Wednesday, December 9.

Scientific Networks and Success

An (online) Satellite Workshop of <u>CCS 2020</u>

Successful Configurations — When Form Follows Function

Dr. Alexander M. Petersen Management of Complex Systems Department Ernest & Gallo School of Management*

UNIVERSITY OF CALIFORNIA MERCED Quantifying the impact of "super ties" and cross-disciplinary configurations in scientific careers

Individual Collaboration Network — Paul ErdösCross-Disciplinary Collaboration Network — Genomics Revolution —

Part II

Part I

Part I — Quantifying the impact of weak, strong, and super ties in scientific careers — PNAS (2015)

Faudree, Schelp, Rousseau

Growing constellation of weak, strong, and super ties

Paul Erdös (1913-1996): collaboration network at career age 10, 30 years & present day*

Science careers are embedded in a co-evolving network of networks

(Intellectual Capital)

coevolutionary system:

- knowledge
- institutions
- researchers

social phenomena:

- behavioral aspects
- economic incentives
- cumulative advantage mechanisms
- collaboration / competition

Dynamic network characterized by life-cycles

Reputation and Impact in Academic Careers – PNAS (2014)

Dynamic network characterized by life-cycles

Quantifying the impact of weak, strong, and super ties in scientific careers – PNAS (2015)

An ego-centric perspective reveals a wide range of collaboration strategies

Collaboration network

Interactions mediated by social "forces":

- Collaboration (attractive)
- Competition (repulsive)
- Knowledge (an "exchange particle")

Binary-star strategy:

- * Michael Stuart Brown
- * Joseph L. Goldstein

Recipients of the 1985 Nobel Prize in Physiology or Medicine for describing the regulation of cholesterol metabolism.

Solo-artist strategy:

* Marilyn Kozak (also cell biologist)

 $N=70,\,N_{solo}=59$

Wide variation in the temporal collaboration profiles — even among Nobel Laureates —

Ego collaboration network: quantifying *dynamic* & *heterogenous* patterns of collaboration within scientific careers

> Sir Andre K. Geim # publications, $N_i (2012) = 217$ $S_i = 303$ coauthors The average copublication duration $\langle L_i \rangle = 2.1$ years, $\langle K_i \rangle = 3.7$ pubs.

- Measuring the duration L_{ij} of the tie (time b/w 1st and last copublication)
- Measuring the intensity K_{ij} of the tie (# of copublications)
- Measuring the net scientific impact C_{ij} of the tie (net citation tally for pubs. between *i* and *j*)

Is there a characteristic collaboration intensity scale?

In order to aggregate across careers with varying coauthorship patterns, we use the normalized variable $x = K_{ij} / \langle K_i \rangle$

 $P(\ge x)$ is well-described by an exponential distribution, for which there is a closed-form solution to the extreme value equation:

$$1/S_i = \sum_{K_{ij} > K_i^c}^{\infty} P(K_{ij}) = \exp(-\kappa_i K_i^c)$$

which has the simple solution

"super tie" threshold $K_i^c = (\langle K_i \rangle - 1) \operatorname{Ln}(S_i)$

Weak ties, Strong ties, and Super ties

Extreme outlier based upon the exponential distribution: "super tie" threshold $K_i^c = (\langle K_i \rangle -1) Ln(S_i)$

Data & Measures

Data from Clarivate Analytics Web of Science: 473 researcher profiles spanning more than 15,000 career years, 94,000 publications, and 166,000 collaborators. **Researcher Profiles:** split into 4 groups: top-cited biology, not top-cited biology, top-cited physics, and not top-cited physics

Collaboration Tie Measures

 K_{ij} Individual level: How strong/weak is the collaboration tie?

 $a_{i,p}$, $\overline{a}_{i,t}$ Team level: How big is the team?

 $G_{t,i}^K$

Group level: How concentrated are the tie strengths?

— Duration —

Individual career level: What is the characteristic collaboration length?

Team level: What is the team's experience together?

Is there a citation advantage associated with Super Ties?

Unit of analysis : publication p

Hierarchical "fixed effects" model : 473 researchers indexed by i

On average:

- 1 in 25 collaborators qualify as a super-tie
- 1 in 2 publications include a super-tie

Dependent variable = $z_{i,p}$ = the citation impact $C_{i,p,y}$ of publication p normalized to

baseline citation levels defined by other papers published in the same year y.

$$z_{i,p} = \frac{(\ln c_{i,p,y} - \langle \ln c_y \rangle)}{\sigma[\ln c_y]}$$

This measure maps $C_{i,p,y}$ to a stable normal distribution N(0,1) >> appropriate for comparing citation impact across time.

 $R_{i,p}$

A super-tie indicator variable = 1 if at least one of the coauthors is a super tie, and 0 otherwise. 52% of publications have R=1.

$$N_i(t_p)$$

number of papers up to year $t_p \approx \text{prestige measure}$

 $a_{i,p}$

number of coauthors ≈ proxy for coordination costs and technology level number of distinct coauthors up to $S_i(t_p)$ year $t_p \approx$ collaboration radius measuring access to new/old team members

publication year of p, measured as a career age, accounting for aging and cumulative advantage effects, learning and prestige

Fixed-effects model - measures each researcher against his/her baseline $z_{i,p}$

 $z_{i,p} = \beta_R R_{i,p} + \beta_a \ln a_{i,p} + \beta_t t_{i,p} + \beta_N \ln N_i(t_p) + \beta_S \ln S_i(t_p) + \beta_i$

Strategic value of high-intensity collaborations

Emphasizes *who* in addition to *how many* coauthors

In terms of real citation impact: 100 x 0.2 σ_z corresponds to ~ 20% citation increase at the publication level (relative to the author's own mean baseline)!

Plausible explanations: compounding self-citations, reputation arising from larger formal and informal social network; added value of skill complementarity, trust, conviction, commitment, experience, collocation, moral support, risk-profit sharing

Part II — Cross-disciplinary Evolution of the Genomics Revolution — Science Advances (2018)

Data & Methods: ~80 US Biology and Computing Departments faculty directories ⇒ List of Scholars

- we then collected data from their 4,190 Google Scholar profiles, comprising 413,565 publications

Author <i>i</i>	Coauthors	Department \mathcal{F}_i	Orientation $\mathcal{O}(\mathcal{F}_i)$
Α	B,C	BIO	XD
В	Α	BIO	BIO
С	A,D	CS	XD
D	С	CS	CS
Direct link: publication between scholar i and j			A B
Mono-Disc. scholar : $\mathcal{O}_i(\mathcal{F}) = \mathrm{BIO}$			
Mono-Disc. scholar : $\mathcal{O}_i(\mathcal{F}) = CS$			
• Cross-Disc. scholar : $\mathcal{O}_i(\mathcal{F}) = \mathcal{X}$			

Longitudinal Case Study of the Genomics Revolution (HGP, 1990-2003)

Work in collaboration with Professor Ioannis Pavlidis, Dept. of Computer Science - University of Houston

Scholars with 10% XD-Collaborators are cited ~ 6% more than 1D Scholars from the same discipline Articles featuring cross-disciplinary combination of authors are cited ~20% more than 1D articles by same author Human Genome Project — a cross-disciplinary bridge facilitating a highly functional marriage

Biology Faculty

Computer Science Faculty

Innovation @ the genomics interface

- Success factors:
 - Methodological diversity
 leveraging common language
 - Cultural assimilation: XD collaboration facilitates XD mobility of CS into elite BIO
- Outcomes:
 - Transformative research
 - Flagship program model
 - Consortium model teams of teams

Disciplinary Propensity revealed by Scholar-Scholar interactions

Network community structure

Implications for Funding Policy/Design

Flagship Programs: funding around Grand Challenges may reduce the barriers associated with disciplinary borders, thereby incentivizing cross-disciplinary collaboration & mobility

"Consortium Science":

teams of teams coalesce with common objectives, including sharing benefits equitably within and beyond institutional boundaries — an organizational model championed by the HGP and further developed by numerous follow-up "Omics" consortiums

Cross-disciplinary Evolution of the Genomics Revolution — Science Advances (2018)

Successful Configurations — when Form Follows Function

Warming and earlier spring increase western US forest wildfire activity. — AL Westerling et al., Science 2006

Management of Complex Systems Department — <u>mcs.ucmerced.edu</u> Ernest & Gallo School of Management*

UCM Gallo Management School Initiative

A configuration designed for addressing 21st Century *Grand Challenges* emerging at the intersection of Coupled Human and Environmental Systems

Faculty Network illustrating faculty by department (nodes), and commonality in research interests (indicated by links); **Giant Sequoia** — a symbol of Resiliency & Robustness

Thanks for your attention!

and also to my esteemed collaborators in this and related work — in particular Ioannis Pavlidis @ University of Houston —

Quantifying the impact of weak, strong, and super ties in scientific careers PNAS (2015) — Petersen

Cross-disciplinary evolution of the genomics revolution Science Advances (2018) — Petersen, Majeti, Kwon, Ahmed, Pavlidis

Come and explore cross-disciplinary opportunities at University of California, Merced

INNOVATION • SUSTAINABILITY • TECHNOLOGY