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1. Establishing a baseline by removing trends

similar exponent !"3 for the cumulative distribution, with a
drop-off at low values.

V. CORRELATIONS IN THE VOLATILITY

A. Volatility correlations for S&P 500 stock index

Unlike price changes that are correlated only on very
short time scales #40$ %a few minutes&, the absolute values of
price changes show long-range power-law correlations on
time scales up to a year or more #20–31$. Previous works
have shown that understanding the power-law correlations,
specifically the values of the exponents, can be helpful for
guiding the selection of models and mechanisms #32$. There-
fore, in this part we focus on the quantification of power-law
correlations of the volatility. To quantify the correlations, we
use !G(t)! instead of VT(t), i.e., time window T is set to 1
min with 't!1 min for the best resolution.

1. Intraday pattern removal

It is known that there exist intraday patterns of market
activity in the NYSE and the S&P 500 index #23–25,42$. A
possible explanation is that information gathers during the
time of closure and hence traders are active near the opening
hours, and many liquidity traders are active near the closing
hours #25$. We find a similar intraday pattern in the absolute
price changes !G(t)! %Fig. 7&. In order to quantify the corre-
lations in absolute price changes, it is important to remove
this trend, lest there might be spurious correlations. The in-
traday pattern A(tday), where tday denotes the time in a day,
is defined as the average of the absolute price change at time
tday of the day for all days:

A% tday&(
)
j!1

N

!Gj% tday&!

N , %9&

where the index j runs over all the trading days N in the
13-year period (N!3309 in our study& and tday denotes the
time in the day. In order to avoid the artificial correlation
caused by this daily oscillation, we remove the intraday pat-
tern from G(t) which we schematically write as

g% t &(G% tday&/A% tday&, %10&

for all days. Each data point g(t), denotes the normalized
absolute price change at time t, which is computed by divid-
ing each point G(tday) at time tday of the day by A(tday) for
all days.
Three methods—correlation function, power spectrum,

and detrended fluctuation analysis %DFA&— are employed to
quantify the correlation of the volatility. The pros and cons
of each method and the relations between them are described
in the Appendix.

2. Correlation quantification

Figure 8%a& shows the autocorrelation function of the nor-
malized price changes g(t), which shows exponential decay
with a characteristic time of the order of 4 min. However, we
find that the autocorrelation function of !g(t)! has power law
decay, with long persistence up to several months, Fig. 8%b&.
This result is consistent with previous studies on several eco-
nomic time series #20–28,40$.
More accurate results are obtained by the power spectrum

#Fig. 9%a&$, which shows that the data fit not one but rather
two separate power laws: for f" f# , S( f )* f$+1, while for
f% f# , S( f )* f$+2, where

+1!0.31&0.02, f" f# , %11&

+2!0.90&0.04, f% f# , %12&

and

f#!
1
570 min

$1, %13&

FIG. 7. The 1-min interval intraday pattern for absolute price
changes of the S&P 500 stock index %1984-1996& %shifted& and for
the absolute price changes, averaged for the chosen 500 companies
%1994–1995&. The length of the day is 390 minutes. In order to
avoid the detection of spurious correlations, this daily pattern is
removed. Otherwise one finds peaks in the power spectrum at the
frequencies of 1/day and larger. Note that both the curves have a
similar pattern with large values within the first 15 min after the
market opens.

FIG. 8. %a& Semilog plot of the autocorrelation function of g(t).
%b& Autocorrelation function of !g(t)! in the double log plot, with
sampling time interval 't!1 min. The autocorrelation function of
g(t) decays exponentially to zero within half an hour, C(t)
*exp($t/,) with ,"4.0 min. A power law correlation C(t)*t$-

exists in the !g(t)! for more than three decades. Note that both
graphs are truncated at the first zero value of C(t). The solid line in
%b& is the fit to the function 1/(1't-) from which we obtain -
!0.30&0.08. The horizontal dashed line indicates the noise level.
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Financial Market Activity

Y. Liu, P. et al., The Statistical Properties of the 
Volatility of Price Fluctuations, Phys. Rev. E 
60, 1390-1400 (1999).

The instrumental record goes back to1882.  Paleo evidence suggests 
that El Niños have occurred for millions of years.

El Niño and La Nina

courtesy of William S. Kessler, NOAA / 
Pacific Marine Environmental Laboratory 
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A. M. Petersen, J. Tenenbaum, S. Havlin, H. E. Stanley. 
Statistical Laws Governing Fluctuations in Word Use from Word Birth to Word Death. 
Scientific Reports 2, 313 (2012).

Time series 
in social and 

natural phenomena
are typically non-

stationary:
there are underlying 

exogenous 
and endogenous factors

that can significantly 
fluctuate!
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Accounting for Inflation

Just as the price 
of a candy bar 
has increased by 
a factor of ~ 20 
over the last 100 
years (roughly 
3% inflation rate), 
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Accounting for Inflation
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Fig. 4. A comparison of traditional and detrended league averages demonstrates the utility of the detrending method. Annual
per-player averages for (A) strikeouts (B) detrended strikeouts (for pitchers), (C) home run, and (D) detrended home runs (for
batters). The detrended home run average is remarkably constant over the 90-year “modern era” period 1920–2009, however
there remains a negative trend in the detrended strikeout average. This residual trend in the strikeout average may result
from the decreasing role of starters (resulting in shorter stints) and the increased role in the bullpen relievers, which affects
the average number of opportunities obtained for players in a given season. This follows from the definition of the detrended
average given by equation (10). A second detrending for average innings pitched per game might remove this residual trend
demonstrated in Figure 5. The sharp negative fluctuations in 1981 and 1994–1995 correspond to player strikes resulting in
season stoppage and a reduced average number of opportunities 〈y(t)〉 for these seasons.

removed (detrended) by normalizing accomplishments by
the average prowess for a given season.

We first calculate the prowess Pi(t) of an individual
player i as

Pi(t) ≡ xi(t)/yi(t), (4)

where xi(t) is an individual’s total number of successes out
of his/her total number of opportunities yi(t) in a given
year t. To compute the league-wide average prowess, we
then compute the weighted average for season t over all
players

〈P (t)〉 ≡
∑

i xi(t)∑
i yi(t)

=
∑

i

wi(t)Pi(t), (5)

where

wi(t) =
yi(t)∑
i yi(t)

. (6)

The index i runs over all players with at least y′ oppor-
tunities during year t, and

∑
i yi is the total number of

opportunities of all N(t) players during year t. We use a
cutoff y′ ≡ 100 which eliminates statistical fluctuations
that arise from players with very short seasons.

We now introduce the detrended metric for the accom-
plishment of player i in year t,

xD
i (t) ≡ xi(t)

P

〈P (t)〉 (7)

where P is the average of 〈P (t)〉 over the entire period,

P ≡ 1
110

2009∑

t=1900

〈P (t)〉. (8)

The choice of normalizing with respect to P is arbi-
trary, and we could just as well normalize with respect to
P (2000), placing all values in terms of current “2000 US
dollars”, as is typically done in economics.

In Figure 4 we compare the seasonal average of 〈x(t)〉
to the prowess-weighted average 〈xD(t)〉, for strikeouts per
player and home runs per player. We define 〈x(t)〉 as

〈x(t)〉 =
1

N(t)

∑

i

xi(t)

= 〈P (t)〉
∑

i yi(t)
N(t)

= 〈P (t)〉〈y(t)〉 (9)

and 〈xD(t)〉 as,

〈xD(t)〉 =
1

N(t)

∑

i

xD
i (t) =

P

〈P (t)〉N(t)

∑

i

xi(t)

= P
〈x(t)〉
〈P (t)〉 = P 〈y(t)〉. (10)

As a result of our detrending method defined by equa-
tion (7), which removes the time-dependent factors that

Just as the price 
of a candy bar 
has increased by 
a factor of ~ 20 
over the last 100 
years (roughly 
3% inflation rate), 
the home run 
hitting ability 
of players has 
also increased by 
a significant 
factor over the 
same period

x 3

Raising the mound (’62) 

Lowering the mound (’69)

end of dead-ball era, emergence of 
“Ruthian” power hitters

PED 
era
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Detrending method
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Fig. 4. A comparison of traditional and detrended league averages demonstrates the utility of the detrending method. Annual
per-player averages for (A) strikeouts (B) detrended strikeouts (for pitchers), (C) home run, and (D) detrended home runs (for
batters). The detrended home run average is remarkably constant over the 90-year “modern era” period 1920–2009, however
there remains a negative trend in the detrended strikeout average. This residual trend in the strikeout average may result
from the decreasing role of starters (resulting in shorter stints) and the increased role in the bullpen relievers, which affects
the average number of opportunities obtained for players in a given season. This follows from the definition of the detrended
average given by equation (10). A second detrending for average innings pitched per game might remove this residual trend
demonstrated in Figure 5. The sharp negative fluctuations in 1981 and 1994–1995 correspond to player strikes resulting in
season stoppage and a reduced average number of opportunities 〈y(t)〉 for these seasons.

removed (detrended) by normalizing accomplishments by
the average prowess for a given season.

We first calculate the prowess Pi(t) of an individual
player i as

Pi(t) ≡ xi(t)/yi(t), (4)

where xi(t) is an individual’s total number of successes out
of his/her total number of opportunities yi(t) in a given
year t. To compute the league-wide average prowess, we
then compute the weighted average for season t over all
players

〈P (t)〉 ≡
∑

i xi(t)∑
i yi(t)

=
∑

i

wi(t)Pi(t), (5)

where

wi(t) =
yi(t)∑
i yi(t)

. (6)

The index i runs over all players with at least y′ oppor-
tunities during year t, and

∑
i yi is the total number of

opportunities of all N(t) players during year t. We use a
cutoff y′ ≡ 100 which eliminates statistical fluctuations
that arise from players with very short seasons.

We now introduce the detrended metric for the accom-
plishment of player i in year t,

xD
i (t) ≡ xi(t)

P

〈P (t)〉 (7)

where P is the average of 〈P (t)〉 over the entire period,

P ≡ 1
110

2009∑

t=1900

〈P (t)〉. (8)

The choice of normalizing with respect to P is arbi-
trary, and we could just as well normalize with respect to
P (2000), placing all values in terms of current “2000 US
dollars”, as is typically done in economics.

In Figure 4 we compare the seasonal average of 〈x(t)〉
to the prowess-weighted average 〈xD(t)〉, for strikeouts per
player and home runs per player. We define 〈x(t)〉 as

〈x(t)〉 =
1

N(t)

∑

i

xi(t)

= 〈P (t)〉
∑

i yi(t)
N(t)

= 〈P (t)〉〈y(t)〉 (9)

and 〈xD(t)〉 as,

〈xD(t)〉 =
1

N(t)

∑

i

xD
i (t) =

P

〈P (t)〉N(t)

∑

i

xi(t)

= P
〈x(t)〉
〈P (t)〉 = P 〈y(t)〉. (10)

As a result of our detrending method defined by equa-
tion (7), which removes the time-dependent factors that

6

vidual player careers.

B. Quantifying Average Prowess

We define prowess as an individual player’s ability to
achieve a success x (e.g. a home run, strikeout) in any
given opportunity y (e.g. an AB or IPO). In Fig. 4
we plot the average annual prowess for strikeouts (pitch-
ers) and home runs (batters) over the 133-year period
1876-2009 in order to investigate the evolution of player
ability in Major League Baseball. The average prowess
serves as an index for comparing accomplishments in dis-
tinct years. We conjecture that the changes in the av-
erage prowess are related to league-wide factors which
can be quantitatively removed (detrended) by normaliz-
ing accomplishments by the average prowess for a given
season.

We first calculate the prowess Pi(t) of an individual
player i as

Pi(t) ≡ xi(t)/yi(t) , (5)

where xi(t) is an individual’s total number of successes
out of his/her total number of opportunities yi(t) in
a given year t. To compute the league-wide average
prowess, we then compute the weighted average for sea-
son t over all players

〈P (t)〉 ≡
∑

i xi(t)
∑

i yi(t)
=

∑

i

wi(t)Pi(t) , (6)

where

wi(t) =
yi(t)

∑

i yi(t)
. (7)

The index i runs over all players with at least y′ oppor-
tunities during year t, and

∑

i yi is the total number of
opportunities of all N(t) players during year t. We use a
cutoff y′ ≡ 100 which eliminates statistical fluctuations
that arise from players with very short seasons.

We now introduce the detrended metric for the accom-
plishment of player i in year t,

xD
i (t) ≡ xi(t)

P

〈P (t)〉
(8)

where P is the average of 〈P (t)〉 over the entire period,

P ≡
1

110

2009
∑

t=1900

〈P (t)〉 . (9)

The choice of normalizing with respect to P is arbi-
trary, and we could just as well normalize with respect
to P (2000), placing all values in terms of current “2000
US dollars,” as is typically done in economics.
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FIG. 4: Success rates reflect the time-dependent factors that
can inflate or deflate measures of success. The annual prowess
for (A) strikeouts (K) and (B) home runs (HR) are calculated
using Eq. (6). Prowess is a weighted measure of average
league wide ability, with more active players having a larger
statistical weight than less active players in the calculation of
the prowess value 〈P 〉. (B) We also plot the average values
P 1 and P s of 〈PHR(t)〉 over the 16-year periods {Y1} ≡ 1978−
1993 and {Ys} ≡ 1994−2009, where the latter period roughly
corresponds to the “steroids” era. We calculate P 1 = 0.025±
0.003 and P s = 0.033 ± 0.002, and find P 1 < P s at the
0.005 confidence level. For the difference ∆ ≡ P s − P 1, we
calculate the confidence interval 0.005 < ∆ < 0.010 at the
0.01 confidence level.

In Fig. 5 we compare the seasonal average of 〈x(t)〉 to
the prowess-weighted average 〈xD(t)〉, for strikeouts per
player and home runs per player. We define 〈x(t)〉 as

〈x(t)〉 =
1

N(t)

∑

i

xi(t)

= 〈P (t)〉
∑

i yi(t)

N(t)
= 〈P (t)〉〈y(t)〉 (10)

and 〈xD(t)〉 as,

〈xD(t)〉 =
1

N(t)

∑

i

xD
i (t) =

P

〈P (t)〉N(t)

∑

i

xi(t)

= P
〈x(t)〉
〈P (t)〉

= P 〈y(t)〉 . (11)

As a result of our detrending method defined by Eq.

xi(t) = # of successes
yi(t) = # of opportunities
Pi(t) = x/y = success rate

A. M. Petersen, O. Penner, H. E. Stanley , “ʼMethods for detrending success metrics to 
account for inflationary and deflationary factors.” Eur. Phys. J. B 79, 67-78 (2011).

Time-dependent economic, technological, and social 
factors can artificially inflate or deflate quantitative 
measures for single season and career achievement. 
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Accounting for socio-technological factors that underly achievement
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applying 
detrending method

statistical baseline

≈ 600 pts / season

≈ 7 HRs / season

While there is much speculation and controversy surrounding the causes for changes in player 
ability, we do not address these individually. In essence, we blindly account for not only the role 
of PED, but also changes in the physical construction of bats and balls, sizes of ballparks, talent 
dilution of players from expansion, etc. 

Quantitative measures 
for success are 
important for comparing 
both individual and group 
accomplishments, often 
achieved in different time 
periods. 

However, the 
evolutionary nature of 
competition results in a 
non-stationary rate of 
success, that makes 
comparing 
accomplishments across 
time statistically biased. 
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2. the “Socio-physics” of Careers
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Not surprisingly, player 
height is governed by a 

standard bell-shaped 
distribution
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FIG. 3: A demonstration of a probability density function
that has a characteristic scale. The pdf of Major League
Baseball player height. The data are fit well by a Gaussian
“bell-curve” pdf (dashed line) with an average height of 6.0
feet ±2 inches. Data courtesy of baseball-almanac.com, ac-
cessed at:
http://www.baseball-almanac.com/charts/heights/heights.shtml

sociology, meteorology, and medicine. Detrending with
respect to price inflation in economics is commonly re-
ferred to as “deflation” and relies on a consumer price
index (CPI). The CPI allows one to properly compare
the cost of a candy bar in 1920 dollars to the cost of a
candy bar in 2010 dollars. In stock market analysis, one
typically detrends intraday volatility by removing the in-
traday trading pattern corresponding to relatively high
market activity at the beginning and end of the market
day, which results in a daily activity trend that is “U-
shaped”. In meteorology, trends are typically cyclical,
corresponding to daily, lunar, and annual patterns, and
even super-annual patterns as in the case of the El Nino
effect. Cyclical trends are also encountered in biological
systems, as in the case of protein concentration fluctu-
ations over cell life cycles. In baseball, the trends that
we will analyze are those that are associated with player
performance ability, or prowess.

It is common for paradigm shifts to change the nature
of business and the patterns of success in competitive
professions. Baseball has many examples of paradigm
shifts, since the game has changed radically since its con-
ception over a century ago. As a result, the relative value
of accomplishments depends on the underlying time pe-
riod. For example, although a home-run will always be
a home-run, and a strikeout will always be a strikeout,
the rate at which these two events occur has changed
drastically over time.

A relevant historical example is the case of Babe Ruth.
Before Ruth, home runs were much less frequent than
they are in 2010. However, following changes in the rule
set accompanied by Babe Ruth’s success in the 1920’s,
many sluggers emerged that are summarily remembered
for their home run prowess. The main time-dependent as-
pect we consider in this paper is the variation in relative

player ability, a generic concept that can be easily applied
to other professions. Ref. [9] finds clear evidence for
non-stationarity in the seasonal home-run ability, both
on the career and the seasonal level. By comparing the
pdfs for career home runs for players belonging to either
the 1920–1960 or the 1960–2000 periods, it is shown that
the pdf for career home-runs are shifted towards larger
totals in the more-recent 1960–2000 period. Moreover,
by comparing the pdfs for seasonal home-run ability for
players belonging to one of the three periods 1940–1959,
1960–1979, or 1980–2006, it is shown that at the fun-
damental seasonal time-scale, the home-run rates among
players is also changing, where the pdf is becoming more
right-skewed with time. These results show why it is im-
portant to account for the era-dependence of statistics
when comparing career statistical totals.

Yet, this is not the only time-dependent factor that
we consider. By detrending, we remove the net trend
resulting from many underlying factors, season by sea-
son, which allows the proper (statistical) comparison of
contemporary players to players of yore (of lore). A sig-
nificant result of this paper is that detrending for sea-
sonal prowess maintains the overall pdf of success while
re-ordering the ranking of player achievements locally.
This means that the emergence of the right-skewed pdfs
for longevity and success are not due to changes in player
ability, but rather, result from the fundamental nature of
competition.

The idea behind detrending is relatively straightfor-
ward. By calculating the average prowess of all players
in a given season, we effectively renormalize all statistical
accomplishments to the typical prowess of all contempo-
raneous competitors. Hence, detrending establishes rela-
tive significance levels, such that hitting fifty home runs
was of less relative significance during the “Steroids Era”
than hitting fifty home runs during the 1920’s. The ob-
jective of this work is to calculate the detrended statistics
of a player’s whole career. To this end, we compare ca-
reer metrics that take into account the time-dependence
of league-wide player ability. While there is much specu-
lation and controversy surrounding the causes for changes
in player ability, we do not address these individually. In
essence, we blindly account for not only the role of PED
[22–29], but also changes in the physical construction of
bats and balls, sizes of ballparks, talent dilution of play-
ers from expansion [30, 31], etc.

II. MATERIALS AND METHODS

A. Data

We analyze historical Major League Baseball (MLB)
player data compiled and made publicly available by Sean
Lahman [7]. The Lahman Baseball Database is updated
at the end of each year, and has player data dating back
to 1871. In total, this database records approximately
35,000 players seasons and approximately 17,000 indi-
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inches) to the shortest baseball 
player (Eddie Gaedel, 3 feet 7 
inches) is roughly 2.

The relatively small value of this 
height ratio follows from the 
properties of the Gaussian 
distribution, which is well-suited for 
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FIG. 3: A demonstration of a probability density function
that has a characteristic scale. The pdf of Major League
Baseball player height. The data are fit well by a Gaussian
“bell-curve” pdf (dashed line) with an average height of 6.0
feet ±2 inches. Data courtesy of baseball-almanac.com, ac-
cessed at:
http://www.baseball-almanac.com/charts/heights/heights.shtml

sociology, meteorology, and medicine. Detrending with
respect to price inflation in economics is commonly re-
ferred to as “deflation” and relies on a consumer price
index (CPI). The CPI allows one to properly compare
the cost of a candy bar in 1920 dollars to the cost of a
candy bar in 2010 dollars. In stock market analysis, one
typically detrends intraday volatility by removing the in-
traday trading pattern corresponding to relatively high
market activity at the beginning and end of the market
day, which results in a daily activity trend that is “U-
shaped”. In meteorology, trends are typically cyclical,
corresponding to daily, lunar, and annual patterns, and
even super-annual patterns as in the case of the El Nino
effect. Cyclical trends are also encountered in biological
systems, as in the case of protein concentration fluctu-
ations over cell life cycles. In baseball, the trends that
we will analyze are those that are associated with player
performance ability, or prowess.

It is common for paradigm shifts to change the nature
of business and the patterns of success in competitive
professions. Baseball has many examples of paradigm
shifts, since the game has changed radically since its con-
ception over a century ago. As a result, the relative value
of accomplishments depends on the underlying time pe-
riod. For example, although a home-run will always be
a home-run, and a strikeout will always be a strikeout,
the rate at which these two events occur has changed
drastically over time.

A relevant historical example is the case of Babe Ruth.
Before Ruth, home runs were much less frequent than
they are in 2010. However, following changes in the rule
set accompanied by Babe Ruth’s success in the 1920’s,
many sluggers emerged that are summarily remembered
for their home run prowess. The main time-dependent as-
pect we consider in this paper is the variation in relative

player ability, a generic concept that can be easily applied
to other professions. Ref. [9] finds clear evidence for
non-stationarity in the seasonal home-run ability, both
on the career and the seasonal level. By comparing the
pdfs for career home runs for players belonging to either
the 1920–1960 or the 1960–2000 periods, it is shown that
the pdf for career home-runs are shifted towards larger
totals in the more-recent 1960–2000 period. Moreover,
by comparing the pdfs for seasonal home-run ability for
players belonging to one of the three periods 1940–1959,
1960–1979, or 1980–2006, it is shown that at the fun-
damental seasonal time-scale, the home-run rates among
players is also changing, where the pdf is becoming more
right-skewed with time. These results show why it is im-
portant to account for the era-dependence of statistics
when comparing career statistical totals.

Yet, this is not the only time-dependent factor that
we consider. By detrending, we remove the net trend
resulting from many underlying factors, season by sea-
son, which allows the proper (statistical) comparison of
contemporary players to players of yore (of lore). A sig-
nificant result of this paper is that detrending for sea-
sonal prowess maintains the overall pdf of success while
re-ordering the ranking of player achievements locally.
This means that the emergence of the right-skewed pdfs
for longevity and success are not due to changes in player
ability, but rather, result from the fundamental nature of
competition.

The idea behind detrending is relatively straightfor-
ward. By calculating the average prowess of all players
in a given season, we effectively renormalize all statistical
accomplishments to the typical prowess of all contempo-
raneous competitors. Hence, detrending establishes rela-
tive significance levels, such that hitting fifty home runs
was of less relative significance during the “Steroids Era”
than hitting fifty home runs during the 1920’s. The ob-
jective of this work is to calculate the detrended statistics
of a player’s whole career. To this end, we compare ca-
reer metrics that take into account the time-dependence
of league-wide player ability. While there is much specu-
lation and controversy surrounding the causes for changes
in player ability, we do not address these individually. In
essence, we blindly account for not only the role of PED
[22–29], but also changes in the physical construction of
bats and balls, sizes of ballparks, talent dilution of play-
ers from expansion [30, 31], etc.

II. MATERIALS AND METHODS

A. Data

We analyze historical Major League Baseball (MLB)
player data compiled and made publicly available by Sean
Lahman [7]. The Lahman Baseball Database is updated
at the end of each year, and has player data dating back
to 1871. In total, this database records approximately
35,000 players seasons and approximately 17,000 indi-
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Heavy-tailed distributions in social and physical phenomena

• An key feature of extremely skewed P(x) distributions   
(i.e., scale-free power law P(x) ~ 1 / x α ), is the large 
disparity between the most probable value and the mean/
median value of the distribution: ⇒ the most probable 
value xmp = Min(x),  and the mean value ⟨x⟩ >> xmp. 

Snapshot of Internet network 
courtesy k.c. claffy

ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ! k"#. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ! k"#actor, where #actor $
2.3 % 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with #www $ 2.1 % 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
#power ! 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent #cite $ 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent # between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) $
e"&&k/k!, where

& ! N"N " 1

k
#pk'1 " p(N"1"k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p $ 0, the probability distri-
bution of the connectivities is P(k) $ )(k "
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.
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level of LSMO is situated above the Fermi
level of Co and a maximum of inverse TMR
is expected when the Fermi level of LSMO is
approximately at the maximum of the spin2
DOS of Co. This is consistent with the max-
imum of inverse TMR observed at !0.4 V
for Co/STO/LSMO junctions (Fig. 3A). For a
positive bias, the TMR is expected to change
sign and become normal above 1 V when the
Fermi level of LSMO goes down into the
energy range of the majority spin d-band of
Co. This is also observed in Fig. 3A.

For ALO and ALO/STO barriers, a predom-
inant tunneling of s-character electrons (see ar-
row in Fig. 2B) is the usual explanation of the
positive polarization (6–8). The rapid drop
with bias (Fig. 3B) is similar to what has been
observed in most junctions with ALO barriers,
and completely different from what is obtained
when the tunneling is predominantly by d-char-
acter electrons (Fig. 3A). The origin of this
rapid decrease of the TMR at relatively small
bias has never been clearly explained. This is
roughly consistent with the energy dependence
of the DOS induced by sp-d bonding effects on
the first atomic layer of ALO in the calculation
of Nguyen-Mahn et al. (8) for the Co-ALO
interface. But Zhang et al. (13) have also shown
that a large part of the TMR drop can be
attributed to the excitation of spin waves.

The experiments reported here and in sev-
eral recent publications (3, 4) demonstrate the
important role of the electronic structure of the
metal-oxide interface in determining the spin
polarization of the tunneling electrons. The neg-
ative polarization for the Co-STO interface has
been ascribed to d-d bonding effects between
Al and Ti (4). This interpretation is similar to

that proposed to explain, in terms of sp-d bond-
ing, the positive polarization at the Co-ALO
interface (8). However, there is no general the-
ory predicting the trend of the experimental
results for Co—that is, a negative polarization
with oxides of d elements (STO, CLO, Ta2O5)
and a positive one when there are only s and p
states (ALO). It is likely that the spin polariza-
tion should also depend on the position of the
Fermi level with respect to the electronic levels
of each character above and below the gap of
the insulator. In addition, as an evanescent
wave in an insulator is a Bloch wave with an
imaginary wave vector, one can expect differ-
ent decay lengths for Bloch waves of different
character. This means that the final polarization
could also depend on the thickness of the bar-
rier, as illustrated by the calculations of Mac-
Laren et al. for Fe/ZnSe/Fe junctions (14).

The influence of the barrier on the spin
polarization opens new ways to shape and op-
timize the TMR. Interesting bias dependencies
can be obtained with barriers selecting the d
electrons and probing the fine structure of the
d-DOS, as in Fig. 3A. The DOS of a d-band can
also be easily tailored by alloying (for example,
by introduction of virtual bound states) to pro-
duce specific bias dependencies. Although here
we concentrated on the problem of the spin
polarization of the Co electrode and regarded
the strongly spin-polarized LSMO only as a
useful spin analyzer, the large TMR ratios ob-
tained by combining Co and LSMO electrodes
(50% with a STO barrier) are also an interesting
result. The drawback arising from the low
Curie temperature of LSMO ("350 K) is the
reduction of the TMR at room temperature,

down to about 5% at 300 K in Co/STO/
LSMO (4). However, other types of oxides of
the double-perovskite family (for example,
Sr2FeMoO6) combine electronic properties
similar to those of manganites with a defi-
nitely higher Curie temperature (15). Their
use in magnetic tunnel junctions is promising
for a new generation of tunnel junctions with
very high magnetoresistance for room-tem-
perature applications.
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Emergence of Scaling in
Random Networks

Albert-László Barabási* and Réka Albert

Systems as diverse as genetic networks or the World Wide Web are best
described as networks with complex topology. A common property of many
large networks is that the vertex connectivities follow a scale-free power-law
distribution. This feature was found to be a consequence of two generic mech-
anisms: (i) networks expand continuously by the addition of new vertices, and
(ii) new vertices attach preferentially to sites that are already well connected.
A model based on these two ingredients reproduces the observed stationary
scale-free distributions, which indicates that the development of large networks
is governed by robust self-organizing phenomena that go beyond the particulars
of the individual systems.

The inability of contemporary science to de-
scribe systems composed of nonidentical el-
ements that have diverse and nonlocal inter-

actions currently limits advances in many
disciplines, ranging from molecular biology
to computer science (1). The difficulty of
describing these systems lies partly in their
topology: Many of them form rather complex
networks whose vertices are the elements of
the system and whose edges represent the
interactions between them. For example, liv-
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Fig. 3. Bias dependence of the TMR ratio in (A)
Co/STO/LSMO and (B) Co/ALO/STO/LSMO
tunnel junctions.
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ing systems form a huge genetic network
whose vertices are proteins and genes, the
chemical interactions between them repre-
senting edges (2). At a different organization-
al level, a large network is formed by the
nervous system, whose vertices are the nerve
cells, connected by axons (3). But equally
complex networks occur in social science,
where vertices are individuals or organiza-
tions and the edges are the social interactions
between them (4), or in the World Wide Web
(WWW), whose vertices are HTML docu-
ments connected by links pointing from one
page to another (5, 6). Because of their large
size and the complexity of their interactions,
the topology of these networks is largely
unknown.

Traditionally, networks of complex topol-
ogy have been described with the random
graph theory of Erdős and Rényi (ER) (7),
but in the absence of data on large networks,
the predictions of the ER theory were rarely
tested in the real world. However, driven by
the computerization of data acquisition, such
topological information is increasingly avail-
able, raising the possibility of understanding
the dynamical and topological stability of
large networks.

Here we report on the existence of a high
degree of self-organization characterizing the
large-scale properties of complex networks.
Exploring several large databases describing
the topology of large networks that span
fields as diverse as the WWW or citation
patterns in science, we show that, indepen-
dent of the system and the identity of its
constituents, the probability P(k) that a ver-
tex in the network interacts with k other
vertices decays as a power law, following
P(k) ! k"#. This result indicates that large
networks self-organize into a scale-free state,
a feature unpredicted by all existing random
network models. To explain the origin of this
scale invariance, we show that existing net-
work models fail to incorporate growth and
preferential attachment, two key features of
real networks. Using a model incorporating

these two ingredients, we show that they are
responsible for the power-law scaling ob-
served in real networks. Finally, we argue
that these ingredients play an easily identifi-
able and important role in the formation of
many complex systems, which implies that
our results are relevant to a large class of
networks observed in nature.

Although there are many systems that
form complex networks, detailed topological
data is available for only a few. The collab-
oration graph of movie actors represents a
well-documented example of a social net-
work. Each actor is represented by a vertex,
two actors being connected if they were cast
together in the same movie. The probability
that an actor has k links (characterizing his or
her popularity) has a power-law tail for large
k, following P(k) ! k"#actor, where #actor $
2.3 % 0.1 (Fig. 1A). A more complex net-
work with over 800 million vertices (8) is the
WWW, where a vertex is a document and the
edges are the links pointing from one docu-
ment to another. The topology of this graph
determines the Web’s connectivity and, con-
sequently, our effectiveness in locating infor-
mation on the WWW (5). Information about
P(k) can be obtained using robots (6), indi-
cating that the probability that k documents
point to a certain Web page follows a power
law, with #www $ 2.1 % 0.1 (Fig. 1B) (9). A
network whose topology reflects the histori-
cal patterns of urban and industrial develop-
ment is the electrical power grid of the west-
ern United States, the vertices being genera-
tors, transformers, and substations and the
edges being to the high-voltage transmission
lines between them (10). Because of the rel-
atively modest size of the network, contain-
ing only 4941 vertices, the scaling region is
less prominent but is nevertheless approxi-
mated by a power law with an exponent
#power ! 4 (Fig. 1C). Finally, a rather large
complex network is formed by the citation
patterns of the scientific publications, the ver-
tices being papers published in refereed jour-
nals and the edges being links to the articles

cited in a paper. Recently Redner (11) has
shown that the probability that a paper is
cited k times (representing the connectivity of
a paper within the network) follows a power
law with exponent #cite $ 3.

The above examples (12) demonstrate that
many large random networks share the com-
mon feature that the distribution of their local
connectivity is free of scale, following a power
law for large k with an exponent # between
2.1 and 4, which is unexpected within the
framework of the existing network models.
The random graph model of ER (7) assumes
that we start with N vertices and connect each
pair of vertices with probability p. In the
model, the probability that a vertex has k
edges follows a Poisson distribution P(k) $
e"&&k/k!, where

& ! N"N " 1

k
#pk'1 " p(N"1"k

In the small-world model recently intro-
duced by Watts and Strogatz (WS) (10), N
vertices form a one-dimensional lattice,
each vertex being connected to its two
nearest and next-nearest neighbors. With
probability p, each edge is reconnected to a
vertex chosen at random. The long-range
connections generated by this process de-
crease the distance between the vertices,
leading to a small-world phenomenon (13),
often referred to as six degrees of separa-
tion (14 ). For p $ 0, the probability distri-
bution of the connectivities is P(k) $ )(k "
z), where z is the coordination number in
the lattice; whereas for finite p, P(k) still
peaks around z, but it gets broader (15). A
common feature of the ER and WS models
is that the probability of finding a highly
connected vertex (that is, a large k) decreas-
es exponentially with k; thus, vertices with
large connectivity are practically absent. In
contrast, the power-law tail characterizing
P(k) for the networks studied indicates that
highly connected (large k) vertices have a
large chance of occurring, dominating the
connectivity.

There are two generic aspects of real net-
works that are not incorporated in these mod-
els. First, both models assume that we start
with a fixed number (N) of vertices that are
then randomly connected (ER model), or re-
connected (WS model), without modifying
N. In contrast, most real world networks are
open and they form by the continuous addi-
tion of new vertices to the system, thus the
number of vertices N increases throughout
the lifetime of the network. For example, the
actor network grows by the addition of new
actors to the system, the WWW grows expo-
nentially over time by the addition of new
Web pages (8), and the research literature
constantly grows by the publication of new
papers. Consequently, a common feature of

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N $ 212,250 vertices and average connectivity *k+ $ 28.78. (B) WWW, N $
325,729, *k+ $ 5.46 (6). (C) Power grid data, N $ 4941, *k+ $ 2.67. The dashed lines have
slopes (A) #actor $ 2.3, (B) #www $ 2.1 and (C) #power $ 4.

R E P O R T S

15 OCTOBER 1999 VOL 286 SCIENCE www.sciencemag.org510

• For Baseball, the approximate power-law behavior can be roughly phrased as such: For every Mickey 
Mantle (~8000 career at-bats), there are roughly 10 players with careers similar to Doc “the Punk” Gautreaus 
(~800 career at-bats); and for every Doc “the Punk” Gautreau there are roughly 10 players with careers similar 
to Frank “the Jelly” Jelincich (8 career at-bats with one hit!). This statistical property arises from the ratio of 
frequencies P(x)/P(y) ~ (y / x) α = (y / x) for exponent α ≈ 1

• This is in stark contrast to the Gaussian (Normal) distribution pdf for 
which the mean value and the most probable value coincide, xmp = ⟨x⟩.

Geophysical and Financial ShocksComplex networks

Unified scaling law for earthquakes,  
K. Christensen et al., PNAS 99 (2002)
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Fig. 1. (a) Log-log plot of the cumulative probability distribution P (g) of the normalized price increments gi(t). The lines in
(a) are power law fits to the data over the range 2 < g < 100. (b) the inverse local slope of P (g), γ(g) ≡ − (d logP (g)/d log g)−1

as a function of 1/g for the negative (◦) and the positive (+) tail respectively. We obtain an estimator for γ(g), by sorting the
normalized increments by their size, g(1) > g(2) > ... > g(N). The cumulative density can then be written as P (g(k)) = k/N ,
and we obtain for the local slope γ(g(k)) = − log(g(k+1)/g(k))/ log(P (g(k+1))/P (g(k))) � k(log(g(k+1)) − log(g(k))). Each data
point shown in b is an average over 1000 increments g(k), and the lines are linear regression fits to the data. Note that the
average m−1

�m
k=1 γ(g

(k)) over all events used would be identical to the estimator for the asymptotic slope proposed by Hill
[9]. (c) Same as (a) for the 1 min S&P500 increments. The regression lines yield α = 2.93 and α = 3.02 for the positive and
negative tails respectively. (d) Same as (b) for the 1 min S&P500 increments, except that the number of increments per data
point is 100.

(iii) a truncated Lévy distribution, where the tails be-
come “approximately exponential” [3]. The inverse cubic
law differs from all three proposals: Unlike (i) and (iii), it
has diverging higher moments (larger than 3), and unlike
(i) and (ii) it is not a stable distribution.

We thank X. Gabaix, S. Havlin, Y. Liu, R. Mantegna,
C.K. Peng and D. Stauffer for helpful discussions, and JNICT
DFG and NSF for financial support.
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age (ERA) will be more descriptive than career strikeouts
or wins. To this end, strikeouts per inning and ERA are
fundamentally averages, and would fall into a separate
class of pdf than the truncated power-laws observed for
the metrics considered in this paper.

In Tables 6-11 we list the traditional and detrended
single season statistics for HR, H, RBI, and K. There
are too many players to discuss individually, so we men-
tion a few interesting observations. First, the rankings
for detrended home runs HRD are dominated by sea-
sons prior to 1950. Second, of contemporary note, Ichiro
Suzuki’s single season hits record in 2004, which broke
the 83-year record held by George Sisler, holds its place
as the top single-season hitting performance of all time.
Finally, we provide two top-50 tables for single season
strikeouts in Tables 10 and 11. We provide two sepa-
rate tables because the relative performance of pitchers
from the 1800’s far surpasses the relative performance of
contemporary legends. Hence, in Table 10 we rank all
single-season performances from 1883-2009, while in Ta-
ble 11 we rank all single-season performances from the
“modern” era 1920-present. We note that the domi-
nance of Table 10 by 19th century baseball players could
reflect fluctuations from small data set size and incom-
plete records of pitchers in the 19th century (see Fig. 7).
Still, Matt Kilroy’s 513 strikeouts in 1889 seems unfath-
omable by today’s standards, and the seemingly out of
place number may reflect factors which detrending can
not account for, e.g. the level of competition being sig-
nificantly reduced, as baseball was not a full-time pro-
fession for many players in the 19th century. Table 11,
filled with names that are much more familiar, better il-
lustrates the relative merits of forgotten names such as
Dazzy Vance and Bob Feller. While the relative changes
are mostly positive, with Nolan Ryan’s six monumental
seasons still notable, there is an unexpected discount of
Sandy Koufax’s 382 strikeouts in 1965.

B. Calculating Career Benchmarks

In this section we outline an approach for calculating a
set of statistical criterion that can be used to objectively
define extraordinary careers. Again, we use historical
examples from baseball to illustrate the utility of quan-
tifying benchmarks that can be used for distinguishing
outstanding performance for professional reward, such as
annual bonus, salary increase, tenure.

Due to the rarity of careers surpassing the benchmarks
of 500 home runs, 3000 hits, 3000 strikeouts, and 300
wins, these milestones are usually accepted by baseball
fans and historians as clear indicators of an extraordinary
career. However, these benchmarks are fundamentally
arbitrary, and their continued acceptance can probably
be attributed to their popularity with the media person-
alities that cover baseball. Using the properties of the
pdf, that we have shown accurately characterizes many
baseball statistics, we can extract more objective bench-
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FIG. 7: Semi-log plot of data set size exhibits the growth of
professional baseball. The size of the data sets, N , is used
to compute the annual trends for pitchers and batters in Fig.
4 and Fig. 5. These data sets correspond to cutoffs x′ ≡ 0
and y′ ≡ 100 in Eqs. (6)-(11). Interestingly, we observe a
spike in league size during WWI, possibly corresponding to
the widespread replacement of league veterans with multiple
replacements through the course of the season. We also note
that one can clearly see the jumps associated with the expan-
sion between 1960 and 1980.

marks as we now discuss.
We approximate the pdf P (x) of each success metric,

x, by the gamma distribution,

P (x)dx ≈ Gamma(x; α, xc)dx =

(x/xc)−αe−x/xc

Γ(1 − α)

dx

xc
∝ x−α e−x/xc , (13)

and use the mathematical properties of this function in
order to define a statistically significant benchmark x∗.
We calculate the value of x∗ by using the integral prop-
erties of the Gamma distribution. For a threshold level
f , we determine the value of x∗ such that only f percent
of players exceed the benchmark value x∗,

f =

∫ ∞

x∗

x−αe−x/xc

x1−α
c Γ(1 − α)

dx

=
Γ[1 − α, x∗

xc

]

Γ(1 − α)
= Q[1 − α,

x∗

xc
] , (14)

where Γ[1−α, x∗

xc

] is the incomplete gamma function and

Q[1−α, x∗

xc

] is the regularized gamma function. The reg-
ularized gamma function is numerically invertible. Ex-
ploiting this property, we calculate

x∗ = xcQ
−1[1 − α, f ] , (15)

using the inverse regularized gamma function found in
standard computing packages. In addition to the analy-
sis performed in [10], where a graphical method is used
to determine the values α and xc from the pdf using a
graphical least-squares routine, here we use the Maxi-
mum Likelihood Estimator (MLE) in order to determine

can be modeled well by the
 Gamma distribution with 
scaling exponent α < 1

and with a scale factor xc representing a 
“tipping point” in the career, which 
distinguishes the veterans from the 

newcomers
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Longevity underlies career totals

x = career success total
typically proportional to the 

career length
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Cap Anson
10,277 at-bats

27 seasons
3,418 hits
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Statistical law for career longevity

opportunities ~ time duration

• 130+ years of player 
statistics, ~ 15,000 careers

Major League Baseball

• 3% of all fielders finish their 
career with ONE at-bat!

• 3% of all pitchers finish their 
career with less than one 
inning pitched!

``One-hit wonders”

``Iron horses”

• Lou Gehrig (the Iron Horse): NY 
Yankees (1923-1939)

• Played in 2,130 consecutive games in 
15 seasons! 8001 career at-bats!

•  Career & life stunted by the fatal 
neuromuscular disease, amyotrophic 
lateral sclerosis (ALS), aka Lou 
Gehrig’s Disease

A. M. Petersen, W.-S. Jung, J.-S. Yang, H. E. Stanley, “Quantitative and 
empirical demonstration of the Matthew effect in a study of career longevity.”  
Proc. Natl. Acad. Sci. USA 108, 18-23 (2011).
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3. Re-ranking the all-time greats
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Single season success distributions
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relatively significant achievements

using the local ability average as a baseline 

applying 
detrending method

Data collapse: The bulk of the 
league has remarkably uniform

achievement distribution

But in comparison 
to the bulk, the extremely rare

achievements gain new
perspective lighting
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Career Wins: not affected by detrending 
5

Table S5. Ranking of career wins (1890–2009).

Traditional Rank Detrended Rank

Rank Name Final Season (L) Career Metric Rank∗(Rank) % Change Name Final Season (L) Career Metric

1 Cy Young 1911 (22) 511 1(1) 0 Cy Young 1911 (22) 510

2 Walter Johnson 1927 (21) 417 2(2) 0 Walter Johnson 1927 (21) 420

3 Christy Mathewson 1916 (17) 373 3(3) 0 Christy Mathewson 1916 (17) 376

3 Pete Alexander 1930 (20) 373 4(3) -33 Pete Alexander 1930 (20) 375

5 Pud Galvin 1892 (15) 364 5(5) 0 Pud Galvin 1892 (15) 365

6 Warren Spahn 1965 (21) 363 6(6) 0 Warren Spahn 1965 (21) 362

7 Kid Nichols 1906 (15) 361 7(7) 0 Kid Nichols 1906 (15) 359

8 Greg Maddux 2008 (23) 355 8(8) 0 Greg Maddux 2008 (23) 351

9 Roger Clemens 2007 (24) 354 9(9) 0 Roger Clemens 2007 (24) 350

10 Tim Keefe 1893 (14) 342 10(10) 0 Tim Keefe 1893 (14) 342

11 Steve Carlton 1988 (24) 329 11(11) 0 Steve Carlton 1988 (24) 329

12 John Clarkson 1894 (12) 328 12(13) 7 Eddie Plank 1917 (17) 328

13 Eddie Plank 1917 (17) 326 13(12) -8 John Clarkson 1894 (12) 327

14 Don Sutton 1988 (23) 324 14(14) 0 Don Sutton 1988 (23) 324

14 Nolan Ryan 1993 (27) 324 14(14) 0 Nolan Ryan 1993 (27) 324

16 Phil Niekro 1987 (24) 318 16(16) 0 Phil Niekro 1987 (24) 318

17 Gaylord Perry 1983 (22) 314 17(17) 0 Gaylord Perry 1983 (22) 314

18 Tom Seaver 1986 (20) 311 18(18) 0 Tom Seaver 1986 (20) 311

19 Charley Radbourn 1891 (11) 309 19(19) 0 Charley Radbourn 1891 (11) 308

20 Mickey Welch 1892 (13) 307 20(20) 0 Mickey Welch 1892 (13) 307

21 Tom Glavine 2008 (22) 305 21(21) 0 Tom Glavine 2008 (22) 302

22 Randy Johnson 2009 (22) 303 22(25) 12 Bobby Mathews 1887 (15) 300

23 Early Wynn 1963 (23) 300 22(23) 4 Early Wynn 1963 (23) 300

23 Lefty Grove 1941 (17) 300 24(23) -4 Lefty Grove 1941 (17) 299

25 Bobby Mathews 1887 (15) 297 24(22) -9 Randy Johnson 2009 (22) 299

26 Tommy John 1989 (26) 288 26(26) 0 Tommy John 1989 (26) 288

27 Bert Blyleven 1992 (22) 287 27(27) 0 Bert Blyleven 1992 (22) 287

28 Robin Roberts 1966 (19) 286 28(28) 0 Robin Roberts 1966 (19) 285

29 Tony Mullane 1894 (13) 284 29(29) 0 Fergie Jenkins 1983 (19) 284

29 Fergie Jenkins 1983 (19) 284 30(31) 3 Jim Kaat 1983 (25) 283

31 Jim Kaat 1983 (25) 283 30(29) -3 Tony Mullane 1894 (13) 283

32 Red Ruffing 1947 (22) 273 32(32) 0 Red Ruffing 1947 (22) 272

33 Mike Mussina 2008 (18) 270 33(33) 0 Burleigh Grimes 1934 (19) 270

33 Burleigh Grimes 1934 (19) 270 34(35) 2 Jim Palmer 1984 (19) 268

35 Jim Palmer 1984 (19) 268 35(33) -6 Mike Mussina 2008 (18) 267

36 Eppa Rixey 1933 (21) 266 36(36) 0 Eppa Rixey 1933 (21) 266

36 Bob Feller 1956 (18) 266 36(38) 5 Jim McCormick 1887 (10) 266

38 Jim McCormick 1887 (10) 265 38(36) -5 Bob Feller 1956 (18) 265

39 Gus Weyhing 1901 (14) 264 39(39) 0 Gus Weyhing 1901 (14) 263

40 Ted Lyons 1946 (21) 260 40(40) 0 Ted Lyons 1946 (21) 259

41 Jamie Moyer 2009 (23) 258 40(44) 9 Al Spalding 1877 (7) 259

42 Jack Morris 1994 (18) 254 42(42) 0 Red Faber 1933 (20) 255

42 Red Faber 1933 (20) 254 43(41) -4 Jamie Moyer 2009 (23) 254

44 Al Spalding 1877 (7) 253 44(42) -4 Jack Morris 1994 (18) 253

44 Carl Hubbell 1943 (16) 253 44(44) 0 Carl Hubbell 1943 (16) 253

46 Bob Gibson 1975 (17) 251 46(46) 0 Bob Gibson 1975 (17) 251

47 Vic Willis 1910 (13) 249 47(47) 0 Vic Willis 1910 (13) 250

48 Jack Quinn 1933 (23) 247 48(48) 0 Jack Quinn 1933 (23) 247

49 Joe McGinnity 1908 (10) 246 48(49) 2 Joe McGinnity 1908 (10) 247

50 Amos Rusie 1901 (10) 245 50(50) 0 Jack Powell 1912 (16) 245

not surprising, since pitcher wins is largely dependent 
on team factors
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Career Hits: not affected by detrending 
2

Table S2. Ranking of career hits (1871–2009).

Traditional Rank Detrended Rank
Rank Name Final Season (L) Career Metric Rank∗(Rank) % Change Name Final Season (L) Career Metric

1 Pete Rose 1986 (24) 4256 1(1) 0 Pete Rose 1986 (24) 4409

2 Ty Cobb 1928 (24) 4189 2(2) 0 Ty Cobb 1928 (24) 4166

3 Hank Aaron 1976 (23) 3771 3(3) 0 Hank Aaron 1976 (23) 3890

4 Stan Musial 1963 (22) 3630 4(4) 0 Stan Musial 1963 (22) 3661

5 Tris Speaker 1928 (22) 3514 5(6) 16 Carl Yastrzemski 1983 (23) 3537

6 Carl Yastrzemski 1983 (23) 3419 6(8) 25 Honus Wagner 1917 (21) 3484

7 Cap Anson 1897 (27) 3418 7(7) 0 Cap Anson 1897 (27) 3464

8 Honus Wagner 1917 (21) 3415 8(5) -60 Tris Speaker 1928 (22) 3449

9 Paul Molitor 1998 (21) 3319 9(11) 18 Willie Mays 1973 (22) 3375

10 Eddie Collins 1930 (25) 3315 10(9) -11 Paul Molitor 1998 (21) 3361

11 Willie Mays 1973 (22) 3283 11(12) 8 Eddie Murray 1997 (21) 3303

12 Eddie Murray 1997 (21) 3255 12(13) 7 Nap Lajoie 1916 (21) 3291

13 Nap Lajoie 1916 (21) 3242 13(10) -30 Eddie Collins 1930 (25) 3266

14 Cal Ripken 2001 (21) 3184 14(15) 6 George Brett 1993 (21) 3222

15 George Brett 1993 (21) 3154 15(14) -7 Cal Ripken 2001 (21) 3219

16 Paul Waner 1945 (20) 3152 16(17) 5 Robin Yount 1993 (20) 3209

17 Robin Yount 1993 (20) 3142 17(18) 5 Tony Gwynn 2001 (20) 3175

18 Tony Gwynn 2001 (20) 3141 18(19) 5 Dave Winfield 1995 (22) 3171

19 Dave Winfield 1995 (22) 3110 19(23) 17 Lou Brock 1979 (19) 3150

20 Craig Biggio 2007 (20) 3060 20(22) 9 Rod Carew 1985 (19) 3149

21 Rickey Henderson 2003 (25) 3055 21(27) 22 Roberto Clemente 1972 (18) 3107

22 Rod Carew 1985 (19) 3053 22(26) 15 Al Kaline 1974 (22) 3094

23 Lou Brock 1979 (19) 3023 23(21) -9 Rickey Henderson 2003 (25) 3089

24 Rafael Palmeiro 2005 (20) 3020 24(20) -20 Craig Biggio 2007 (20) 3060

25 Wade Boggs 1999 (18) 3010 25(25) 0 Wade Boggs 1999 (18) 3053

26 Al Kaline 1974 (22) 3007 26(29) 10 Sam Crawford 1917 (19) 3046

27 Roberto Clemente 1972 (18) 3000 27(30) 10 Frank Robinson 1976 (21) 3040

28 Sam Rice 1934 (20) 2987 28(24) -16 Rafael Palmeiro 2005 (20) 3034

29 Sam Crawford 1917 (19) 2961 29(16) -81 Paul Waner 1945 (20) 2968

30 Frank Robinson 1976 (21) 2943 30(42) 28 Brooks Robinson 1977 (23) 2955

31 Barry Bonds 2007 (22) 2935 31(31) 0 Barry Bonds 2007 (22) 2948

32 Willie Keeler 1910 (19) 2932 32(33) 3 Jake Beckley 1907 (20) 2905

33 Rogers Hornsby 1937 (23) 2930 33(40) 17 Harold Baines 2001 (22) 2900

33 Jake Beckley 1907 (20) 2930 34(32) -6 Willie Keeler 1910 (19) 2872

35 Al Simmons 1944 (20) 2927 35(47) 25 Vada Pinson 1975 (18) 2863

36 Zack Wheat 1927 (19) 2884 36(52) 30 Tony Perez 1986 (23) 2831

37 Frankie Frisch 1937 (19) 2880 37(58) 36 Billy Williams 1976 (18) 2830

38 Mel Ott 1947 (22) 2876 38(45) 15 Andre Dawson 1996 (21) 2823

39 Babe Ruth 1935 (22) 2873 39(55) 29 Rusty Staub 1985 (23) 2821

40 Harold Baines 2001 (22) 2866 40(50) 20 Al Oliver 1985 (18) 2813

41 Jesse Burkett 1905 (16) 2850 41(36) -13 Zack Wheat 1927 (19) 2809

42 Brooks Robinson 1977 (23) 2848 42(28) -50 Sam Rice 1934 (20) 2794

43 Charlie Gehringer 1942 (19) 2839 43(56) 23 Bill Buckner 1990 (22) 2779

44 George Sisler 1930 (15) 2812 44(63) 30 Luis Aparicio 1973 (18) 2771

45 Andre Dawson 1996 (21) 2774 45(57) 21 Dave Parker 1991 (19) 2770

46 Ken Griffey 2009 (21) 2763 46(41) -12 Jesse Burkett 1905 (16) 2768

47 Vada Pinson 1975 (18) 2757 47(33) -42 Rogers Hornsby 1937 (23) 2766

48 Luke Appling 1950 (20) 2749 47(46) -2 Ken Griffey 2009 (21) 2766

49 Derek Jeter 2009 (15) 2747 49(38) -28 Mel Ott 1947 (22) 2745

50 Al Oliver 1985 (18) 2743 50(53) 5 Roberto Alomar 2004 (17) 2738

not so surprising since career hits is closely related to 
career length, which hasn’t  changed significantly
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Career Strikeouts: affected by distinct pitcher eras 10

Table S10. Ranking of season strikeouts for the Modern Era (1920–2009).

Traditional Rank Detrended Rank

Rank Name Season (Y #) Season Metric Rank∗(Rank) % Change Name Season (Y #) Season Metric

1 Nolan Ryan 1973 (7) 383 1(72) 98 Dazzy Vance 1924 (5) 443

2 Sandy Koufax 1965 (11) 382 2(6) 66 Bob Feller 1946 (8) 407

3 Randy Johnson 2001 (14) 372 3(197) 98 Dazzy Vance 1925 (6) 368

4 Nolan Ryan 1974 (8) 367 4(4) 0 Nolan Ryan 1974 (8) 335

5 Randy Johnson 1999 (12) 364 5(79) 93 Bob Feller 1941 (6) 334

6 Bob Feller 1946 (8) 348 6(1) -500 Nolan Ryan 1973 (7) 333

7 Randy Johnson 2000 (13) 347 7(75) 90 Bob Feller 1940 (5) 325

8 Nolan Ryan 1977 (11) 341 8(133) 93 Van Mungo 1936 (6) 323

9 Randy Johnson 2002 (15) 334 9(47) 80 Hal Newhouser 1946 (8) 322

10 Nolan Ryan 1972 (6) 329 10(102) 90 Bob Feller 1939 (4) 321

10 Randy Johnson 1998 (11) 329 11(435) 97 Lefty Grove 1926 (2) 317

12 Nolan Ryan 1976 (10) 327 12(124) 90 Bob Feller 1938 (3) 316

13 Sam McDowell 1965 (5) 325 12(400) 97 Dazzy Vance 1923 (4) 316

14 Curt Schilling 1997 (10) 319 12(367) 96 Dazzy Vance 1928 (9) 316

15 Sandy Koufax 1966 (12) 317 15(12) -25 Nolan Ryan 1976 (10) 310

16 Curt Schilling 2002 (15) 316 16(8) -100 Nolan Ryan 1977 (11) 301

17 J.R. Richard 1979 (9) 313 17(578) 97 Dazzy Vance 1927 (8) 299

17 Pedro Martinez 1999 (8) 313 18(175) 89 Bobo Newsom 1938 (8) 298

19 Steve Carlton 1972 (8) 310 18(382) 95 Dizzy Dean 1933 (3) 298

20 Mickey Lolich 1971 (9) 308 18(17) -5 J.R. Richard 1979 (9) 298

20 Randy Johnson 1993 (6) 308 21(2) -950 Sandy Koufax 1965 (11) 294

22 Mike Scott 1986 (8) 306 21(251) 91 Hal Newhouser 1945 (7) 294

22 Sandy Koufax 1963 (9) 306 23(269) 91 Lefty Grove 1930 (6) 293

24 Pedro Martinez 1997 (6) 305 24(26) 7 J.R. Richard 1978 (8) 289

25 Sam McDowell 1970 (10) 304 24(600) 96 Lefty Grove 1928 (4) 289

26 J.R. Richard 1978 (8) 303 26(767) 96 Lefty Grove 1927 (3) 282

27 Nolan Ryan 1989 (23) 301 27(484) 94 Dizzy Dean 1932 (2) 274

27 Vida Blue 1971 (3) 301 28(499) 94 Red Ruffing 1932 (9) 273

29 Curt Schilling 1998 (11) 300 29(37) 21 Steve Carlton 1980 (16) 272

30 Randy Johnson 1995 (8) 294 30(449) 93 George Earnshaw 1930 (3) 271

31 Curt Schilling 2001 (14) 293 31(10) -210 Nolan Ryan 1972 (6) 270

32 Roger Clemens 1997 (14) 292 31(528) 94 Lefty Grove 1932 (8) 270

33 Randy Johnson 1997 (10) 291 33(791) 95 Pete Alexander 1920 (10) 269

33 Roger Clemens 1988 (5) 291 34(874) 96 Lefty Grove 1929 (5) 268

35 Randy Johnson 2004 (17) 290 35(1174) 97 Walter Johnson 1924 (18) 267

36 Tom Seaver 1971 (5) 289 36(423) 91 Dizzy Dean 1936 (6) 265

37 Steve Carlton 1982 (18) 286 37(499) 92 Dizzy Dean 1935 (5) 264

37 Steve Carlton 1980 (16) 286 38(964) 96 Pat Malone 1929 (2) 261

39 Pedro Martinez 2000 (9) 284 38(37) -2 Steve Carlton 1982 (18) 261

40 Tom Seaver 1970 (4) 283 38(20) -90 Mickey Lolich 1971 (9) 261

40 Sam McDowell 1968 (8) 283 41(346) 88 Johnny Vander Meer 1941 (5) 260

42 Denny McLain 1968 (6) 280 41(1153) 96 George Uhle 1926 (8) 260

43 Sam McDowell 1969 (9) 279 43(537) 91 Hal Newhouser 1944 (6) 259

44 Bob Veale 1965 (4) 276 44(5) -780 Randy Johnson 1999 (12) 258

44 John Smoltz 1996 (9) 276 45(70) 35 Herb Score 1956 (2) 257

44 Dwight Gooden 1984 (1) 276 46(423) 89 Dizzy Dean 1934 (4) 255

47 Hal Newhouser 1946 (8) 275 46(19) -142 Steve Carlton 1972 (8) 255

47 Steve Carlton 1983 (19) 275 46(27) -70 Vida Blue 1971 (3) 255

49 Mario Soto 1982 (6) 274 49(105) 53 Herb Score 1955 (1) 253

49 Fergie Jenkins 1970 (6) 274 49(729) 93 Lefty Gomez 1932 (3) 253

The competitive (dis)advantage associated with particular eras  
(raised mound 1962-69, deadball era 1900-20) is evident in this re-ranking 
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Season Home Runs: case of extreme inflation

..... Steroids era players show a relative decrease in their achievement significance; 
Nevertheless, their achievements are still monumental in magnitude!

6

Table S6. Ranking of season home runs for the Modern Era (1920–2009).

Traditional Rank Detrended Rank

Rank Name Season (Y #) Season Metric Rank∗(Rank) % Change Name Season (Y #) Season Metric

1 Barry Bonds 2001 (16) 73 1(19) 94 Babe Ruth 1920 (7) 133

2 Mark McGwire 1998 (13) 70 2(8) 75 Babe Ruth 1927 (14) 102

3 Sammy Sosa 1998 (10) 66 3(9) 66 Babe Ruth 1921 (8) 100

4 Mark McGwire 1999 (14) 65 4(72) 94 Babe Ruth 1926 (13) 82

5 Sammy Sosa 2001 (13) 64 5(94) 94 Babe Ruth 1924 (11) 80

6 Sammy Sosa 1999 (11) 63 5(72) 93 Lou Gehrig 1927 (5) 80

7 Roger Maris 1961 (5) 61 7(19) 63 Babe Ruth 1928 (15) 77

8 Babe Ruth 1927 (14) 60 8(61) 86 Jimmie Foxx 1933 (9) 70

9 Babe Ruth 1921 (8) 59 9(94) 90 Babe Ruth 1931 (18) 68

10 Mark McGwire 1997 (12) 58 9(94) 90 Lou Gehrig 1931 (9) 68

10 Ryan Howard 2006 (3) 58 11(10) -10 Jimmie Foxx 1932 (8) 67

10 Hank Greenberg 1938 (7) 58 12(215) 94 Cy Williams 1923 (12) 66

10 Jimmie Foxx 1932 (8) 58 12(215) 94 Babe Ruth 1923 (10) 66

14 Alex Rodriguez 2002 (9) 57 14(181) 92 Rogers Hornsby 1922 (8) 62

14 Luis Gonzalez 2001 (12) 57 15(10) -50 Hank Greenberg 1938 (7) 60

16 Hack Wilson 1930 (8) 56 16(301) 94 Ken Williams 1922 (7) 58

16 Ken Griffey 1998 (10) 56 16(592) 97 Rudy York 1943 (8) 58

16 Ken Griffey 1997 (9) 56 18(42) 57 Lou Gehrig 1936 (14) 57

19 Babe Ruth 1928 (15) 54 18(42) 57 Lou Gehrig 1934 (12) 57

19 Babe Ruth 1920 (7) 54 20(16) -25 Hack Wilson 1930 (8) 56

19 Alex Rodriguez 2007 (14) 54 21(135) 84 Hank Greenberg 1946 (12) 55

19 David Ortiz 2006 (10) 54 21(401) 94 Tilly Walker 1922 (12) 55

19 Mickey Mantle 1961 (11) 54 23(94) 75 Babe Ruth 1929 (16) 53

19 Ralph Kiner 1949 (4) 54 23(899) 97 Charlie Keller 1943 (5) 53

25 Jim Thome 2002 (12) 52 25(301) 91 Rogers Hornsby 1925 (11) 52

25 Alex Rodriguez 2001 (8) 52 25(36) 30 Jimmie Foxx 1938 (14) 52

25 Mark McGwire 1996 (11) 52 25(519) 95 Babe Ruth 1922 (9) 52

25 Willie Mays 1965 (14) 52 28(135) 79 Jimmie Foxx 1934 (10) 51

25 Mickey Mantle 1956 (6) 52 28(1023) 97 Hack Wilson 1927 (5) 51

25 George Foster 1977 (9) 52 28(1023) 97 Cy Williams 1927 (16) 51

31 Johnny Mize 1947 (9) 51 28(457) 93 Ted Williams 1942 (4) 51

31 Willie Mays 1955 (4) 51 32(161) 80 Chuck Klein 1929 (2) 50

31 Ralph Kiner 1947 (2) 51 32(31) -3 Johnny Mize 1947 (9) 50

31 Andruw Jones 2005 (10) 51 32(31) -3 Ralph Kiner 1947 (2) 50

31 Cecil Fielder 1990 (5) 51 35(94) 62 Joe DiMaggio 1937 (2) 49

36 Greg Vaughn 1998 (10) 50 35(592) 94 Babe Ruth 1933 (20) 49

36 Sammy Sosa 2000 (12) 50 35(42) 16 Babe Ruth 1930 (17) 49

36 Jimmie Foxx 1938 (14) 50 35(1134) 96 Bill Nicholson 1943 (6) 49

36 Prince Fielder 2007 (3) 50 35(181) 80 Hal Trosky 1936 (4) 49

36 Albert Belle 1995 (7) 50 35(686) 94 Bill Nicholson 1944 (7) 49

36 Brady Anderson 1996 (9) 50 41(181) 77 Mel Ott 1929 (4) 48

42 Larry Walker 1997 (9) 49 41(19) -115 Ralph Kiner 1949 (4) 48

42 Jim Thome 2001 (11) 49 41(215) 80 Jimmie Foxx 1936 (12) 48

42 Sammy Sosa 2002 (14) 49 41(353) 88 Ted Williams 1946 (5) 48

42 Babe Ruth 1930 (17) 49 45(215) 79 Babe Ruth 1932 (19) 47

42 Frank Robinson 1966 (11) 49 45(1422) 96 Joe Hauser 1924 (3) 47

42 Albert Pujols 2006 (6) 49 45(1422) 96 Jack Fournier 1924 (12) 47

42 Mark McGwire 1987 (2) 49 45(777) 94 Earl Averill 1931 (3) 47

42 Willie Mays 1962 (11) 49 45(1134) 96 Ken Williams 1923 (8) 47

42 Ted Kluszewski 1954 (8) 49 45(3401) 98 George Sisler 1920 (6) 47
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the big debate...Career Home Runs....
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Traditional Rank Detrended Rank

Rank Name Final Season (L) Career Metric Rank∗(Rank) Name Final Season (L) Career Metric

1 Barry Bonds 2007 (22) 762 1(3) Babe Ruth 1935 (22) 1215
2 Hank Aaron 1976 (23) 755 2(23) Mel Ott 1947 (22) 637

3 Babe Ruth 1935 (22) 714 3(26) Lou Gehrig 1939 (17) 635
4 Willie Mays 1973 (22) 660 3(17) Jimmie Foxx 1945 (20) 635

5 Ken Griffey Jr. 2009 (21) 630 5(2) Hank Aaron 1976 (23) 582
6 Sammy Sosa 2007 (18) 609 6(124) Rogers Hornsby 1937 (23) 528

7 Frank Robinson 1976 (21) 586 7(192) Cy Williams 1930 (19) 527
8 Alex Rodriguez 2009 (16) 583 8(1) Barry Bonds 2007 (22) 502
8 Mark McGwire 2001 (16) 583 9(4) Willie Mays 1973 (22) 490

10 Harmon Killebrew 1975 (22) 573 10(18) Ted Williams 1960 (19) 482
11 Rafael Palmeiro 2005 (20) 569 11(13) Reggie Jackson 1987 (21) 478

12 Jim Thome 2009 (19) 564 12(14) Mike Schmidt 1989 (18) 463
13 Reggie Jackson 1987 (21) 563 13(7) Frank Robinson 1976 (21) 444
14 Mike Schmidt 1989 (18) 548 14(10) Harmon Killebrew 1975 (22) 437

15 Manny Ramirez 2009 (17) 546 15(577) Gavvy Cravath 1920 (11) 433
16 Mickey Mantle 1968 (18) 536 16(718) Honus Wagner 1917 (21) 420

17 Jimmie Foxx 1945 (20) 534 17(18) Willie McCovey 1980 (22) 417
18 Ted Williams 1960 (19) 521 18(557) Harry Stovey 1893 (14) 413

18 Frank Thomas 2008 (19) 521 19(5) Ken Griffey Jr. 2009 (21) 411
18 Willie McCovey 1980 (22) 521 20(28) Stan Musial 1963 (22) 410

TABLE XII: Ranking of Career Home Runs (1871 - 2009).

A. M. Petersen, O. Penner, H. E. Stanley. 
Methods for detrending success metrics to account for inflationary and deflationary factors 
Eur. Phys. J. B 79, 67-78 (2011). DOI: 10.1140/epjb/e2010-10647-1

and an analogous statistical analysis of basketball career statistics:

A. M. Petersen, O. Penner. 
A method for the unbiased comparison of MLB and NBA career statistics across era
Presented at the MIT Sloan Sports Analytics Conference 2012 (2012).

...for extensive top-50 tables for Hits, HR, RBI, K, W calculated for single seasons and also 
over entire the career consult the papers downloadable at: 

http://physics.bu.edu/~amp17/webpage_files/publications.html
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eras. In this manuscript we demonstrate the utility of our detrending method by analyzing the
distribution of individual success in a competitive arena, Major League Baseball (MLB), using
an exhaustive data set that contains more than 15,000 player careers over the rich 130+ year
history. We provide 10 extensive tables which list the top-50 All-time achievements according
to both the traditional rankings and our detrended rankings, for the statistical categories of
home runs (HR), hits (H) and runs-batted-in (RBI) for batters, and strikeouts (K) and wins
(W) for pitchers. We analyze the most natural measures for accomplishment, the statistics that
are listed in every box-score and on every baseball card, so that the results are tangible to any
historian or fan who is interested in reviewing and discussing the “all-time greats”.

In particular, this study addresses two relevant cultural questions:

(i) How to quantitatively account for economic, technological, and social factors that influence
the rate of success in competitive professions.

(ii) How to use career statistics in an unbiased fashion to help in the both the standard, as well
as, retroactive induction of athletes into a Hall of Fame. This is particularly important
given the “inflation” observed for home runs in Major League Baseball, a phenomena that
is believed to be related to the widespread use of Performance Enhancing Drugs (PED).

In order to account for changes in relative player ability over time, we have developed a de-
trending method which accounts for inflationary and deflationary factors (PEDs, changes in
the physical construction of bats and balls, sizes of ballparks, talent dilution of players from
expansion, etc.) and allows for an objective comparison of players across time. Remarkably, we
find using our detrending method, that the distributions of career success are invariant after we
normalize accomplishments to local averages.

Another surprising observation in this comprehensive study of the entire MLB labor force is the
large numbers of “one-hit wonders”, along with much smaller, but statistically significant and
theoretically predictable, number of stellar “iron-horse” careers. We quantify this surprising
finding with a statistical law which “bridges the gap” between the large number of players with
very few career accomplishments and the few players with legendary career accomplishments.

Moreover, by analyzing the distribution of success across the entire set of players, we can calcu-
late universal benchmarks that can be used for the identification of extraordinary careers. Also,
since these benchmarks are calculated using detrended metrics, the benchmarks are robust and
stable with respect to the time-dependent factors. Specifically, this empirical and quantitative
observation can be used by the Baseball Hall of Fame to address issue (ii), raised above, in the
context induction criteria.

Contact Information

A. M. Petersen: amp17@physics.bu.edu
O. Penner: openner@phas.ucalgary.ca
H. E. Stanley: hes@bu.edu

Sincerely yours,

A. M. Petersen O. Penner H. E. Stanley

Closing remarks....

Relevant cultural questions:

Who was The Greatest
 Slugger of All-Time ????????

Relevant bar-stool debates:
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Thank You!
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“Beyond the asterisk* : Adjusting for performance 
inflation in professional sports”
The evaluation of success depends on many factors, some time dependent, others time 
independent. In order to compare human achievements from different time periods, success 
metrics should be normalized to a common index so that the time dependent factors do not 
bias the comparison of the statistical measures. This consideration is particularly relevant to 
career achievement records in Major League Baseball (MLB), which are of significant 
cultural importance. I will present a novel approach which removes the time-dependent 
factors by normalizing a player’s annual achievement by the local ability average. Using 
empirical career data for more than 15,000 MLB player careers, our method yields 
“detrended” success measures that are more appropriate for comparing and evaluating the 
relative merits of players from different historical eras. In particular, this study addresses two 
relevant cultural questions: (i)  How to quantitatively account for economic, technological, 
and social factors that influence the rate of success in competitive professions, and (ii)  How 
to use career statistics in an unbiased fashion to help in the both the standard, as well as, 
retroactive induction of athletes into a Hall of Fame; This is particularly important given the 
“steroids-era” inflation observed for home runs in Major League Baseball, a phenomena that 
is believed to be related to the widespread use of Performance Enhancing Drugs (PED). 
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