate that the change in Rp from
0 to 1 provides a significant citation impact boost in the long
term. This ‘apostle effect’ – the value added by a few ex-
tremely strong colleagues who act as messengers and repre-
sentatives for the knowledge contained in p – is quite robust
across each dataset analyzed, except for the Biology (other)
dataset where it was not observed to be significant at the
p = 0.05 level. Remarkably, in the datasets where �R was
statistically significant, the magnitude of the effect was com-
parable to effect of increasing ap by an exponential factor.

Interestingly, the career age parameter was negative (�t <
0) and statistically significant at the p  0.023 level in each
regression, meaning that researchers’ normalized citation im-
pact decreases across the career, possibly due to finite career
and knowledge life-cycles, and possibly the role of confirma-
tion bias in the career growth process. This finding is con-
sistent with a recent analysis of several hundred thousand re-
searcher profiles extracted from high-impact journals which
also shows a negative citation impact trend across the career
[33]. Neither the prestige (�N ) nor collaboration radius (�S)
parameters were statistically significant in explaining zi,p,y .

Discussion
The characteristic collaboration size in science has been

steadily increasing over the last century [5, 7, 26] with con-
sequences at every level of science, from education and aca-

demic careers to universities and funding bodies [8]. Un-
derstanding how this team-oriented paradigm shift affects the
sustainability of careers, the efficiency of the science system,
and the rate of novel knowledge production, will be of great
important to a broad range of scientific actors, from scientists
to science policy makers.

Collaborative activities are also fundamental to the career
growth process, especially in disciplines where research ac-
tivities require a division of labor. This is especially true in
biology and physics research, where computational, theoret-
ical, and experimental methods provide complementary ap-
proaches to a wide array of problems. As a result, a research
group leader is likely to find the assembly of team – one which
is composed of individuals with diverse, yet complementary,
skill sets, spanning time, age-groups, and personalities– a
daunting task, especially when under constraints to optimize
access to valuable facilities, hardware, and software, and fi-
nancial resources. Many emerging online social network plat-
forms provide recommendation services that attempt to ad-
dress this problem by suggesting potentially advantageous
collaboration matches. These considerations underscore why
it is important to understand the role of local network struc-
tures. Understanding the redundancies in the local network
[24] and the interaction capacity of team members [22] pro-
vides the potential to act on this information and gain a strate-
gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
important implications on information spreading [16], career
paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
longitudinal modeling. We began by considering the unavoid-
ably complex role played time. By way of example, the ar-
rival patterns of new collaborations in A. Geim’s profile (see
Fig. 1) appear to be subject to bursts, and the durations of in-
dividual collaborations appear to span the entire range, from
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ter suited for aggregating by normalizing each individual
�Kij(⌧) by its peak citation value,

�K 0
ij(⌧) ⌘ �Kij(⌧)/Max[�Kij(⌧)] , (2)

obtaining a characteristic collaboration trajectory by aver-
aging over an ensemble of �K 0

ij(t). We control for vari-
ability in the collaboration life-cycle by grouping the tra-
jectories according to the normalized coauthor intensity
x ⌘ Kij(Y )/hKii, where the normalization factor hKii =PSi

j=1 Kij(Y )/Si is the average across the Si coauthors
within profile i. We then aggregate the N{x} trajectories in
each set {x} and calculate an average trajectory

h�K 0
ij(⌧ |x)i ⌘ N�1

{x}

X

ij2{x}

�K 0
ij(⌧ |x) . (3)

Figure 3 shows h�K 0
ij(⌧ |x)i for the ranges of x-values in-

dicated in the legend. For example, the trajectories with
the largest intensity, x > 12.0 (red curve), decay over a
relatively long timescale, maintaining a value approximately
0.2 Max[�Kij(⌧)] even 20 years after the collaboration was
initiated. The trajectories with x 2 [0.9, 1.4] represent the rel-
atively common short collaborations that decay exponentially
over the characteristic time-scale hLii. Plotting the trajecto-
ries on log-linear axes shows an approximate exponential de-
cay, h�K 0

ij(⌧ |x)i ⇠ exp[�⌧/⌧ ] with an increasing time scale
⌧ for increasing x.

We calculated the half-life ⌧1/2 according to the criterion
Kij(⌧1/2) = Kij(Y )/2, which defines the time period over
which a collaboration achieved half its total production. Fig-
ures 3(C,D) indicate a sublinear scaling relation, h⌧1/2i ⇠ x⇣

with ⇣ ranging from 0.4 to 0.5 for the 4 datasets we analyzed,
providing insight into the burstiness of scientific collabo-
ration. This burstiness likely arises from the heterogenous
overlapping of multiple timescales in team activities, e.g. the
variable contract lengths in science ranging from single-year
contracts to lifetime tenure, the overlapping of multiple age
cohorts, and the projects and grants themselves which are
typically characterized by relatively short terms.

Quantifying the distribution of weak, strong, and super
ties within the ego collaboration network. Having charac-
terized the dynamic aspects of the collaboration ties, we now
focus on the variability in the tie strength distribution. Figure
4(A-D) presents the Kij profiles of four Nobel Prize laureates,
who despite their common achievement, show a wide variety
in the entry, intensity, and saturation of strong and weak ties.
The rank-coauthor profile K(r, t) is calculated by ordering the
coauthors according to rank r such that Kij(1) � Kij(2) �
· · · � Kij(Si). K(r, t) emphasizes the broad distribution of
tie strengths, especially considering the concentration of the
top-ranked coauthor fK,i ⌘ Kij(r = 1)/Ni. We observed
surprisingly large fK,i values for the scientists we analyzed,
with mean and standard deviation in the range of 0.16± 0.14
for the top scientists and 0.36 ± 0.23 for the other scientists
(see Fig. S2 for each P (fK) distribution). Surprisingly, we
observe for each discipline Max[fK,i] ⇡ 1. The large fK

FIG. 3: Growth and decay trajectory of collaboration ties. (A,B)
Average collaboration intensity, normalized to peak value, measured
⌧ years after the initiation of the collaboration tie. (C,D) For each
{x} group we show the average and standard deviation (error bar)
of ⌧1/2 using logarithmically spaced {x} groups that correspond by
color to the same groups in panels (A,B). The ⇣ value quantifies the
scaling of h⌧1/2i as a function of the scaled coauthor intensity x ⌘
Kij/hKii. The sub linear (⇣ < 1) values indicate that collaborations
are distributed over a timescale that grows slower than proportional
to x. Figure S3 shows the analogous plot for the other physics and
biology datasets; all 4 datasets exhibit similar features.

values (notably larger for the scientists lacking the extreme
prestige associated with top scientists) suggests that scientists
strategically pair up in order to share profits and risk across the
career. The large fK,i values also highlight the need for im-
pact measures that account for twin profiles, otherwise there
is no penalty to discourage coauthor free-riding [7].

Despite the extreme Kij(r) values, most collaborations
have Kij(r = 10) ⇠ 10 copublications. Hence, the aver-
age hKii is a robust intensity descriptor; see Fig. 5(A) for
the cumulative distribution P (� hKii). We also quantify
the variation in Kij using the Gini index Gi shown in Fig.
5(B). Together, these two measures show how hKii and Gi

vary across discipline, with physics exhibiting larger values.
The distributions also indicate that the biology datasets are
well matched with respect to these two quantities, whereas
the physics datasets are less well matched, with smaller values
for the top cited researchers. Hence, we will control for this
variability in our ultimate regression model. The distribution
P (Kij) exhibits universal features, ranging rather smoothly
from the most common collaborations, those with the small-
est value Kij = 1, to a few relatively close to the upper limit
Kij  Ni. For example, Figs. 4(D) shows the case of J. L.
Goldstein and M. S. Brown, winners of the 1985 Nobel Prize
in Physiology or Medicine, representing the extreme “binary
star” system where out of more than 450 publications, we ob-
serve fK ⇡ 0.95. Remarkably, Figs. S2 indicate that it is not
uncommon for fK > 0.5.

In order to establish whether a given Kij is excessively
strong, we must define a benchmark distribution model. In
order to establish statistical regularities in the distribution of
Kij values, we recall that hKii is the characteristic collab-
oration scale which grows in proportion to both an author’s

, 

for each dataset setting the characteristic frequency of super
ties at 1 in 25 coauthors. The pairwise K-S test between all
P (fR,i) yields a p-value > 0.05, meaning that all the datasets
are also statistically well-matched with respect to fR,i.

On a per paper basis, Fig. 5(B) shows that the fraction
of researcher’s portfolio coauthored with at least one super
tie, fN,i, can vary over the entire range of possibilities, with
mean and standard deviation 0.50±0.18 (top bio.), 0.74±0.13
(other bio.), 0.42±0.19 (top phys.), 0.58±0.23 (other phys.).
This feature is further reiterated by considering the publica-
tion overlap with the researcher’s top super tie, fK,i, shown in
Fig. 5(C). Interestingly, the top scientists demonstrate lower
levels of dependency on their super-ties.

We also analyzed the arrival rate of super-ties. For each
profile we tracked the number of super ties initiated in year
t, and normalized this number by the total number of new
collaborations initiated in the same year. This ratio, �R,i(t),
estimates the likelihood that any new collaboration eventu-
ally becomes a super tie. Figure 5(D) shows the mean arrival
rate, h�R(t)i, calculated by averaging over all profiles in each
dataset, which exhibits a negative trend. This result is par-
tially biased for large t because collaborations initiated late in
the career may not have had su�cient time to grow. Never-
theless, we find that new collaborations have only a 5% chance
of becoming super-ties at t = 20 years into the career.

In the next two subsections, we investigate the role of su-
per ties at the micro level by analyzing productivity at the
annual time resolution and citation impact at the scale of
individual publications. In the SI Appendix we provide addi-
tional evidence for the advantage of super ties by developing
a descriptive method that measures the net productivity and
the net citations of the super ties relative to all other ties.

The Apostle e↵ect I: Quantifying the impact of super
ties on annual productivity. We analyzed each research
profile over the career years ti 2 [6,Min(29, Ti)], separating
the data into non-overlapping �t-year periods, and neglecting
the first 5 years to allow the Lij(t) and Kij(t) su�cient time
to grow. We then modeled the dependent variable, ni,t/hnii,
which is the productivity aggregated over �t-year periods,
normalized by the baseline average calculated over the period
of analysis. Recent analysis of assistant and tenured profes-
sors shows that annual productivity, corresponding to ni(t)
for �t = 1, is governed by slow but substantial growth across
the career, with fluctuations that are largely related to collab-
oration size [23].

Hence, for each �t-year period, we control for career age t
along with four additional egocentric variables related to pro-
ductivity. First, we calculated the average number of authors
per publication, ai,t, a proxy for labor input, coordination
costs, and the research technology level. Second, we calcu-
lated the mean duration, Li,t, calculated by averaging the
Lij(t��t) values for only the j active in t – i.e. those coau-
thors with �Kij(t) = Kij(t) � Kij(t � �t) > 0. Thus, Li,t

measures the level of prior experience with i. Third, for the
same set of coauthors as for Li,t, we calculated the Gini index
of the collaboration intensity, GK

i,t, using the intensity values
up to the previous period, Kij(t � �t). Thus, GK

i,t provides
a standardized measure of the dispersion in coauthor produc-
tivity, with values ranging from 0 (all coauthors contributed
equally in the past) to 1 (extreme inequality in prior collective
participation). And finally, we calculated the relative inten-
sity of super tie collaborators,

⇢i,t ⌘
P

j|R=1 �Kij(t)
P

j|R=0 �Kij(t)
. [3]

For a period with productivity factor ni,t/hnii, the ratio ⇢i,t
represents the relative contribution of super ties, which is less
related to ni,t than the absolute contribution represented by
the numerator of Eq. 3. In this way, ⇢i,t is analogous to
a weighted time-dependent super-tie fraction (fR,i) measure.
We only include research profiles in our analysis if there are
� 4 data for which the denominator of Eq. 3 is nonzero.

We implemented a fixed e↵ects regression of the model
ni,t

hnii
= �i,0 + �a ln ai,t + �LLi,t +

�GG
K
i,t + �⇢⇢i,t + �tti,t + ✏i,t , [4]

which accounts for author-specific time-invariant features
(�i,0), also using robust standard errors to account for au-
tocorrelation within each i. Table 1 shows the results of our
model estimates for �t = 1. We also ran the regression for
all the datasets together,“All”, and provide standardized co-
e�cients that better facilitate a comparison of the coe�cient
magnitudes.

The apostle e↵ect coe�cient �⇢ represents the productiv-
ity advantage of super ties, which we found to be statistically
significant at the p  0.003 level in each regression. The
coe�cient �L is negative (p  0.008 for all datasets except
for top biology), demonstrating how productivity can bene-
fit from collaborator turnover. The coe�cient �G is positive
(p  0.001 level for all datasets), indicating the value of hi-
erarchical team structure that mixes across experience levels.
The age coe�cient �t is also positive (p < 0.001 level for all
datasets) indicating the steady productivity growth associated
with successful research careers [6, 23, 32]. Table S1 shows the
model estimates for variables aggregated over �t = 3 year pe-
riods. Possible explanatory variables to consider in followup
analysis are standard deviation in Kij , a contact frequency
(Kij/Lij) measure of tie strength per Granovetter’s original
operationalization [11], and absolute calendar year y, vari-
ables which we omit here to keep the model streamlined.

The Apostle e↵ect II: Quantifying the role of super
ties on the citation impact of individual publications.
Determining the impact of super ties on a publication’s long-
term citation tally is di�cult to measure, because clearly
older publications have had more time to accrue citations than
newer ones – a type of censoring bias – and so a direct com-
parison of raw citations counts for publications from di↵erent
years is technically flawed. To address this measurement prob-
lem, we map the citation count ci,p,Y (y) in census year Yi of a
publication p published in year y < Yi to a normalized z-score,

zi,p,y ⌘ ln ci,p,Y (y)� hln cmY (y)i
�[ln cmY (y)]

. [5]

This citation measure is well-suited for the comparison of pub-
lications from di↵erent y because zi,p,y is measured relative to
the mean hln cmY (y)i number of citations by publications from
the same year y, in units of the standard deviation, �[ln cmY (y)]
[32]. Thus, we take advantage of the fact that the distribu-
tion of citations obeys a universal log-normal distribution for
p from the same y and discipline [34]. In this way, z is defined
such that the distribution P (z) is su�ciently time invariant.
To confirm this property, we aggregated zi,p,y within succes-
sive 8-year periods, and calculated the conditional distribu-
tions P (z|y), which are stable and approximately normally
distributed over the entire sample period (see SI Appendix

Fig. S3).
To define the detrending indices h...i and �[...] we use the

baseline journal set m comprising all research articles col-
lected from the journals Nature, Proceedings of the National

Academy of Science, and Science. We use this aggregation of
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for each dataset setting the characteristic frequency of super
ties at 1 in 25 coauthors. The pairwise K-S test between all
P (fR,i) yields a p-value > 0.05, meaning that all the datasets
are also statistically well-matched with respect to fR,i.

On a per paper basis, Fig. 5(B) shows that the fraction
of researcher’s portfolio coauthored with at least one super
tie, fN,i, can vary over the entire range of possibilities, with
mean and standard deviation 0.50±0.18 (top bio.), 0.74±0.13
(other bio.), 0.42±0.19 (top phys.), 0.58±0.23 (other phys.).
This feature is further reiterated by considering the publica-
tion overlap with the researcher’s top super tie, fK,i, shown in
Fig. 5(C). Interestingly, the top scientists demonstrate lower
levels of dependency on their super-ties.

We also analyzed the arrival rate of super-ties. For each
profile we tracked the number of super ties initiated in year
t, and normalized this number by the total number of new
collaborations initiated in the same year. This ratio, �R,i(t),
estimates the likelihood that any new collaboration eventu-
ally becomes a super tie. Figure 5(D) shows the mean arrival
rate, h�R(t)i, calculated by averaging over all profiles in each
dataset, which exhibits a negative trend. This result is par-
tially biased for large t because collaborations initiated late in
the career may not have had su�cient time to grow. Never-
theless, we find that new collaborations have only a 5% chance
of becoming super-ties at t = 20 years into the career.

In the next two subsections, we investigate the role of su-
per ties at the micro level by analyzing productivity at the
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Fig. S3).
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Apostle effect: citation model (zi,p)
Dataset A ln ap Rp tp lnNi(tp) lnSi(tp) Nobs. Adj. R2

All 373 0.251± 0.024 0.205± 0.024 �0.062± 0.004 0.075± 0.066 0.050± 0.072 65513 0.265
p-value 0.000 0.000 0.000 0.256 0.491

Biology (top) 100 0.269± 0.041 0.203± 0.034 �0.033± 0.007 �0.104± 0.106 0.050± 0.114 21398 0.113
p-value 0.000 0.000 0.000 0.327 0.661

Biology (other) 52 0.579± 0.056 0.127± 0.071 �0.037± 0.016 �0.192± 0.103 0.230± 0.106 4303 0.201
p-value 0.000 0.079 0.023 0.069 0.034

Physics (top) 100 0.121± 0.043 0.239± 0.044 �0.072± 0.007 0.277± 0.120 �0.115± 0.137 21819 0.188
p-value 0.006 0.000 0.000 0.022 0.402

Physics (other) 121 0.253± 0.041 0.243± 0.049 �0.061± 0.008 0.073± 0.092 0.016± 0.101 17993 0.187
p-value 0.000 0.000 0.000 0.427 0.874

TABLE II: Parameter estimates for the fixed-effects regression model in Eq. (12) calculated with STATA using robust standard errors
(“vce(robust)”) to implement the Huber/White/sandwich method. Values significant at the p < 0.01 level are indicated in boldface. Only
papers with yp  2002 were analyzed so that the dependent variable zi,p has time to become a robust measure of relative citation impact.

the parameters of the citation impact model,

zi,p,y = �i,0 + �a ln ai,p + �RRi,p + �tti,p +

�N lnNi(tp) + �S lnSi(tp) + ✏i,y , (12)

to quantify the effect of super ties on the long-term citation
impact of individual papers. This fixed-effects model ac-
counts for the unobserved heterogeneity in time-independent
variables related to each researcher profile, assuming that the
systemic citation processes are the same for all researchers.
Furthermore, we use robust standard errors to account for pos-
sible heteroskedasticity or within-panel serial correlation in
the idiosyncratic error term ✏i,y . Table II shows the parameter
estimates calculated using the “xtreg , vce(robust) fe” function
in STATA11 for each dataset.

The regression results indicate that the change in Rp from
0 to 1 provides a significant citation impact boost in the long
term. This ‘apostle effect’ – the value added by a few ex-
tremely strong colleagues who act as messengers and repre-
sentatives for the knowledge contained in p – is quite robust
across each dataset analyzed, except for the Biology (other)
dataset where it was not observed to be significant at the
p = 0.05 level. Remarkably, in the datasets where �R was
statistically significant, the magnitude of the effect was com-
parable to effect of increasing ap by an exponential factor.

Interestingly, the career age parameter was negative (�t <
0) and statistically significant at the p  0.023 level in each
regression, meaning that researchers’ normalized citation im-
pact decreases across the career, possibly due to finite career
and knowledge life-cycles, and possibly the role of confirma-
tion bias in the career growth process. This finding is con-
sistent with a recent analysis of several hundred thousand re-
searcher profiles extracted from high-impact journals which
also shows a negative citation impact trend across the career
[33]. Neither the prestige (�N ) nor collaboration radius (�S)
parameters were statistically significant in explaining zi,p,y .

Discussion
The characteristic collaboration size in science has been

steadily increasing over the last century [5, 7, 26] with con-
sequences at every level of science, from education and aca-

demic careers to universities and funding bodies [8]. Un-
derstanding how this team-oriented paradigm shift affects the
sustainability of careers, the efficiency of the science system,
and the rate of novel knowledge production, will be of great
important to a broad range of scientific actors, from scientists
to science policy makers.

Collaborative activities are also fundamental to the career
growth process, especially in disciplines where research ac-
tivities require a division of labor. This is especially true in
biology and physics research, where computational, theoret-
ical, and experimental methods provide complementary ap-
proaches to a wide array of problems. As a result, a research
group leader is likely to find the assembly of team – one which
is composed of individuals with diverse, yet complementary,
skill sets, spanning time, age-groups, and personalities– a
daunting task, especially when under constraints to optimize
access to valuable facilities, hardware, and software, and fi-
nancial resources. Many emerging online social network plat-
forms provide recommendation services that attempt to ad-
dress this problem by suggesting potentially advantageous
collaboration matches. These considerations underscore why
it is important to understand the role of local network struc-
tures. Understanding the redundancies in the local network
[24] and the interaction capacity of team members [22] pro-
vides the potential to act on this information and gain a strate-
gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
important implications on information spreading [16], career
paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
longitudinal modeling. We began by considering the unavoid-
ably complex role played time. By way of example, the ar-
rival patterns of new collaborations in A. Geim’s profile (see
Fig. 1) appear to be subject to bursts, and the durations of in-
dividual collaborations appear to span the entire range, from
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gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
important implications on information spreading [16], career
paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
longitudinal modeling. We began by considering the unavoid-
ably complex role played time. By way of example, the ar-
rival patterns of new collaborations in A. Geim’s profile (see
Fig. 1) appear to be subject to bursts, and the durations of in-
dividual collaborations appear to span the entire range, from

number of coauthors ≈ proxy 
for coordination costs and 
technology level

number of papers up to year tp 
≈ prestige measure

number of distinct coauthors up to 
year tp ≈ collaboration radius 
measuring access to new/old team 
members

A super-tie indicator variable = 1 
if at least one of the coauthors 
is a super tie, and 0 otherwise. 
52% of publications have R=1.
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Apostle effect: citation model (zi,p)
Dataset A ln ap Rp tp lnNi(tp) lnSi(tp) Nobs. Adj. R2

All 373 0.251± 0.024 0.205± 0.024 �0.062± 0.004 0.075± 0.066 0.050± 0.072 65513 0.265
p-value 0.000 0.000 0.000 0.256 0.491

Biology (top) 100 0.269± 0.041 0.203± 0.034 �0.033± 0.007 �0.104± 0.106 0.050± 0.114 21398 0.113
p-value 0.000 0.000 0.000 0.327 0.661

Biology (other) 52 0.579± 0.056 0.127± 0.071 �0.037± 0.016 �0.192± 0.103 0.230± 0.106 4303 0.201
p-value 0.000 0.079 0.023 0.069 0.034

Physics (top) 100 0.121± 0.043 0.239± 0.044 �0.072± 0.007 0.277± 0.120 �0.115± 0.137 21819 0.188
p-value 0.006 0.000 0.000 0.022 0.402

Physics (other) 121 0.253± 0.041 0.243± 0.049 �0.061± 0.008 0.073± 0.092 0.016± 0.101 17993 0.187
p-value 0.000 0.000 0.000 0.427 0.874

TABLE II: Parameter estimates for the fixed-effects regression model in Eq. (12) calculated with STATA using robust standard errors
(“vce(robust)”) to implement the Huber/White/sandwich method. Values significant at the p < 0.01 level are indicated in boldface. Only
papers with yp  2002 were analyzed so that the dependent variable zi,p has time to become a robust measure of relative citation impact.

the parameters of the citation impact model,

zi,p,y = �i,0 + �a ln ai,p + �RRi,p + �tti,p +

�N lnNi(tp) + �S lnSi(tp) + ✏i,y , (12)

to quantify the effect of super ties on the long-term citation
impact of individual papers. This fixed-effects model ac-
counts for the unobserved heterogeneity in time-independent
variables related to each researcher profile, assuming that the
systemic citation processes are the same for all researchers.
Furthermore, we use robust standard errors to account for pos-
sible heteroskedasticity or within-panel serial correlation in
the idiosyncratic error term ✏i,y . Table II shows the parameter
estimates calculated using the “xtreg , vce(robust) fe” function
in STATA11 for each dataset.

The regression results indicate that the change in Rp from
0 to 1 provides a significant citation impact boost in the long
term. This ‘apostle effect’ – the value added by a few ex-
tremely strong colleagues who act as messengers and repre-
sentatives for the knowledge contained in p – is quite robust
across each dataset analyzed, except for the Biology (other)
dataset where it was not observed to be significant at the
p = 0.05 level. Remarkably, in the datasets where �R was
statistically significant, the magnitude of the effect was com-
parable to effect of increasing ap by an exponential factor.

Interestingly, the career age parameter was negative (�t <
0) and statistically significant at the p  0.023 level in each
regression, meaning that researchers’ normalized citation im-
pact decreases across the career, possibly due to finite career
and knowledge life-cycles, and possibly the role of confirma-
tion bias in the career growth process. This finding is con-
sistent with a recent analysis of several hundred thousand re-
searcher profiles extracted from high-impact journals which
also shows a negative citation impact trend across the career
[33]. Neither the prestige (�N ) nor collaboration radius (�S)
parameters were statistically significant in explaining zi,p,y .

Discussion
The characteristic collaboration size in science has been

steadily increasing over the last century [5, 7, 26] with con-
sequences at every level of science, from education and aca-

demic careers to universities and funding bodies [8]. Un-
derstanding how this team-oriented paradigm shift affects the
sustainability of careers, the efficiency of the science system,
and the rate of novel knowledge production, will be of great
important to a broad range of scientific actors, from scientists
to science policy makers.

Collaborative activities are also fundamental to the career
growth process, especially in disciplines where research ac-
tivities require a division of labor. This is especially true in
biology and physics research, where computational, theoret-
ical, and experimental methods provide complementary ap-
proaches to a wide array of problems. As a result, a research
group leader is likely to find the assembly of team – one which
is composed of individuals with diverse, yet complementary,
skill sets, spanning time, age-groups, and personalities– a
daunting task, especially when under constraints to optimize
access to valuable facilities, hardware, and software, and fi-
nancial resources. Many emerging online social network plat-
forms provide recommendation services that attempt to ad-
dress this problem by suggesting potentially advantageous
collaboration matches. These considerations underscore why
it is important to understand the role of local network struc-
tures. Understanding the redundancies in the local network
[24] and the interaction capacity of team members [22] pro-
vides the potential to act on this information and gain a strate-
gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
important implications on information spreading [16], career
paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
longitudinal modeling. We began by considering the unavoid-
ably complex role played time. By way of example, the ar-
rival patterns of new collaborations in A. Geim’s profile (see
Fig. 1) appear to be subject to bursts, and the durations of in-
dividual collaborations appear to span the entire range, from

publication year of p, measured as a career age, accounting for 
aging and cumulative advantage effects, learning and prestige

Is there a citation advantage associated with Super Ties?

zi,p =
(ln ci,p,y � hln cyi)
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zi,p = �RRi,p + �a ln ai,p + �tti,p + �N lnNi(tp) + �S lnSi(tp) + �i + ✏i,p
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• 1 in 25 collaborators 
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In terms of real citation impact: 100 x 0.2 𝜎z corresponds to ~ 20% 
citation increase at the publication level (relative to the author’s own 
mean baseline)!

Plausible explanations: compounding self-citations, reputation 
arising from larger formal and informal social network; added value 
of skill complementarity, trust, conviction, commitment, experience, 
collocation, moral support, risk-profit sharing

Strategic value of high-intensity collaborations
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counts for the unobserved heterogeneity in time-independent
variables related to each researcher profile, assuming that the
systemic citation processes are the same for all researchers.
Furthermore, we use robust standard errors to account for pos-
sible heteroskedasticity or within-panel serial correlation in
the idiosyncratic error term ✏i,y . Table II shows the parameter
estimates calculated using the “xtreg , vce(robust) fe” function
in STATA11 for each dataset.

The regression results indicate that the change in Rp from
0 to 1 provides a significant citation impact boost in the long
term. This ‘apostle effect’ – the value added by a few ex-
tremely strong colleagues who act as messengers and repre-
sentatives for the knowledge contained in p – is quite robust
across each dataset analyzed, except for the Biology (other)
dataset where it was not observed to be significant at the
p = 0.05 level. Remarkably, in the datasets where �R was
statistically significant, the magnitude of the effect was com-
parable to effect of increasing ap by an exponential factor.

Interestingly, the career age parameter was negative (�t <
0) and statistically significant at the p  0.023 level in each
regression, meaning that researchers’ normalized citation im-
pact decreases across the career, possibly due to finite career
and knowledge life-cycles, and possibly the role of confirma-
tion bias in the career growth process. This finding is con-
sistent with a recent analysis of several hundred thousand re-
searcher profiles extracted from high-impact journals which
also shows a negative citation impact trend across the career
[33]. Neither the prestige (�N ) nor collaboration radius (�S)
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derstanding how this team-oriented paradigm shift affects the
sustainability of careers, the efficiency of the science system,
and the rate of novel knowledge production, will be of great
important to a broad range of scientific actors, from scientists
to science policy makers.

Collaborative activities are also fundamental to the career
growth process, especially in disciplines where research ac-
tivities require a division of labor. This is especially true in
biology and physics research, where computational, theoret-
ical, and experimental methods provide complementary ap-
proaches to a wide array of problems. As a result, a research
group leader is likely to find the assembly of team – one which
is composed of individuals with diverse, yet complementary,
skill sets, spanning time, age-groups, and personalities– a
daunting task, especially when under constraints to optimize
access to valuable facilities, hardware, and software, and fi-
nancial resources. Many emerging online social network plat-
forms provide recommendation services that attempt to ad-
dress this problem by suggesting potentially advantageous
collaboration matches. These considerations underscore why
it is important to understand the role of local network struc-
tures. Understanding the redundancies in the local network
[24] and the interaction capacity of team members [22] pro-
vides the potential to act on this information and gain a strate-
gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
important implications on information spreading [16], career
paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
longitudinal modeling. We began by considering the unavoid-
ably complex role played time. By way of example, the ar-
rival patterns of new collaborations in A. Geim’s profile (see
Fig. 1) appear to be subject to bursts, and the durations of in-
dividual collaborations appear to span the entire range, from
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variables related to each researcher profile, assuming that the
systemic citation processes are the same for all researchers.
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estimates calculated using the “xtreg , vce(robust) fe” function
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The regression results indicate that the change in Rp from
0 to 1 provides a significant citation impact boost in the long
term. This ‘apostle effect’ – the value added by a few ex-
tremely strong colleagues who act as messengers and repre-
sentatives for the knowledge contained in p – is quite robust
across each dataset analyzed, except for the Biology (other)
dataset where it was not observed to be significant at the
p = 0.05 level. Remarkably, in the datasets where �R was
statistically significant, the magnitude of the effect was com-
parable to effect of increasing ap by an exponential factor.

Interestingly, the career age parameter was negative (�t <
0) and statistically significant at the p  0.023 level in each
regression, meaning that researchers’ normalized citation im-
pact decreases across the career, possibly due to finite career
and knowledge life-cycles, and possibly the role of confirma-
tion bias in the career growth process. This finding is con-
sistent with a recent analysis of several hundred thousand re-
searcher profiles extracted from high-impact journals which
also shows a negative citation impact trend across the career
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parameters were statistically significant in explaining zi,p,y .
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growth process, especially in disciplines where research ac-
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ical, and experimental methods provide complementary ap-
proaches to a wide array of problems. As a result, a research
group leader is likely to find the assembly of team – one which
is composed of individuals with diverse, yet complementary,
skill sets, spanning time, age-groups, and personalities– a
daunting task, especially when under constraints to optimize
access to valuable facilities, hardware, and software, and fi-
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forms provide recommendation services that attempt to ad-
dress this problem by suggesting potentially advantageous
collaboration matches. These considerations underscore why
it is important to understand the role of local network struc-
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[24] and the interaction capacity of team members [22] pro-
vides the potential to act on this information and gain a strate-
gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
important implications on information spreading [16], career
paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
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variables related to each researcher profile, assuming that the
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in STATA11 for each dataset.

The regression results indicate that the change in Rp from
0 to 1 provides a significant citation impact boost in the long
term. This ‘apostle effect’ – the value added by a few ex-
tremely strong colleagues who act as messengers and repre-
sentatives for the knowledge contained in p – is quite robust
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parable to effect of increasing ap by an exponential factor.

Interestingly, the career age parameter was negative (�t <
0) and statistically significant at the p  0.023 level in each
regression, meaning that researchers’ normalized citation im-
pact decreases across the career, possibly due to finite career
and knowledge life-cycles, and possibly the role of confirma-
tion bias in the career growth process. This finding is con-
sistent with a recent analysis of several hundred thousand re-
searcher profiles extracted from high-impact journals which
also shows a negative citation impact trend across the career
[33]. Neither the prestige (�N ) nor collaboration radius (�S)
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important to a broad range of scientific actors, from scientists
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growth process, especially in disciplines where research ac-
tivities require a division of labor. This is especially true in
biology and physics research, where computational, theoret-
ical, and experimental methods provide complementary ap-
proaches to a wide array of problems. As a result, a research
group leader is likely to find the assembly of team – one which
is composed of individuals with diverse, yet complementary,
skill sets, spanning time, age-groups, and personalities– a
daunting task, especially when under constraints to optimize
access to valuable facilities, hardware, and software, and fi-
nancial resources. Many emerging online social network plat-
forms provide recommendation services that attempt to ad-
dress this problem by suggesting potentially advantageous
collaboration matches. These considerations underscore why
it is important to understand the role of local network struc-
tures. Understanding the redundancies in the local network
[24] and the interaction capacity of team members [22] pro-
vides the potential to act on this information and gain a strate-
gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
important implications on information spreading [16], career
paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
longitudinal modeling. We began by considering the unavoid-
ably complex role played time. By way of example, the ar-
rival patterns of new collaborations in A. Geim’s profile (see
Fig. 1) appear to be subject to bursts, and the durations of in-
dividual collaborations appear to span the entire range, from

approximately log-normally distributed in the right tail (7). The
second explanatory variable is the dummy variable Ri,p, which
takes the value 1 if p includes a super tie and the value 0 other-
wise. Remarkably, the percentage of publications including a
super tie is rather close to parity for three of the four datasets:
54% (Top biology), 45% (Top physics), 74% (Other biology), and
54% (Other physics). The third age variable, ti,p, is the career age
of i at the time of publication. The fourth variable, NiðtpÞ, is the
total number of publications up to year ti,p, which is a non-cita-
tion-based measure of the central author’s reputation, visibility,
and experience within the scientific community. The final ex-
planatory variable is the collaboration radius, SiðtpÞ, which is the
cumulative number of distinct coauthors up to ti,p, representing
the central author’s access to collaborative resources, as well as
an estimate of the number of researchers in the local community
who, having published with i, may preferentially cite i. Hence, by
including NiðtpÞ and SiðtpÞ, we control for two dimensions of cu-
mulative advantage that could potentially affect a publication’s
citation tally.
We then implement a fixed-effects regression to estimate the

parameters of the citation impact model,

zi,p= βi,0+ βa ln ai,p+ βRRi,p+ βtti,p+ βN lnNi
!
tp
"
+ βS ln Si

!
tp
"
+ ei,p,

[8]

using the Huber/White/sandwich method to calculate robust SE
estimates that account for heteroskedasticity and within-panel
serial correlation in the idiosyncratic error term ei,p. We excluded
publications with yp > 2003, and, in order that the Top and Other
datasets are well balanced, we also excluded the Other re-
searchers with less than 43 (biology) and 33 (physics) publications
(observations) as of 2003. Table 2 lists the (standardized) parameter
estimates. We provide the data used for both regression models
in Dataset S1.
We estimated βR = 0.20± 0.02 (p≤ 0.026 level in each re-

gression), indicating a significant relative citation increase when a
publication is coauthored with at least one super tie. The stan-
dardized βa and βR coefficients are roughly equal, meaning that
increasing ap from 1 (a solo author publication) to e≈ 3 coauthors
produces roughly the same effect as a change in Rp from 0 to 1.
Thus, although larger team size correlates with more citations (4),
the relative strength of βR stresses the importance of who in ad-
dition to how many.
Interestingly, the career age parameter βt =−0.061± 0.004 is

negative (significant at the p≤ 0.04 level in each regression),
meaning that researchers’ normalized citation impact decreases
across the career, possibly due to finite career and knowledge life
cycles. This finding is consistent with a large-scale analysis of
researcher histories within high-impact journals, which also shows
a negative trend in the citation impact across a career (31). Neither
the reputation (βN) nor collaboration radius (βS) parameters were
consistently statistically significant in explaining zi,p,y, likely because
they are highly correlated with tp for established researchers.
Modifications to consider in followup analysis are controls for the
impact factor of the journal publishing p, the absolute year y to
account for shifts in citation patterns in the post-Internet era, and
removing self-citations from super ties. Unfortunately, this last task
requires a substantial increase in data coverage, far beyond the
relatively small amount needed to construct individual ego network
collaboration profiles.
We develop three additional descriptive methods in SI Text to

compare the subset of publications with at least one super tie to
the complementary subset of publications without one. These in-
vestigations provide further evidence for the apostle effect. First,
we defined an aggregate career measure, the productivity premium
pN,i (see Eq. S1), which measures the average Kij value among the
super ties relative to all of the other collaborators. Second, we

defined a similar career measure, the citation premium pC,i (see
Eq. S5), which quantifies the average citation impact attributable
to super ties relative to all of the other collaborators.
Independent of dataset, we observed rather substantial pre-

mium values. For example, the productivity premium has an av-
erage value h pNi≈ 8, meaning that on a per-collaborator basis,
productivity with super ties is roughly 8 times higher than with the
remaining collaborators. Similarly, the citation premium pC,i
is also significantly right-skewed, with average value hpCi≈ 14,
meaning that net citation impact per super tie is 14 times larger
than the net citation impact from all other collaborators. We
emphasize that pC,i appropriately accounts for team size by using
an equal partitioning of citation credit across the ap coauthors,
remedying the multiplicity problem concerning citation credit.
Third, we calculated an additional estimation of the publica-

tion-level citation advantage due to super ties (Fig. S6). For both
biology and physics, we found that the publications with super ties
receive roughly 17% more citations than their counterparts. In
basic terms, this means that the average publication with a super
tie has 21 more citations in biology and 8 more citations in physics
than the average publication without a super tie. This is not a tail
effect, because the citation boost factor αR = 1.17 applies a mul-
tiplicative shift to the entire citation distribution, Pð~cjRp = 1Þ≈
PðαR~cjRp = 0Þ, thereby impacting publications above and below
the average.

Discussion
The characteristic collaboration size in science has been steadily
increasing over the last century (4, 7, 21), with consequences at
every level of science, from education and academic careers to
universities and funding bodies (8). Understanding how this
team-oriented paradigm shift affects the sustainability of careers,
the efficiency of the science system, and society’s capacity to
overcome grand challenges will be of great importance to a broad
range of scientific actors, from scientists to science policy makers.
Collaborative activities are also fundamental to the career

growth process, especially in disciplines where research activities
require a division of labor. This is especially true in biology and
physics research, where computational, theoretical, and experi-
mental methods provide complementary approaches to a wide
array of problems. As a result, a contemporary research group
leader is likely to find the assembly of team—one that is com-
posed of individuals with diverse yet complementary skill sets—a
daunting task, especially when under constraints to optimize
financial resources, valuable facilities, and other material re-
sources. Online social network platforms, such as VIVO (www.
vivoweb.org/) and Profiles RNS (profiles.catalyst.harvard.edu/),
which serve as match-making recommendation systems, have
been developed to facilitate the challenges of team assembly.
Our analysis indicates that 2/3 of the collaborations analyzed

here are weak. Nevertheless, the remaining strong ties represent
social capital investments that can indeed have important long-
term implications, for example, on information spreading (17),
career paths (36), and access to key strategic resources (37). In
the private sector, strong ties facilitate access to new growth op-
portunities, playing an important role in sustaining the competi-
tiveness of firms and employees (38). These considerations further
identify why it is important for researchers to understand the op-
portunities that exist within their local network. Understanding the
redundancies in the local network (39) and the interaction capacity
of team members (25) can help a group leader optimize group
intelligence (26) and monitor team efficiency (24), thereby con-
stituting a source of strategic competitive advantage.
In summary, we developed methods to better understand the

diversity of collaboration strengths. We focused on the career as
the unit of analysis, operationalized by using an ego perspective
so that collaborations, publications, and impact scores fit to-
gether into a temporal framework ideal for cross-sectional and
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zi,p= βi,0+ βa ln ai,p+ βRRi,p+ βtti,p+ βN lnNi
!
tp
"
+ βS ln Si

!
tp
"
+ ei,p,

[8]
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pN,i (see Eq. S1), which measures the average Kij value among the
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Eq. S5), which quantifies the average citation impact attributable
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is also significantly right-skewed, with average value hpCi≈ 14,
meaning that net citation impact per super tie is 14 times larger
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emphasize that pC,i appropriately accounts for team size by using
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remedying the multiplicity problem concerning citation credit.
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receive roughly 17% more citations than their counterparts. In
basic terms, this means that the average publication with a super
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than the average publication without a super tie. This is not a tail
effect, because the citation boost factor αR = 1.17 applies a mul-
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PðαR~cjRp = 0Þ, thereby impacting publications above and below
the average.

Discussion
The characteristic collaboration size in science has been steadily
increasing over the last century (4, 7, 21), with consequences at
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universities and funding bodies (8). Understanding how this
team-oriented paradigm shift affects the sustainability of careers,
the efficiency of the science system, and society’s capacity to
overcome grand challenges will be of great importance to a broad
range of scientific actors, from scientists to science policy makers.
Collaborative activities are also fundamental to the career

growth process, especially in disciplines where research activities
require a division of labor. This is especially true in biology and
physics research, where computational, theoretical, and experi-
mental methods provide complementary approaches to a wide
array of problems. As a result, a contemporary research group
leader is likely to find the assembly of team—one that is com-
posed of individuals with diverse yet complementary skill sets—a
daunting task, especially when under constraints to optimize
financial resources, valuable facilities, and other material re-
sources. Online social network platforms, such as VIVO (www.
vivoweb.org/) and Profiles RNS (profiles.catalyst.harvard.edu/),
which serve as match-making recommendation systems, have
been developed to facilitate the challenges of team assembly.
Our analysis indicates that 2/3 of the collaborations analyzed

here are weak. Nevertheless, the remaining strong ties represent
social capital investments that can indeed have important long-
term implications, for example, on information spreading (17),
career paths (36), and access to key strategic resources (37). In
the private sector, strong ties facilitate access to new growth op-
portunities, playing an important role in sustaining the competi-
tiveness of firms and employees (38). These considerations further
identify why it is important for researchers to understand the op-
portunities that exist within their local network. Understanding the
redundancies in the local network (39) and the interaction capacity
of team members (25) can help a group leader optimize group
intelligence (26) and monitor team efficiency (24), thereby con-
stituting a source of strategic competitive advantage.
In summary, we developed methods to better understand the

diversity of collaboration strengths. We focused on the career as
the unit of analysis, operationalized by using an ego perspective
so that collaborations, publications, and impact scores fit to-
gether into a temporal framework ideal for cross-sectional and
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A B,C BIO XD

B A BIO BIO

C A,D CS XD

D C CS CS

B

C

A
Direct link: publication 
between scholar i and j

i 
Coauthors    Department       

Mono-Disc. scholar :       

Mono-Disc. scholar :      

Cross-Disc. scholar :      

Table S2: Career dataset: Pooled cross-sectional model. The dependent variable is career
achievement, measured as the natural logarithm of the Google Scholar citations, lnCi at the
end of 2015. The regression model is specified in Eq. (1) and estimated using standard OLS;
there are 4, 190 Fi (observations) for the pure CV model and 3, 900 observations for the other
two models that include network attributes, as in these cases we exclude from consideration
disconnected Fi nodes. Natural logs were used to obtain variables that are approximately nor-
mally distributed. Thus, when the independent variable enters in ln, then � corresponds to
the % change in Ci following a 1% change in the independent variable; in the case of cross-
disciplinary fraction, �� represents the % change in Ci following a 0.01 shift in �i. The first
column cluster shows the estimates using only standard CV variables. The combined CV + Net-
work model demonstrates that Fi with larger �i correlate with higher net citation impact. For
the combined model we also report the standardized beta coefficients – useful for comparing
the relative strength of covariates within the regression. Standard errors were calculated using
the clustered sandwich estimator, clustering on Fi age-cohort y0i,5 (based on 14 non-overlapping
5-year career birth year groups, e.g., 1940-1944, 1945-1950, etc.) to account for within-age-
cohort correlation.

CV CV + Network CV + Network [Standardized]
CV parameters
Departmental rank, �r �0.052⇤⇤⇤ (0.006) �0.047⇤⇤⇤ (0.005) �0.056⇤⇤⇤ (0.006)
Productivity (h-index), �h 1.857⇤⇤⇤ (0.020) 1.866⇤⇤⇤ (0.022) 1.236⇤⇤⇤ (0.015)
Total NSF funding, �$1 �0.005 (0.003) �0.005 (0.003) �0.036 (0.020)
# of NSF grants, �N1 0.024 (0.013) 0.013 (0.014) 0.015 (0.015)
Total NIH funding, �$2 0.016⇤⇤⇤ (0.003) 0.014⇤⇤⇤ (0.002) 0.082⇤⇤⇤ (0.014)
# of NSF grants, �N1 �0.067⇤⇤⇤ (0.015) �0.061⇤⇤⇤ (0.012) �0.068⇤⇤⇤ (0.014)
Network parameters
F centrality, �C 0.041 (0.019) 0.026 (0.012)
Cross-disciplinarity, �� 0.571⇤⇤⇤ (0.073) 0.085⇤⇤⇤ (0.011)
Discipline (O) dummy Y Y Y

5-year cohort (y0i,5) dummy Y Y Y

Constant 1.492⇤⇤⇤ (0.087) 1.668⇤⇤⇤ (0.226) 7.609⇤⇤⇤ (0.009)
N 4, 190 3, 900 3, 900
adj. R2 0.883 0.882 0.882

Standard errors in parentheses
⇤ p < .05, ⇤⇤ p < .01, ⇤⇤⇤ p < .001

10

Author Orientation

This non-F co-author creates the link via ‘triadic closure’ between the two F . Since many

published researchers are not faculty in one of the 155 listed departments, the typical Fi has

many more mediated associations than direct collaborations with other faculty in our dataset

[Fig. S2].

We use the primary departmental affiliations, which we treat as time-invariant traits, to de-

fine three disciplinary orientations O for F . If Fi collaborated with at least one Fi0 from the

opposite department, we classify him/her as cross-disciplinary, O(Fi) ⌘ XDF . Otherwise,

Fi is classified as O(Fi) ⌘ BIOF or CSF , depending on her/his primary departmental affili-

ation. Remarkably, group sizes are nearly equal: BIOF (n = 1, 353), CSF (n = 1, 590), and

XDF (n = 1, 247). We further examined each member of the XDF group by finding their

corresponding Scopus Author Profile, which contain career-level keywords derived from their

publications. We found that 90% of the XDF faculty feature the Scopus keyword ‘genetics’ in

their curated profiles, indicating that the overwhelming majority of the XDF group have been

involved in genomics research. This consistency check confirms the soundness of our XDF

classification scheme.

O(Fi), O(Pi)

As mentioned earlier, there are many collaborators of F who are not explicitly included in

our starting sample, possibly because they are not faculty in one of the listed biology or com-

puting departments (e.g., PhD students, postdocs, and other international researchers). These

collaborators are still crucial for understanding the role of cross-disciplinarity in the genomics

revolution, as they constitute the academic ecosystem or ‘invisible college’ surrounding tenure-

track faculty (27). We identify these non-F collaborators as pollinators P , indexed by j.

In contradistinction to faculty F , we do not have knowledge of the departmental affiliations

of pollinators P . Hence, we infer their disciplinary orientation by observing their co-authorship

patterns with faculty F . Specifically: (i) Biology Pollinators O(Pj) ⌘ BIOP , if they collabo-

6

D

Oi(F) = BIO
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Data & Methods:  ~80 US Biology and Computing Departments faculty directories ⇒ List of Scholars

— we then collected data from their 4,190 Google Scholar profiles, comprising 413,565 publications



Figure 2: Growth of cross-disciplinary social capital. a. Evolution of the giant component in
the US biology-computing network. Green and magenta nodes represent F faculty with BIO

and CS affiliation, respectively; black nodes represent F faculty that by time t published at
least one cross-disciplinary publication and joined the XDF group; node size is proportional
to the logarithm of the degree centrality, lnC D

i , of Fi at time t. b. Evolution of the fraction
of collaboration links in the F network that are cross-disciplinary. We calculated f·,XD(t)
using either direct links between F (blue line) - i.e., fF ,XD(t), or association links mediated
by pollinators (red line) - i.e., fP,XD(t). For comparison, the black line shows the evolution of
cross-disciplinary links in the human genomics literature per WoS; these values are divided by
two to facilitate trend comparison. Orange area marks the HGP project period.
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Panel model specification: 
(w/ Author Fixed Effects)

Unit of Analysis = Publication

Model 1 Model 2 Model 3

XD

Mono-D (1D)

Matching procedure: 
same author
~ same year

~ same # coauthors
Panel

All Scholars
Panel

XD Scholars only

Panel
Matched publications 

( XD Scholars only )

Model 0

Cross-sectional
All Scholars

Normalized
Citation impact # coauthors

zi,p = �i + �a ln ai,p + �⌧ ⌧i,p + �II
X
i,p +Dt + ✏i,p
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Career year XD indicator Year dummy

IXi,p = 0
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Article citations and XD coauthors
[coauthors from both BIO and CS,                   ]

M0: Cross-sectional - career 
M1: Panel - Publication-level
M2: Panel - Publication-level
M3: Panel - Publication-level

Percent 
difference (%)

in citations 
for XD

relative to 
baseline

= 1D
(counterfactual)

Cross-disciplinary Citation Premium

Scholars with 10% XD-Collaborators are cited ~ 6% more than 1D Scholars from the same discipline 
Articles featuring cross-disciplinary combination of authors are cited ~20% more than 1D articles by same author
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<latexit sha1_base64="zQ5qqGwBQTQ18BRzvuhj8e49Q7Y=">AAACAnicbVDLSsNAFL2pr1pfUVfiZrAILqQkIuhGKLrRXQX7gDaGyXTSDp08mJkIJQQ3/oobF4q49Svc+TdO2iy09cCFwzn3cu89XsyZVJb1bZQWFpeWV8qrlbX1jc0tc3unJaNEENokEY9Ex8OSchbSpmKK004sKA48Ttve6Cr32w9USBaFd2ocUyfAg5D5jGClJdfcu7lPewFWQ4J52skyN2XHcYYukO2aVatmTYDmiV2QKhRouOZXrx+RJKChIhxL2bWtWDkpFooRTrNKL5E0xmSEB7SraYgDKp108kKGDrXSR34kdIUKTdTfEykOpBwHnu7Mr5WzXi7+53UT5Z87KQvjRNGQTBf5CUcqQnkeqM8EJYqPNcFEMH0rIkMsMFE6tYoOwZ59eZ60Tmq2VbNvT6v1yyKOMuzDARyBDWdQh2toQBMIPMIzvMKb8WS8GO/Gx7S1ZBQzu/AHxucPg+CW1A==</latexit><latexit sha1_base64="zQ5qqGwBQTQ18BRzvuhj8e49Q7Y=">AAACAnicbVDLSsNAFL2pr1pfUVfiZrAILqQkIuhGKLrRXQX7gDaGyXTSDp08mJkIJQQ3/oobF4q49Svc+TdO2iy09cCFwzn3cu89XsyZVJb1bZQWFpeWV8qrlbX1jc0tc3unJaNEENokEY9Ex8OSchbSpmKK004sKA48Ttve6Cr32w9USBaFd2ocUyfAg5D5jGClJdfcu7lPewFWQ4J52skyN2XHcYYukO2aVatmTYDmiV2QKhRouOZXrx+RJKChIhxL2bWtWDkpFooRTrNKL5E0xmSEB7SraYgDKp108kKGDrXSR34kdIUKTdTfEykOpBwHnu7Mr5WzXi7+53UT5Z87KQvjRNGQTBf5CUcqQnkeqM8EJYqPNcFEMH0rIkMsMFE6tYoOwZ59eZ60Tmq2VbNvT6v1yyKOMuzDARyBDWdQh2toQBMIPMIzvMKb8WS8GO/Gx7S1ZBQzu/AHxucPg+CW1A==</latexit><latexit sha1_base64="zQ5qqGwBQTQ18BRzvuhj8e49Q7Y=">AAACAnicbVDLSsNAFL2pr1pfUVfiZrAILqQkIuhGKLrRXQX7gDaGyXTSDp08mJkIJQQ3/oobF4q49Svc+TdO2iy09cCFwzn3cu89XsyZVJb1bZQWFpeWV8qrlbX1jc0tc3unJaNEENokEY9Ex8OSchbSpmKK004sKA48Ttve6Cr32w9USBaFd2ocUyfAg5D5jGClJdfcu7lPewFWQ4J52skyN2XHcYYukO2aVatmTYDmiV2QKhRouOZXrx+RJKChIhxL2bWtWDkpFooRTrNKL5E0xmSEB7SraYgDKp108kKGDrXSR34kdIUKTdTfEykOpBwHnu7Mr5WzXi7+53UT5Z87KQvjRNGQTBf5CUcqQnkeqM8EJYqPNcFEMH0rIkMsMFE6tYoOwZ59eZ60Tmq2VbNvT6v1yyKOMuzDARyBDWdQh2toQBMIPMIzvMKb8WS8GO/Gx7S1ZBQzu/AHxucPg+CW1A==</latexit><latexit sha1_base64="zQ5qqGwBQTQ18BRzvuhj8e49Q7Y=">AAACAnicbVDLSsNAFL2pr1pfUVfiZrAILqQkIuhGKLrRXQX7gDaGyXTSDp08mJkIJQQ3/oobF4q49Svc+TdO2iy09cCFwzn3cu89XsyZVJb1bZQWFpeWV8qrlbX1jc0tc3unJaNEENokEY9Ex8OSchbSpmKK004sKA48Ttve6Cr32w9USBaFd2ocUyfAg5D5jGClJdfcu7lPewFWQ4J52skyN2XHcYYukO2aVatmTYDmiV2QKhRouOZXrx+RJKChIhxL2bWtWDkpFooRTrNKL5E0xmSEB7SraYgDKp108kKGDrXSR34kdIUKTdTfEykOpBwHnu7Mr5WzXi7+53UT5Z87KQvjRNGQTBf5CUcqQnkeqM8EJYqPNcFEMH0rIkMsMFE6tYoOwZ59eZ60Tmq2VbNvT6v1yyKOMuzDARyBDWdQh2toQBMIPMIzvMKb8WS8GO/Gx7S1ZBQzu/AHxucPg+CW1A==</latexit>

Career citations and
Fraction of coauthors 

that are XD
= =

* p<0.05           ** p<0.01         *** p<0.001 

**
***

***

***

Coefficient estimates
relation between:

Panel model specification: 
(w/ Author Fixed Effects)

Unit of Analysis = Publication

Model 1 Model 2 Model 3

XD

Mono-D (1D)

Matching procedure: 
same author
~ same year

~ same # coauthors
Panel

All Scholars
Panel

XD Scholars only

Panel
Matched publications 

( XD Scholars only )

Model 0

Cross-sectional
All Scholars

Normalized
Citation impact # coauthors

zi,p = �i + �a ln ai,p + �⌧ ⌧i,p + �II
X
i,p +Dt + ✏i,p

<latexit sha1_base64="ovDa1pgtNi968ZGSBYaUTpD/FFQ=">AAACdHicdVFNbxMxEPUuXyV8NKUHDnAYiCohgVa7pVWaQ6UKONBbkUgbKRtWs47TWvV6V/YsIl35F/TfceNncOGMN0lF+RrJ8pv33sgz47xS0lIcfwvCGzdv3b6zdrdz7/6Dh+vdjUfHtqwNF0NeqtKMcrRCSS2GJEmJUWUEFrkSJ/n521Y/+SyMlaX+SPNKTAo81XImOZKnsu7lRdbIV5XbB0hzQegzBy+vMDpIlQZceuCXkBLWPm+vv7RDB4efmrRAOuOompFz1ywkvlDzzmW0yERlpfJtLPWs24uj+PX2IOlDCwb9ZLcFO3uD/gCSKF5Ej63iKOt+TaclrwuhiSu0dpzEFU0aNCS5Eq6T1lZUyM/xVIw91FgIO2kWS3Ow5ZkpzErjjyZYsNcrGiysnRe5d7aj2D+1lvyXNq5ptjdppK5qEpovH5rVCqiE9gdgKo3gpOYeIDfS9wr8DA1y8v/U8Uu4mhT+D463oySOkg87vYM3q3WssSfsOXvBEtZnB+w9O2JDxtn34HEAwbPgR/g07IVbS2sYrGo22W8RRj8B0R+8aw==</latexit><latexit sha1_base64="ovDa1pgtNi968ZGSBYaUTpD/FFQ="></latexit><latexit sha1_base64="ovDa1pgtNi968ZGSBYaUTpD/FFQ="></latexit><latexit sha1_base64="ovDa1pgtNi968ZGSBYaUTpD/FFQ="></latexit>

Career year XD indicator Year dummy

IXi,p = 0
<latexit sha1_base64="eDe8qUD999ztZMQW2NAhluM/clc=">AAACAnicdVDLSgMxFM34rPU16krcBIvgQoaMKLoRim50V8E+oB2HTJppQzOZIckIZRjc+CtuXCji1q9w59+YaSv4PBByOOde7r0nSDhTGqF3a2p6ZnZuvrRQXlxaXlm119YbKk4loXUS81i2AqwoZ4LWNdOcthJJcRRw2gwGZ4XfvKFSsVhc6WFCvQj3BAsZwdpIvr15cZ11Iqz7BPOsled+xvaSHJ5A5NsV5ByiAvA3cZ3Rjypggppvv3W6MUkjKjThWKm2ixLtZVhqRjjNy51U0QSTAe7RtqECR1R52eiEHO4YpQvDWJonNBypXzsyHCk1jAJTWWyrfnqF+JfXTnV47GVMJKmmgowHhSmHOoZFHrDLJCWaDw3BRDKzKyR9LDHRJrWyCeHzUvg/aew7LnLcy4NK9XQSRwlsgW2wC1xwBKrgHNRAHRBwC+7BI3iy7qwH69l6GZdOWZOeDfAN1usHmDeW4g==</latexit><latexit sha1_base64="eDe8qUD999ztZMQW2NAhluM/clc=">AAACAnicdVDLSgMxFM34rPU16krcBIvgQoaMKLoRim50V8E+oB2HTJppQzOZIckIZRjc+CtuXCji1q9w59+YaSv4PBByOOde7r0nSDhTGqF3a2p6ZnZuvrRQXlxaXlm119YbKk4loXUS81i2AqwoZ4LWNdOcthJJcRRw2gwGZ4XfvKFSsVhc6WFCvQj3BAsZwdpIvr15cZ11Iqz7BPOsled+xvaSHJ5A5NsV5ByiAvA3cZ3Rjypggppvv3W6MUkjKjThWKm2ixLtZVhqRjjNy51U0QSTAe7RtqECR1R52eiEHO4YpQvDWJonNBypXzsyHCk1jAJTWWyrfnqF+JfXTnV47GVMJKmmgowHhSmHOoZFHrDLJCWaDw3BRDKzKyR9LDHRJrWyCeHzUvg/aew7LnLcy4NK9XQSRwlsgW2wC1xwBKrgHNRAHRBwC+7BI3iy7qwH69l6GZdOWZOeDfAN1usHmDeW4g==</latexit><latexit sha1_base64="eDe8qUD999ztZMQW2NAhluM/clc=">AAACAnicdVDLSgMxFM34rPU16krcBIvgQoaMKLoRim50V8E+oB2HTJppQzOZIckIZRjc+CtuXCji1q9w59+YaSv4PBByOOde7r0nSDhTGqF3a2p6ZnZuvrRQXlxaXlm119YbKk4loXUS81i2AqwoZ4LWNdOcthJJcRRw2gwGZ4XfvKFSsVhc6WFCvQj3BAsZwdpIvr15cZ11Iqz7BPOsled+xvaSHJ5A5NsV5ByiAvA3cZ3Rjypggppvv3W6MUkjKjThWKm2ixLtZVhqRjjNy51U0QSTAe7RtqECR1R52eiEHO4YpQvDWJonNBypXzsyHCk1jAJTWWyrfnqF+JfXTnV47GVMJKmmgowHhSmHOoZFHrDLJCWaDw3BRDKzKyR9LDHRJrWyCeHzUvg/aew7LnLcy4NK9XQSRwlsgW2wC1xwBKrgHNRAHRBwC+7BI3iy7qwH69l6GZdOWZOeDfAN1usHmDeW4g==</latexit><latexit sha1_base64="eDe8qUD999ztZMQW2NAhluM/clc=">AAACAnicdVDLSgMxFM34rPU16krcBIvgQoaMKLoRim50V8E+oB2HTJppQzOZIckIZRjc+CtuXCji1q9w59+YaSv4PBByOOde7r0nSDhTGqF3a2p6ZnZuvrRQXlxaXlm119YbKk4loXUS81i2AqwoZ4LWNdOcthJJcRRw2gwGZ4XfvKFSsVhc6WFCvQj3BAsZwdpIvr15cZ11Iqz7BPOsled+xvaSHJ5A5NsV5ByiAvA3cZ3Rjypggppvv3W6MUkjKjThWKm2ixLtZVhqRjjNy51U0QSTAe7RtqECR1R52eiEHO4YpQvDWJonNBypXzsyHCk1jAJTWWyrfnqF+JfXTnV47GVMJKmmgowHhSmHOoZFHrDLJCWaDw3BRDKzKyR9LDHRJrWyCeHzUvg/aew7LnLcy4NK9XQSRwlsgW2wC1xwBKrgHNRAHRBwC+7BI3iy7qwH69l6GZdOWZOeDfAN1usHmDeW4g==</latexit>

IXi,p = 1
<latexit sha1_base64="zQ5qqGwBQTQ18BRzvuhj8e49Q7Y=">AAACAnicbVDLSsNAFL2pr1pfUVfiZrAILqQkIuhGKLrRXQX7gDaGyXTSDp08mJkIJQQ3/oobF4q49Svc+TdO2iy09cCFwzn3cu89XsyZVJb1bZQWFpeWV8qrlbX1jc0tc3unJaNEENokEY9Ex8OSchbSpmKK004sKA48Ttve6Cr32w9USBaFd2ocUyfAg5D5jGClJdfcu7lPewFWQ4J52skyN2XHcYYukO2aVatmTYDmiV2QKhRouOZXrx+RJKChIhxL2bWtWDkpFooRTrNKL5E0xmSEB7SraYgDKp108kKGDrXSR34kdIUKTdTfEykOpBwHnu7Mr5WzXi7+53UT5Z87KQvjRNGQTBf5CUcqQnkeqM8EJYqPNcFEMH0rIkMsMFE6tYoOwZ59eZ60Tmq2VbNvT6v1yyKOMuzDARyBDWdQh2toQBMIPMIzvMKb8WS8GO/Gx7S1ZBQzu/AHxucPg+CW1A==</latexit><latexit sha1_base64="zQ5qqGwBQTQ18BRzvuhj8e49Q7Y=">AAACAnicbVDLSsNAFL2pr1pfUVfiZrAILqQkIuhGKLrRXQX7gDaGyXTSDp08mJkIJQQ3/oobF4q49Svc+TdO2iy09cCFwzn3cu89XsyZVJb1bZQWFpeWV8qrlbX1jc0tc3unJaNEENokEY9Ex8OSchbSpmKK004sKA48Ttve6Cr32w9USBaFd2ocUyfAg5D5jGClJdfcu7lPewFWQ4J52skyN2XHcYYukO2aVatmTYDmiV2QKhRouOZXrx+RJKChIhxL2bWtWDkpFooRTrNKL5E0xmSEB7SraYgDKp108kKGDrXSR34kdIUKTdTfEykOpBwHnu7Mr5WzXi7+53UT5Z87KQvjRNGQTBf5CUcqQnkeqM8EJYqPNcFEMH0rIkMsMFE6tYoOwZ59eZ60Tmq2VbNvT6v1yyKOMuzDARyBDWdQh2toQBMIPMIzvMKb8WS8GO/Gx7S1ZBQzu/AHxucPg+CW1A==</latexit><latexit sha1_base64="zQ5qqGwBQTQ18BRzvuhj8e49Q7Y=">AAACAnicbVDLSsNAFL2pr1pfUVfiZrAILqQkIuhGKLrRXQX7gDaGyXTSDp08mJkIJQQ3/oobF4q49Svc+TdO2iy09cCFwzn3cu89XsyZVJb1bZQWFpeWV8qrlbX1jc0tc3unJaNEENokEY9Ex8OSchbSpmKK004sKA48Ttve6Cr32w9USBaFd2ocUyfAg5D5jGClJdfcu7lPewFWQ4J52skyN2XHcYYukO2aVatmTYDmiV2QKhRouOZXrx+RJKChIhxL2bWtWDkpFooRTrNKL5E0xmSEB7SraYgDKp108kKGDrXSR34kdIUKTdTfEykOpBwHnu7Mr5WzXi7+53UT5Z87KQvjRNGQTBf5CUcqQnkeqM8EJYqPNcFEMH0rIkMsMFE6tYoOwZ59eZ60Tmq2VbNvT6v1yyKOMuzDARyBDWdQh2toQBMIPMIzvMKb8WS8GO/Gx7S1ZBQzu/AHxucPg+CW1A==</latexit><latexit sha1_base64="zQ5qqGwBQTQ18BRzvuhj8e49Q7Y=">AAACAnicbVDLSsNAFL2pr1pfUVfiZrAILqQkIuhGKLrRXQX7gDaGyXTSDp08mJkIJQQ3/oobF4q49Svc+TdO2iy09cCFwzn3cu89XsyZVJb1bZQWFpeWV8qrlbX1jc0tc3unJaNEENokEY9Ex8OSchbSpmKK004sKA48Ttve6Cr32w9USBaFd2ocUyfAg5D5jGClJdfcu7lPewFWQ4J52skyN2XHcYYukO2aVatmTYDmiV2QKhRouOZXrx+RJKChIhxL2bWtWDkpFooRTrNKL5E0xmSEB7SraYgDKp108kKGDrXSR34kdIUKTdTfEykOpBwHnu7Mr5WzXi7+53UT5Z87KQvjRNGQTBf5CUcqQnkeqM8EJYqPNcFEMH0rIkMsMFE6tYoOwZ59eZ60Tmq2VbNvT6v1yyKOMuzDARyBDWdQh2toQBMIPMIzvMKb8WS8GO/Gx7S1ZBQzu/AHxucPg+CW1A==</latexit>

Model 1 Model 2 Model 3Model 0



Computer Science Faculty

Biology Faculty

Human Genome Project — a cross-disciplinary bridge facilitating a highly functional marriage

Innovation @ the genomics interface

• Success factors: 
• Methodological diversity 

leveraging common language

• Cultural assimilation:               
XD collaboration facilitates XD 
mobility of CS into elite BIO

• Outcomes:
• Transformative research
• Flagship program model
• Consortium model —        

teams of teams



Traditional 
EECS

Physiology 
& Other Biology

Cross-disciplinary Evolution of the Genomics Revolution — Science Advances (2018) 

Disciplinary Propensity revealed by Scholar-Scholar interactions

Cellular/Genetics 
Biology

Informatics

• Flagship Programs: funding 
around Grand Challenges may 
reduce the barriers associated 
with disciplinary borders, thereby 
incentivizing cross-disciplinary 
collaboration & mobility

• “Consortium Science”:      
teams of teams coalesce with 
common objectives, including 
sharing benefits equitably within 
and beyond institutional 
boundaries — an organizational 
model championed by the HGP 
and further developed by 
numerous follow-up “Omics” 
consortiums 

Genomics 
Interface

Facilitated 
by 
X-D

Collaboration
&

Mobility

Implications for Funding Policy/DesignNetwork community structure



Successful Configurations  — when Form Follows Function 

Warming and earlier spring increase 
western US forest wildfire activity. 
— AL Westerling et al., Science 2006

Management of Complex Systems Department — mcs.ucmerced.edu
 Ernest & Gallo School of Management*

http://mcs.ucmerced.edu


UCM Gallo Management School Initiative
Re
se
ar
ch

Management of 
Complex Systems

Cognitive and Information Sciences

Economics and 
Business Management 
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Faculty Network illustrating faculty by department (nodes), and commonality in research interests (indicated by links); 
Giant Sequoia — a symbol of Resiliency & Robustness 

A configuration designed for addressing 21st Century Grand Challenges 
emerging at the intersection of Coupled Human and Environmental Systems



Thanks for your attention!
and also to my esteemed collaborators in this and related work

— in particular  Ioannis Pavlidis @ University of Houston —

Quantifying the impact of weak, strong, and super ties in scientific careers 
 PNAS (2015) — Petersen


Cross-disciplinary evolution of the genomics revolution 

Science Advances (2018) — Petersen, Majeti, Kwon, Ahmed, Pavlidis


Come and explore cross-disciplinary opportunities at University of California, Merced


