Using big data to quantify the evolution of written corpora at the micro and macro scale Alexander M. Petersen

IMT Lucca Institute for Advanced Studies, Lucca 55100, Italy

Outline

- Digital Humanities made possible by crowd-sourced "big data" spanning multiple levels of order (time, geography, ...)
 - Books: n-grams ~ word space
 - Journal articles: technical terms ~ idea space (MeSH)
- Quantitative analysis of historical trends
 - Competition (e.g. for limited attention)
 - Geospatial variation and the role of socio-political shocks
 - Growth trends in the use of individual (new) words
 - Zipf's law and Heaps' allometric scaling over time

Historical crowd-sourced data

14 JANUARY 2011 VOL 331 SCIENCE

Time series constructed from word counts in books: aggregated at multiple levels

Time series constructed from word counts in books: aggregated at multiple levels

Time series constructed from word counts in books

Michel, J.-B. et al. Quantitative analysis of culture using millions of digitized books. Science (2011).

Google Inc. digital books repository

2002

Words are disaggregated across language (8 in total) and by word/page/book count
Freely available & easy to download in raw format: <u>http://storage.googleapis.com/books/</u>

ngrams/books/datasetsv2.html

- 2nd release has files that are compiled alphabetically (also including Italian)
- Further efforts to re-aggregate the data into more powerful database

representation: <u>http://googlebooks.byu.edu</u>/

0.00%

Time series constructed from word counts in journal abstracts and titles

Time series constructed from word counts in ArXiv articles and Physical Review articles

Beyond text to context

words: context free (e.g. cold = temperature, sentiment, sickness) idea space: MeSH = controlled thesaurus of subject headings

S NCBI Resources 🗹 How To 🗹		
Publed.gov PubMed :		
US National Library of Medicine Advanced	MeSH Terms	S
	Alleles	
PubMed is open, however it is being maintained with minimal staffing due to the lapse in government funding. In extent possible, and the agency will attempt to respond to urgent operational inquiries. For undates regarding ap	Animals	
USA.gov.	Chromosome	e Deletion*
	Chromosome	es Human
Display Settings: ♥ Abstract Send to: ♥	Colorantel No	
Science, 1989 Apr 14:244(4901):217-21.	Colorectal Ne	eoplasms/g
Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas.	Humans	
Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura	Mice	
Y, White R, Vogelstein B.	Mice, Nude	
	Mutation*	1
ADSTRACT Previous studies have demonstrated that allelic deletions of the short arm of chromosome 17 occur in over 75% of	Neonlasm Pr	roteins/ger
colorectal carcinomas. Twenty chromosome 17p markers were used to localize the common region of deletion in	Neoplasin Pr	I the she is a line to
these tumors to a region contained within bands 17p12 to 17p13.3. This region contains the gene for the transformation-associated protein p53. Southern and Northern blot hybridization experiments provided no evidence	NUCIEIC ACID	Hybridizati
for gross alterations of the p53 gene or surrounding sequences. As a more rigorous test of the possibility that p53	Oncogenes	
was a target of the deletions, the p53 coding regions from two tumors were analyzed; these two tumors, like most colorectal carcinomas, had allelic deletions of chromosome 17p and expressed considerable amounts of p53	Phosphoprot	teins/geneti
messenger RNA from the remaining allele. The remaining p53 allele was mutated in both tumors, with an alanine	Suppression,	, Genetic
substituted for valine at codon 143 of one tumor and a histidine substituted for arginine at codon 175 of the second tumor. Both mutations occurred in a highly conserved region of the p53 gene that was previously found to be	Tumor Suppr	ressor Prote
mutated in murine p53 oncogenes. The data suggest that p53 gene mutations may be involved in colorectal	ramor ouppr	100001110101
neoplasia, perhaps through inactivation of a tumor suppressor function of the wild-type p53 gene.		

What is meant by "mice"?

2013 MeSH

MeSH Descriptor Data

Return to Entry Page

Standard View. Go to Concept View; Go to Expanded Concept View

MeSH Heading	Mice
Tree Number	B01.050.150.900.649.865.635.505.500
Annotation	check tag: NIM no qualifiers for MICE, the genus MUS unspecified, or any MUS species
Scope Note	The common name for the genus Mus.
Entry Term	Mice, House
Entry Term	Mice, Laboratory
Entry Term	Mouse
Entry Term	Mouse, House
Entry Term	Mouse, Laboratory
Entry Term	Mouse, Swiss
Entry Term	Mus
Entry Term	Mus domesticus
Entry Term	Mus musculus
Entry Term	Mus musculus domesticus
Entry Term	Swiss Mice
Allowable Qualifiers	AB AH BL CF CL EM GD GE IM IN ME MI PH PS PX SU UR VI
History Note	2006
Date of Entry	20050630
Unique ID	D051379

What is meant by "mice, nude"?

National Library of Medicine - Medical Subject Headings

2013 MeSH

MeSH Descriptor Data

Return to Entry Page

Standard View. Go to Concept View; Go to Expanded Concept View

MeSH Heading	Mice, Nude
Tree Number	<u>B01.050.150.900.649.865.635.505.500.550.500</u>
Annotation	NIM when exper animal: no qualif; when IM, qualif permitted; do not confuse with MICE, HAIRLESS see MICE, INBRED HRS; do not forget also to check tag MICE
Scope Note	Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses.
Entry Term	Athymic Mice
Entry Term	Mice, Athymic
Entry Term	Mouse, Athymic
Entry Term	Mouse, Nude
Entry Term	Nude Mice
Allowable Qualifiers	AB AH BL CF CL EM GD GE IM IN ME MI PH PS PX SU UR VI
Previous Indexing	<u>Mice</u> (1966-1974)
History Note	75
Date of Entry	19741111
Unique ID	D008819

Knowledge Thesaurus

Medical Subject Headings (**MeSH**) is a comprehensive <u>controlled vocabulary</u> for the purpose of <u>indexing</u> journal articles and books in the life sciences; it can also serve as a <u>thesaurus</u> that facilitates searching. Created and updated by the <u>United States National Library of Medicine</u> (NLM), it is used by the <u>MEDLINE/PubMed</u> article database and by NLM's catalog of book holdings.

Mesh N-level tree Identifier: (C##) 1.(###)2...(###)N

Structure of MeSH

The 2009 version of MeSH contains a total of 25,186 *subject headings*, also known as *descriptors*. Most of these are accompanied by a short description or definition, links to related descriptors, and a list of synonyms or very similar terms (known as *entry terms*). Because of these synonym lists, MeSH can also be viewed as a <u>thesaurus</u>.

Spanning various thematic categories

Each MeSH (Medical Subject Headings) term is a node in the MeSH tree with at least one tree identifier locating it at on branch α_i at level N:

 $(\alpha_i \# \#)_1 . (\# \# \#)_2 ... (\# \# \#)_N$

Root Categories

A - Anatomy

B - Organisms C - Diseases

D - Chemicals and Drugs E - Analytical, Diagnostic and

G - Biological Sciences

Therapeutic Techniques and Equipment

Concept association network

MeSH Branch

- [A]
- Anatomy Organisms [B]
- [C] Diseases
- [D] Chemicals and Drugs[E] Analytical, Diagnostic and Therapeutic Techniques and Equipment
- **Biological Sciences**

Language as a competitive system

A. M. Petersen, J. Tenenbaum, S. Havlin, H. E. Stanley. Statistical Laws Governing Fluctuations in Word Use from Word Birth to Word Death Scientific Reports 2, 313 (2012).

Do words compete in a linguistic "marketplace" for a finite market share?

Is this a: a) Xray b) Radiogram

c) Roentgenogram

??

Competitive "marketplace"?

Leptokurtic "tent-shaped" distribution of word usage growth rate

Common words $using f_i \ge f_c$ O English: $f_c = 5 \ge 10^{-8}$ Eng. (fict.): $f_c = 10^{-7}$ Spanish: $f_c = 10^{-6}$ Hebrew: $f_c = 10^{-5}$

r = annual growth rates in the word usage frequency

$$r_i(t) \equiv \ln f_i(t + \Delta t) - \ln f_i(t) = \ln \left(\frac{f_i(t + \Delta t)}{f_i(t)} \right)$$

P(r) is centered around $r \cong 0$, a "zero sum" competitive system

"tent-shaped" growth patterns are common in complex systems

Q: How do complex systems grow ?

Q: How big are the rare events (often neglected by simple models) ?

- system size, S(t), at time t
- Growth rate $R(t) = g(t) \equiv \log\left(\frac{S(t+1)}{S(t)}\right) = \log S(t+1) \log S(t)$

• Laplace PDF
$$P(R) = \frac{1}{\sqrt{2} \sigma(R)} e^{-(\sqrt{2}|R - \langle R \rangle| / \sigma(R))}$$

Excess number of large growth (+/-) events as compared to the Gibrat multiplicative growth model which predicts a Gaussian distribution for P(R)

[1] D. Fu, et al., The Growth of Business Firms: Theoretical Framework and Empirical Evidence. Proc. Natl. Acad. Sci. USA 102, 18801 (2005).

[2] A M. Petersen, et al., Statistical Laws Governing Fluctuations in Word Use from Word Birth to Word Death, submitted.

[3] A M. Petersen, et al., Quantitative Relations between Group Collaboration and the Productivity Growth Dynamics of Individuals, in preparation.

[4] B. Podobnik, et al., Common scaling behavior in finance and macroeconomics. Eur. Phys. J. B 76, 487 (2010).

Do historical events change the dynamics?

Spanish speaking countries less involved in WWII

External "shocks" bring more isolated subsystems into contact, leaving outside "ecosystems" (other languages) unperturbed

Role of political conflict on language

Political conflict correspond to periods of increased fluctuations in language, and may serve to increase the rate of cross-fertilization of different languages with new words

The modern era of publishing, which is characterized by more strict editing procedures at publishing houses, computerized word processing (automatic spell-checking) technology, has led to a drastic increase in the death rate of words.

Using visual inspection we verify most changes to the vocabulary in the last 10–20 years are due to the extinction of misspelled words and nonsensical print errors, and to the decreased birth rate of new misspelled variations.

This phenomenon reflects the *decreasing marginal need for new words*. The new words, however, are biased towards words with relatively high frequency.

The life-cycl

Normalized growth rate of a "new word" $r_i'(\tau) \equiv r_i(\tau) / \sigma[r_i]$

Is there a tipping point in the life-cycle of a new word? The English corpus threshold $f_c = 5 \times 10^{-8}$ maps to the first passage time corresponding to the peak period $t \approx 30 - 50$ years, which is the characteristic generational timescale of humans (and language evolution)

"Both dictionaries had excellent coverage of high-frequency words but less coverage for frequencies below 10^{-6} : 67% of words in the 10^{-9} to 10^{-8} range were listed in neither dictionary" Michel et al., Science (2011)

Life-cycle analysis of Mesh terms

Institutions Markets Technologies INSTITUTE FOR ADVANCED STUDIES LUCCA

Structural evolution of languages across time

Famous Zipf + Heaps' laws are based on *static* snapshots of (relatively) small texts/corpora

Q: can we learn anything from analyzing the properties of these statistical laws over time?

"Dark Language": a hidden Zipf's law

 $P(\ge f)$ is the percentage of 1-grams ("words") with observed frequency larger than f

Hence, dark language* is composed of approximately 99% of the 1-grams recorded in each corpora, leaving only ~1% of words that constitute our "Kernel" lexicon

*Recent estimates on the composition of physical matter in the universe: 72.8% dark energy, 22.7% dark matter and 4.6% ordinary matter. Hence, 95% of matter-energy is dark. (<u>"Seven-Year Wilson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results</u>". nasa.gov)

Consistent patterns of "dark language" across 7 languages

A. M. Petersen, J. Tenenbaum, S. Havlin, H. E. Stanley, M. Perc Languages cool as they expand: Allometric scaling and the decreasing need for new words Scientific Reports 2, 943 (2012)

Using Heaps' law to reveal the marginal utility of new words

Allometric scaling analysis is used to quantify the role of system size on general phenomena characterizing a system, and has been applied to understand the metabolic (activity) rate of systems with sizes ranging from mitochondria to cities.

Here each data point corresponds to one year: $N_u(t)$ is the total number of "tokens" printed in year t and $N_w(t)$ is the number of distinct tokens in the same year

Heaps' law:
$$N_w(t) \sim (N_u(t))^b$$

Marginal need for new words (decreasing for *b*<*1*)

$$\partial N_w / \partial N_u \sim (N_u)^{b-1}$$

b < 1 corresponds to an "economies of scale" and implies a decreasing marginal need for additional words as a corpora grows. Because we get more and more "mileage" out of new words in an already large language, additional words are needed less and less. Interestingly, many economic systems have b > 1, whereas biological systems have b < 1.

Food for thought

- Digitization of historical archives is vastly extending our quantitative perspective on history
- A vast amount o language belongs to an "unlimited" lexicon, consisting of highly specific contextual terminology. Consider that the common everyday words, roughly the top 30,000 most used words which are used with a frequent of more than 1 per million, account for only 1% of the English language vocabulary
- Words compete with irregular forms and synonyms in a competitive environment: "persistence" is gradually suffocating the use of "persistency"
- The growth of language is very sensitive to socio-political shocks, such as war. New words enter largely as a result of technological innovation, but also due to shifts in social behavior: consider that the words "girlfriend" and "boyfriend" emerged only in the early 1960s, likely reflecting a sexual revolution which has major biological implications (e.g. disease spreading, birth rate, etc.). Also, the words "treehuggers" and "ecowarriors" emerged in the early 1990s in conjunction with the "save the earth" movement.
- The sustainability of new and old words likely reflects the word's marginal utility as derived from the implicit dependency structure of language (grammar)

A. M. Petersen, J. Tenenbaum, S. Havlin, H. E. Stanley. Statistical Laws Governing Fluctuations in Word Use from Word Birth to Word Death Scientific Reports 2, 313 (2012). Thank You!

A special thanks to my collaborators: Joel Tenenbaum, Matjaz Perc, Shlomo Havlin, Gene Stanley

A. M. Petersen, J. Tenenbaum, S. Havlin, H. E. Stanley, M. Perc Languages cool as they expand: Allometric scaling and the decreasing need for new words Scientific Reports 2, 943 (2012) http://p

http://physics.bu.edu/~amp17/

Title: Using big data to quantify the evolution of written corpora at the micro and macro scale

Abstract:

Generic evolutionary forces of survival and reproduction are believed to drive the evolution of language. Using the Google Inc. n-gram dataset spanning 200+ years, we show patterns consistent with competitive dynamics at the level of individual words (tokens) as well as at the level of entire corpora. At the micro scale, we demonstrate tipping points in the life-cycle of new words, growth patterns consistent with competition for limited "market opportunities", and evolutionary selection induced by modern editing software (Petersen et al, Sci. Reports 2012). At the macro scale we show that languages "cool as they expand", a dynamic property that highlights periods of political conflict which are characterized by heightened levels of language fluctuations (Petersen et al, Sci. Reports 2013). We will show that these general methods can be extended to other evolving categorical systems such as the MeSH (Medical Subject Headings) vocabulary used by the United States National Library of Medicine.