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C O M M E N TA R Y “ ”
communications, social science, transla-
tional research, complex systems, technol-
ogy, business and management, research 
development, biomedical and life sciences, 
and physical sciences. !e increasing inter-
est in professional gatherings centered on 
SciTS combined with recent progress in 
SciTS research and practice suggest that 
this community is coalescing into its own 
area of inquiry.

MULTI-LEVEL, MIXED-METHODS  
APPROACH FOR SCITS
!e burgeoning "eld of SciTS can serve as a 
transformative melting pot of existing the-
ories and scienti"c techniques. We propose 
a multi-level, mixed-methods approach 
that can serve as a framework capable of 
organizing the diverse forms of inquiry and 
interlink research on individual scientists, 
teams, and populations of teams (Fig. 1).

Researchers working at di#erent levels 
study di#erent facets of the team science 
ecology, contribute di#erent theories and 
techniques, and generate diverse "ndings. 
Each level might analyze di#erent data; use 
multiple approaches, techniques, and visual 
representations; and provide di#erent in-
sights. !e combination of insights from all 
levels is considerably larger than their sum.

First, “macro-level” research examines 
teams at the population level and leads 
to insights about patterns of collabora-
tion that are broad in both their amount 
and their form, and that provide input on 
how to measure the growth and e#ect of 
knowledge. Macro-level studies might use 
terabytes of data that require large-scale 
computing infrastructures to process and 
communicate results. Recent work com-
bines computational, behavioral, organiza-
tional, and other methodological approach-
es to derive new insights at this broad level. 
Second, “meso-level” research increases 
our understanding at the group level, ex-
amining, for example, how interaction pat-
terns, the nature and amount of intra-team 
communications, and the composition of 
the team contribute to team process and 
outcomes. Such approaches can use net-
work analysis—the representation of data 
as nodes and their interlinkages—to study 
the evolution and impact of (social) net-
work structures at varied time scales or an-
alyze the speci"c quality and type of inter-
action via examination of communication 
context and patterns within teams (12). 
!ird, “micro-level” research considers the 
individuals within the team; their training, 

dispositions, and education; and how such 
factors predispose them to particular types 
of collaboration. Micro-level studies can be 
quantitative and, if considering network 
analyses, involve many attributes for nodes 
and linkages. Other methods include indi-
vidual-level analysis of researchers partici-
pating within teams in which members are 
queried about their experiences as team 
members (13, 14).

Each of these levels addresses di#erent 
issues that can be roughly classi"ed into 

when (temporal), where (geospatial), what 
(topical), with whom (network), how (pro-
cess), and why (modeling) questions. Table 
1 presents key insights from studies apply-
ing these di#ering levels of analysis.

Each level of team science involves a set 
of challenges. Macro-level challenges ad-
dress organizational change and the exist-
ing culture that either sti$es or encourages 
collaboration and interdisciplinarity. Chal-
lenges at the meso-level involve explicat-
ing the group dynamics emerging in team 
science as well as how to better understand 
and train teamwork in science teams. At 
the micro-level (the individual level), but 
tightly intertwined with the macro- and 
meso-level issues, are issues pertaining to 
how individual scientists acquire training 
in the scienti"c aspects of their work, in the 
process of innovation and discovery, and 
in communication and con$ict resolution. 
Table 2 lists key challenges that need to be 
addressed within these three levels.

MOVING FORWARD WITH SCITS
We conclude with a description of the 
more general challenges and opportunities 
surrounding SciTS. First, research relevant 
to SciTS is conducted in a variety of set-
tings—academic and commercial, technol-
ogy development, and government sector. 
As such, the variety of research results pub-
lished, approaches and tools applied, and 
data produced is impressive. We identi"ed 
more than 180 core papers and reports 
that convey key results in team science re-
search. Of those papers, 17 were published 
between 1944 and 2000, with the remain-
der being published since 2001, showcas-
ing a surge of activity on SciTS. Many of 
the reported studies use proprietary pub-
lication data sets (such as Web of Science 
by !omson Reuters or Scopus by Elsevier) 
and most tools are commercial, making it 
di%cult to replicate results. Data such as 
journal publications, conference proceed-
ings, and book chapters, but also patents 
and grant awards, are not comprehensive-
ly collected across the sciences. !e data 
studied are typically published in English, 
although science is international and mul-
tilingual. Furthermore, the uni"cation of 
data records (such as the identi"cation of 
all papers by one scholar as stored in di#er-
ent databases) and the interlinkage of col-
lections of data (such as the retrieval of all 
papers that were supported by one funding 
award) proves di%cult because no unique 
identi"ers are available.

Fig. 1. Multi-level, mixed-methods approach 
to SciTS. Team science can be studied at differ-
ent levels using different approaches. Together, 
the insights derived from these studies are worth 
more than the sum of their parts.   C
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• Collaboration (attractive)

• Competition (repulsive)

• Knowledge (an “exchange particle”)

Interactions mediated by social “forces”:

Sociophysics: scientists as interacting “atoms”

K. Börner, et al. A multi-level systems 
perspective for the science of team science. 
Sci. Transl. Med. 2, 49cm24 (2010).
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Evolution of Science: “In the beginning...”

Galileo Galilei 

Paul A. David. The Historical Origins of ‘Open Science’: An essay on patronage, reputation, and 
common agency contracting in the scientific revolution. Capitalism and Society 3(2): Article 5 (2008). 

NATURE PHYSICS DOI:10.1038/NPHYS2180 INSIGHT | PROGRESS ARTICLE

Chain-like NON Star-like NON Tree-like NON

Figure 6 | Three types of loopless NON composed of five coupled
networks. All have the same percolation threshold and the same giant

component. The dark node represents the origin network on which failures

initially occur.

NON, (2) a tree-like random regular fully dependent NON, (3) a

loop-like Erdős–Rényi partially dependent NON and (4) a random

regular network of partially dependent Erdős–Rényi networks.

All cases represent different generalizations of percolation theory

for a single network. In all examples except (3) we apply the

no-feedback condition.

(1) We solve explicitly
96

the case of a tree-like NON (Fig. 6)

formed by n Erdős–Rényi networks92–94 with the same average

degrees k, p1 = p, pi = 1 for i �= 1 and qij = 1 (fully interdependent).

From equations (15) and (16) we obtain an exact expression for the

order parameter, the size of the mutual giant component for all p, k
and n values,

P∞ = p[1−exp(−kP∞)]n (17)

Equation (17) generalizes known results for n= 1,2. For n= 1, we

obtain the known result pc =1/k, equation (11), of an Erdős–Rényi
network and P∞(pc) = 0, which corresponds to a continuous

second-order phase transition. Substituting n= 2 in equation (17)

yields the exact results of ref. 73.

Solutions of equation (17) are shown in Fig. 7a for several values

of n. The special case n= 1 is the known Erdős–Rényi second-order
percolation law, equation (12), for a single network. In contrast,

for any n> 1, the solution of (17) yields a first-order percolation

transition, that is, a discontinuity of P∞ at pc.
Our results show (Fig. 7a) that the NON becomes more vul-

nerable with increasing n or decreasing k (pc increases when

n increases or k decreases). Furthermore, for a fixed n, when
k is smaller than a critical number kmin(n), pc ≥ 1, meaning

that for k < kmin(n) the NON will collapse even if a single

node fails
96
.

(2) In the case of a tree-like network of interdependent random

regular networks
97
, where the degree k of each node in each network

is assumed to be the same, we obtain an exact expression for the

order parameter, the size of the mutual giant component for all

p, k and n values,

P∞ = p
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Numerical solutions of equation (18) are in excellent agreement

with simulations. Comparing with the results of the tree-like

Erdős–Rényi NON, we find that the robustness of n interdependent
random regular networks of degree k is significantly higher than

that of the n interdependent Erdős–Rényi networks of average

degree k. Moreover, whereas for an Erdős–Rényi NON there exists

a critical minimum average degree k = kmin that increases with n
(below which the system collapses), there is no such analogous kmin

for the random regular NON system. For any k > 2, the random

regular NON is stable, that is, pc < 1. In general, this is correct

for any network with any degree distribution, Pi(k), such that

Pi(0) = Pi(1) = 0, that is, for a network without disconnected or

singly connected nodes
97
.

(3) In the case of a loop-like NON (for dependences in

one direction) of n Erdős–Rényi networks
96
, all the links are

unidirectional, and the no-feedback condition is irrelevant. If the

initial attack on each network is the same, 1−p, qi−1i = qn1 = q and
ki =k, using equations (15) and (16)we obtain thatP∞ satisfies

P∞ = p(1−e
−kP∞)(qP∞ −q+1) (19)

Note that if q = 1 equation (19) has only a trivial solution

P∞ = 0, whereas for q = 0 it yields the known giant component

of a single network, equation (12), as expected. We present

numerical solutions of equation (19) for two values of q in

Fig. 7b. Interestingly, whereas for q = 1 and tree-like structures

equations (17) and (18) depend on n, for loop-like NON structures

equation (19) is independent of n.
(4) For NONs where each ER network is dependent on exactly

m other Erdős–Rényi networks (the case of a random regular

network of Erdős–Rényi networks), we assume that the initial attack

on each network is 1− p, and each partially dependent pair has

the same q in both directions. The n equations of equation (15)

are exactly the same owing to symmetries, and hence P∞ can be

obtained analytically,

P∞ = p
2m

(1−e
−kP∞)[1−q+

�
(1−q)2 +4qP∞]m (20)

from which we obtain

pc =
1

k(1−q)m
(21)

Again, as in case (3), it is surprising that both the critical threshold

and the giant component are independent of the number of

networks n, in contrast to tree-like NON (equations (17) and (18)),

but depend on the coupling q and on both degrees k and

m. Numerical solutions of equation (20) are shown in Fig. 7c,

and the critical thresholds pc in Fig. 7c coincide with the

theory, equation (21).

Remark on scale-free networks
The above examples regarding Erdős–Rényi and random regular

networks have been selected because they can be explicitly

solved analytically. In principle, the generating function formalism

presented here can be applied to randomly connected networks

with any degree distribution. The analysis of the scale-free networks

with a power-law degree distribution P(k) ∼ k−λ
is extremely

important, because many real networks can be approximated

by a power-law degree distribution, such as the Internet, the

airline network and social-contact networks, such as networks

of scientific collaboration
2,10,51

. Analysis of fully interdependent

scale-free networks
73

shows that, for interdependent scale-free

networks, pc > 0 even in the case λ ≤ 3 for which in a single

network pc = 0. In general, for fully interdependent networks,

the broader the degree distribution the greater pc for networks

with the same average degree
73
. This means that networks with a

broad degree distribution become less robust than networks with

a narrow degree distribution. This trend is the opposite of the

trend found in non-interacting isolated networks. The explanation

of this phenomenon is related to the fact that in randomly

interdependent networks the hubs in one network may depend on

poorly connected nodes in another. Thus the removal of a randomly

selected node in one network may cause a failure of a hub in

a second network, which in turn renders many singly connected

NATURE PHYSICS | VOL 8 | JANUARY 2012 | www.nature.com/naturephysics 45

Noble patron (king, wealthy aristocrat, Pope)

Association networks in the 
early scientific labor system
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Emerging trends in Science
• emergence of small-world collaboration networks with the increasing 

role of team-work in science
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Figure 6 | Three types of loopless NON composed of five coupled
networks. All have the same percolation threshold and the same giant

component. The dark node represents the origin network on which failures

initially occur.
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regular network of partially dependent Erdős–Rényi networks.
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for a single network. In all examples except (3) we apply the

no-feedback condition.
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96

the case of a tree-like NON (Fig. 6)

formed by n Erdős–Rényi networks92–94 with the same average
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From equations (15) and (16) we obtain an exact expression for the
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and n values,
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k is smaller than a critical number kmin(n), pc ≥ 1, meaning

that for k < kmin(n) the NON will collapse even if a single
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96
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, where the degree k of each node in each network

is assumed to be the same, we obtain an exact expression for the
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Numerical solutions of equation (18) are in excellent agreement

with simulations. Comparing with the results of the tree-like

Erdős–Rényi NON, we find that the robustness of n interdependent
random regular networks of degree k is significantly higher than

that of the n interdependent Erdős–Rényi networks of average

degree k. Moreover, whereas for an Erdős–Rényi NON there exists

a critical minimum average degree k = kmin that increases with n
(below which the system collapses), there is no such analogous kmin

for the random regular NON system. For any k > 2, the random

regular NON is stable, that is, pc < 1. In general, this is correct

for any network with any degree distribution, Pi(k), such that

Pi(0) = Pi(1) = 0, that is, for a network without disconnected or

singly connected nodes
97
.

(3) In the case of a loop-like NON (for dependences in

one direction) of n Erdős–Rényi networks
96
, all the links are

unidirectional, and the no-feedback condition is irrelevant. If the
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ki =k, using equations (15) and (16)we obtain thatP∞ satisfies
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At first glance, Robert Kirshner took the 
e-mail message for a scam. An astronomer 
at King Abdulaziz University (KAU) in Jed-
dah, Saudi Arabia, was offering him a con-
tract for an adjunct professorship that would 
pay $72,000 a year. Kirshner, an astrophysi-
cist at Harvard University, would be expected 
to supervise a research group at KAU and 
spend a week or two a year on KAU’s cam-
pus, but that requirement was fl exible, the 
person making the offer wrote in the e-mail. 
What Kirshner would be required to do, 
however, was add King Abdulaziz Univer-
sity as a second affi liation to his name on the 
Institute for Scientifi c Information’s (ISI’s) 
list of highly cited researchers.

“I thought it was a joke,” says Kirshner, 
who forwarded the e-mail to his department 
chair, noting in jest that the money was a lot 
more attractive than the 2% annual raise pro-
fessors typically get. Then he discovered that 
a highly cited colleague at another U.S. insti-
tution had accepted KAU’s offer, adding KAU 
as a second affi liation on ISIhighlycited.com.

Kirshner’s colleague is not alone. Sci-

ence has learned of more than 60 top-ranked 
researchers from different scientific disci-
plines—all on ISI’s highly cited list—who 
have recently signed a part-time employment 
arrangement with the university that is struc-
tured along the lines of what Kirshner was 
offered. Meanwhile, a bigger, more promi-
nent Saudi institution—King Saud Univer-
sity in Riyadh—has climbed several hundred 
places in international rankings in the past 

4 years largely through initiatives specifi cally 
targeted toward attaching KSU’s name to 
research publications, regardless of whether 
the work involved any meaningful collabora-
tion with KSU researchers.

Academics both inside and outside Saudi 
Arabia warn that such practices could detract 
from the genuine efforts that Saudi Arabia’s 
universities are making to transform them-
selves into world-class research centers. For 
instance, the Saudi government has spent bil-
lions of dollars to build the new King Abdul-
lah University of Science and Technology in 
Thuwal, which boasts state-of-the-art labs 
and dozens of prominent researchers as full-
time faculty members (Science, 16 October 
2009, p. 354).

But the initiatives at KSU and KAU are 
aimed at getting speedier results. “They are 
simply buying names,” says Mohammed Al-
Qunaibet, a professor of agricultural eco-
nomics at KSU, who recently criticized the 
programs in an article he wrote for the leading 
Saudi newspaper, Al Hayat. Teddi Fishman, 
director of the Center for Academic Integ-
rity at Clemson University in South Carolina, 
says the programs deliberately create “a false 
impression that these universities are produc-
ing great research.”

Academics who have accepted KAU’s 
offer represent a wide variety of faculty 
from elite institutions in the United States, 
Canada, Europe, Asia, and Australia. All 
are men. Some are emeritus professors who 
have recently retired from their home insti-

tutions. All have changed their affi liation on 
ISI’s highly cited list—as required by KAU’s 
contract—and some have added KAU as an 
affi liation on research papers. Other require-
ments in the contract include devoting “the 
whole of your time, attention, skill and abili-
ties to the performance of your duties” and 
doing “work equivalent to a total of 4 months 
per contract period.”

Neil Robertson, a professor emeritus 
of mathematics at Ohio State University in 
Columbus who has signed on, says he has 
no concerns about the offer. “It’s just capi-
talism,” he says. “They have the capital 
and they want to build something out of it.” 
Another KAU affiliate, astronomer Gerry 
Gilmore of the University of Cambridge in 
the United Kingdom, notes that “universities 
buy people’s reputations all the time. In prin-
ciple, this is no different from Harvard hiring 
a prominent researcher.”

Officials at KAU did not respond to 
Science’s request for an interview. But 
Surender Jain, a retired mathematics pro-
fessor from Ohio University in Athens who 
is an adviser to KAU and has helped recruit 
several of the adjuncts, provided a list of 61 
academics who have signed contracts simi-
lar to the one sent to Kirshner. The fi nancial 
arrangements in the contracts vary, Jain says: 
For instance, some adjuncts will receive their 
compensation not as salary but as part of a 
research grant provided by KAU.

Jain acknowledges that a primary goal of 
the program—funded by Saudi Arabia’s Min-
istry of Higher Education—is to “improve 
the visibility and ranking of King Abdulaziz 
University.” But he says KAU also hopes the 
foreign academics will help it kick-start indig-
enous research programs. “We’re not just giv-
ing away money,” he says. Most recruits will 
be expected to visit for a total of 4 weeks in a 
year to “give crash courses”; they will also be 
expected to supervise dissertations and help 
KAU’s full-time faculty members develop 
research proposals. Even the “shadows” of 
such eminent scholars would inspire local stu-
dents and faculty members, he says.

The recruits Science spoke to say they 
have a genuine interest in promoting research 
at KAU, even though none of them knew how 
their individual research plans would match 
up with the interests and abilities of KAU’s 
faculty members and students. Ray Carlberg, 
an astronomer at the University of Toronto in 
Canada who accepted the offer, says he had 
to Google the university after he received the 
e-mail. He admits that he was initially con-

Saudi Universities Offer Cash

In Exchange for Academic Prestige
Two Saudi institutions are aggressively acquiring the affi liations of overseas scientists 
with an eye to gaining visibility in research journals

C I TAT I O N  I M PAC T

Shiny. King Abdulaziz University’s steps to gain 
visibility are controversial.

Published by AAAS
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at King Abdulaziz University (KAU) in Jed-
dah, Saudi Arabia, was offering him a con-
tract for an adjunct professorship that would 
pay $72,000 a year. Kirshner, an astrophysi-
cist at Harvard University, would be expected 
to supervise a research group at KAU and 
spend a week or two a year on KAU’s cam-
pus, but that requirement was fl exible, the 
person making the offer wrote in the e-mail. 
What Kirshner would be required to do, 
however, was add King Abdulaziz Univer-
sity as a second affi liation to his name on the 
Institute for Scientifi c Information’s (ISI’s) 
list of highly cited researchers.

“I thought it was a joke,” says Kirshner, 
who forwarded the e-mail to his department 
chair, noting in jest that the money was a lot 
more attractive than the 2% annual raise pro-
fessors typically get. Then he discovered that 
a highly cited colleague at another U.S. insti-
tution had accepted KAU’s offer, adding KAU 
as a second affi liation on ISIhighlycited.com.

Kirshner’s colleague is not alone. Sci-

ence has learned of more than 60 top-ranked 
researchers from different scientific disci-
plines—all on ISI’s highly cited list—who 
have recently signed a part-time employment 
arrangement with the university that is struc-
tured along the lines of what Kirshner was 
offered. Meanwhile, a bigger, more promi-
nent Saudi institution—King Saud Univer-
sity in Riyadh—has climbed several hundred 
places in international rankings in the past 

4 years largely through initiatives specifi cally 
targeted toward attaching KSU’s name to 
research publications, regardless of whether 
the work involved any meaningful collabora-
tion with KSU researchers.

Academics both inside and outside Saudi 
Arabia warn that such practices could detract 
from the genuine efforts that Saudi Arabia’s 
universities are making to transform them-
selves into world-class research centers. For 
instance, the Saudi government has spent bil-
lions of dollars to build the new King Abdul-
lah University of Science and Technology in 
Thuwal, which boasts state-of-the-art labs 
and dozens of prominent researchers as full-
time faculty members (Science, 16 October 
2009, p. 354).

But the initiatives at KSU and KAU are 
aimed at getting speedier results. “They are 
simply buying names,” says Mohammed Al-
Qunaibet, a professor of agricultural eco-
nomics at KSU, who recently criticized the 
programs in an article he wrote for the leading 
Saudi newspaper, Al Hayat. Teddi Fishman, 
director of the Center for Academic Integ-
rity at Clemson University in South Carolina, 
says the programs deliberately create “a false 
impression that these universities are produc-
ing great research.”

Academics who have accepted KAU’s 
offer represent a wide variety of faculty 
from elite institutions in the United States, 
Canada, Europe, Asia, and Australia. All 
are men. Some are emeritus professors who 
have recently retired from their home insti-

tutions. All have changed their affi liation on 
ISI’s highly cited list—as required by KAU’s 
contract—and some have added KAU as an 
affi liation on research papers. Other require-
ments in the contract include devoting “the 
whole of your time, attention, skill and abili-
ties to the performance of your duties” and 
doing “work equivalent to a total of 4 months 
per contract period.”

Neil Robertson, a professor emeritus 
of mathematics at Ohio State University in 
Columbus who has signed on, says he has 
no concerns about the offer. “It’s just capi-
talism,” he says. “They have the capital 
and they want to build something out of it.” 
Another KAU affiliate, astronomer Gerry 
Gilmore of the University of Cambridge in 
the United Kingdom, notes that “universities 
buy people’s reputations all the time. In prin-
ciple, this is no different from Harvard hiring 
a prominent researcher.”

Officials at KAU did not respond to 
Science’s request for an interview. But 
Surender Jain, a retired mathematics pro-
fessor from Ohio University in Athens who 
is an adviser to KAU and has helped recruit 
several of the adjuncts, provided a list of 61 
academics who have signed contracts simi-
lar to the one sent to Kirshner. The fi nancial 
arrangements in the contracts vary, Jain says: 
For instance, some adjuncts will receive their 
compensation not as salary but as part of a 
research grant provided by KAU.

Jain acknowledges that a primary goal of 
the program—funded by Saudi Arabia’s Min-
istry of Higher Education—is to “improve 
the visibility and ranking of King Abdulaziz 
University.” But he says KAU also hopes the 
foreign academics will help it kick-start indig-
enous research programs. “We’re not just giv-
ing away money,” he says. Most recruits will 
be expected to visit for a total of 4 weeks in a 
year to “give crash courses”; they will also be 
expected to supervise dissertations and help 
KAU’s full-time faculty members develop 
research proposals. Even the “shadows” of 
such eminent scholars would inspire local stu-
dents and faculty members, he says.

The recruits Science spoke to say they 
have a genuine interest in promoting research 
at KAU, even though none of them knew how 
their individual research plans would match 
up with the interests and abilities of KAU’s 
faculty members and students. Ray Carlberg, 
an astronomer at the University of Toronto in 
Canada who accepted the offer, says he had 
to Google the university after he received the 
e-mail. He admits that he was initially con-

Saudi Universities Offer Cash

In Exchange for Academic Prestige
Two Saudi institutions are aggressively acquiring the affi liations of overseas scientists 
with an eye to gaining visibility in research journals
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Shiny. King Abdulaziz University’s steps to gain 
visibility are controversial.
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• shifts in the competitive aspects 
of science, universities, and 
scientists: reputation 
tournaments in omnipresent 
competition arenas

• organizational shifts in the business structure of research universities

LETTERS

Quantifying social group evolution
Gergely Palla1, Albert-László Barabási2 & Tamás Vicsek1,3

The rich set of interactions between individuals in society1–7

results in complex community structure, capturing highly con-
nected circles of friends, families or professional cliques in a social
network3,7–10. Thanks to frequent changes in the activity and com-
munication patterns of individuals, the associated social and com-
munication network is subject to constant evolution7,11–16. Our
knowledge of themechanisms governing the underlying commun-
ity dynamics is limited, but is essential for a deeper understanding
of the development and self-optimization of society as a whole17–22.
We have developed an algorithm based on clique percolation23,24

that allows us to investigate the time dependence of overlapping
communities on a large scale, and thus uncover basic relationships
characterizing community evolution. Our focus is on networks
capturing the collaboration between scientists and the calls be-
tween mobile phone users. We find that large groups persist for
longer if they are capable of dynamically altering their member-
ship, suggesting that an ability to change the group composition
results in better adaptability. The behaviour of small groups dis-
plays the opposite tendency—the condition for stability is that
their composition remains unchanged. We also show that know-
ledge of the time commitment of members to a given community
can be used for estimating the community’s lifetime. These find-
ings offer insight into the fundamental differences between the
dynamics of small groups and large institutions.

The data sets we consider are (1) the monthly list of articles in the
Cornell University Library e-print condensed matter (cond-mat)
archive spanning 142 months, with over 30,000 authors25, and (2)
the record of phone calls between the customers of a mobile phone
company spanning 52weeks (accumulated over two-week-long per-
iods), and containing the communication patterns of over 4 million
users. Both types of collaboration events (a new article or a phone
call) document the presence of social interaction between the
involved individuals (nodes), and can be represented as (time-
dependent) links. The extraction of the changing link weights from
the primary data is described in Supplementary Information. In
Fig. 1a, b we show the local structure at a given time step in the
two networks in the vicinity of a randomly chosen individual
(marked by a red frame). The communities (social groups repre-
sented by more densely interconnected parts within a network of
social links) are colour coded, so that black nodes/edges do not
belong to any community, and those that simultaneously belong to
two or more communities are shown in red.

The two networks have rather different local structure: the collab-
oration network of scientists emerges as a one-mode projection of the
bipartite graph between authors and papers, so it is quite dense and
the overlap between communities is very significant. In contrast, in the
phone-call network the communities are less interconnected and are
often separated by one ormore inter-community nodes/edges. Indeed,
whereas the phone record captures the communication between two
people, the publication record assigns to all individuals that contribute
to a paper a fully connected clique. As a result, the phone data are

dominated by single links, whereas the co-authorship data have many
dense, highly connected neighbourhoods. Furthermore, the links in
the phone network correspond to instant communication events, cap-
turing a relationship as it happens. In contrast, the co-authorship data

1Statistical and Biological Physics ResearchGroup of theHAS, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Center for ComplexNetwork Research andDepartments of Physics and
Computer Science, University of Notre Dame, Indiana 46566, USA. 3Department of Biological Physics, Eötvös University, Pázmány P. stny. 1A, H-1117 Budapest, Hungary.
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Figure 1 | Structure and schematic dynamics of the two networks
considered. a, The co-authorship network. The figure shows the local
community structure at a given time step in the vicinity of a randomly selected
node. b, As a but for the phone-call network. c, The filled black symbols
correspond to the average size of the largest subset of members with the same
zip-code, Ænrealæ, in the phone-call communities divided by the same quantity
found in randomsets, Ænrandæ, as a function of the community size, s. Similarly,
the open symbols show the average size of the largest subset of community
members with an age falling in a three-year time window, divided by the same
quantity in random sets. The error bars in both cases correspond to Ænrealæ/
(Ænrandæ1srand) and Ænrealæ/(Ænrandæ2srand), where srand is the standard
deviation in the case of the random sets. d, The Ænrealæ/s as a function of s, for
both the zip-code (filledblack symbols) and theage (open symbols).e, Possible
events in community evolution. f, The identificationof evolving communities.
The links at t (blue) and the links at t1 1 (yellow) aremerged into a joint graph
(green). Any CPM community at t or t1 1 is part of a CPM community in the
joined graph, so these can be used to match the two sets of communities.
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• shifts away from tenure towards shorter-term contracts + bottle 
neck in the number of tenure-track positions available 

• redefining the role of teaching -vs- research faculty
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Emerging trends in Science
• emergence of small-world collaboration networks with the increasing 

role of team-work in science
NATURE PHYSICS DOI:10.1038/NPHYS2180 INSIGHT | PROGRESS ARTICLE

Chain-like NON Star-like NON Tree-like NON

Figure 6 | Three types of loopless NON composed of five coupled
networks. All have the same percolation threshold and the same giant

component. The dark node represents the origin network on which failures

initially occur.

NON, (2) a tree-like random regular fully dependent NON, (3) a

loop-like Erdős–Rényi partially dependent NON and (4) a random

regular network of partially dependent Erdős–Rényi networks.

All cases represent different generalizations of percolation theory

for a single network. In all examples except (3) we apply the

no-feedback condition.

(1) We solve explicitly
96

the case of a tree-like NON (Fig. 6)

formed by n Erdős–Rényi networks92–94 with the same average

degrees k, p1 = p, pi = 1 for i �= 1 and qij = 1 (fully interdependent).

From equations (15) and (16) we obtain an exact expression for the

order parameter, the size of the mutual giant component for all p, k
and n values,

P∞ = p[1−exp(−kP∞)]n (17)

Equation (17) generalizes known results for n= 1,2. For n= 1, we

obtain the known result pc =1/k, equation (11), of an Erdős–Rényi
network and P∞(pc) = 0, which corresponds to a continuous

second-order phase transition. Substituting n= 2 in equation (17)

yields the exact results of ref. 73.

Solutions of equation (17) are shown in Fig. 7a for several values

of n. The special case n= 1 is the known Erdős–Rényi second-order
percolation law, equation (12), for a single network. In contrast,

for any n> 1, the solution of (17) yields a first-order percolation

transition, that is, a discontinuity of P∞ at pc.
Our results show (Fig. 7a) that the NON becomes more vul-

nerable with increasing n or decreasing k (pc increases when

n increases or k decreases). Furthermore, for a fixed n, when
k is smaller than a critical number kmin(n), pc ≥ 1, meaning

that for k < kmin(n) the NON will collapse even if a single

node fails
96
.

(2) In the case of a tree-like network of interdependent random

regular networks
97
, where the degree k of each node in each network

is assumed to be the same, we obtain an exact expression for the

order parameter, the size of the mutual giant component for all

p, k and n values,

P∞ = p
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(18)

Numerical solutions of equation (18) are in excellent agreement

with simulations. Comparing with the results of the tree-like

Erdős–Rényi NON, we find that the robustness of n interdependent
random regular networks of degree k is significantly higher than

that of the n interdependent Erdős–Rényi networks of average

degree k. Moreover, whereas for an Erdős–Rényi NON there exists

a critical minimum average degree k = kmin that increases with n
(below which the system collapses), there is no such analogous kmin

for the random regular NON system. For any k > 2, the random

regular NON is stable, that is, pc < 1. In general, this is correct

for any network with any degree distribution, Pi(k), such that

Pi(0) = Pi(1) = 0, that is, for a network without disconnected or

singly connected nodes
97
.

(3) In the case of a loop-like NON (for dependences in

one direction) of n Erdős–Rényi networks
96
, all the links are

unidirectional, and the no-feedback condition is irrelevant. If the

initial attack on each network is the same, 1−p, qi−1i = qn1 = q and
ki =k, using equations (15) and (16)we obtain thatP∞ satisfies

P∞ = p(1−e
−kP∞)(qP∞ −q+1) (19)

Note that if q = 1 equation (19) has only a trivial solution

P∞ = 0, whereas for q = 0 it yields the known giant component

of a single network, equation (12), as expected. We present

numerical solutions of equation (19) for two values of q in

Fig. 7b. Interestingly, whereas for q = 1 and tree-like structures

equations (17) and (18) depend on n, for loop-like NON structures

equation (19) is independent of n.
(4) For NONs where each ER network is dependent on exactly

m other Erdős–Rényi networks (the case of a random regular

network of Erdős–Rényi networks), we assume that the initial attack

on each network is 1− p, and each partially dependent pair has

the same q in both directions. The n equations of equation (15)

are exactly the same owing to symmetries, and hence P∞ can be

obtained analytically,

P∞ = p
2m

(1−e
−kP∞)[1−q+

�
(1−q)2 +4qP∞]m (20)

from which we obtain

pc =
1

k(1−q)m
(21)

Again, as in case (3), it is surprising that both the critical threshold

and the giant component are independent of the number of

networks n, in contrast to tree-like NON (equations (17) and (18)),

but depend on the coupling q and on both degrees k and

m. Numerical solutions of equation (20) are shown in Fig. 7c,

and the critical thresholds pc in Fig. 7c coincide with the

theory, equation (21).

Remark on scale-free networks
The above examples regarding Erdős–Rényi and random regular

networks have been selected because they can be explicitly

solved analytically. In principle, the generating function formalism

presented here can be applied to randomly connected networks

with any degree distribution. The analysis of the scale-free networks

with a power-law degree distribution P(k) ∼ k−λ
is extremely

important, because many real networks can be approximated

by a power-law degree distribution, such as the Internet, the

airline network and social-contact networks, such as networks

of scientific collaboration
2,10,51

. Analysis of fully interdependent

scale-free networks
73

shows that, for interdependent scale-free

networks, pc > 0 even in the case λ ≤ 3 for which in a single

network pc = 0. In general, for fully interdependent networks,

the broader the degree distribution the greater pc for networks

with the same average degree
73
. This means that networks with a

broad degree distribution become less robust than networks with

a narrow degree distribution. This trend is the opposite of the

trend found in non-interacting isolated networks. The explanation

of this phenomenon is related to the fact that in randomly

interdependent networks the hubs in one network may depend on

poorly connected nodes in another. Thus the removal of a randomly

selected node in one network may cause a failure of a hub in

a second network, which in turn renders many singly connected
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At first glance, Robert Kirshner took the 
e-mail message for a scam. An astronomer 
at King Abdulaziz University (KAU) in Jed-
dah, Saudi Arabia, was offering him a con-
tract for an adjunct professorship that would 
pay $72,000 a year. Kirshner, an astrophysi-
cist at Harvard University, would be expected 
to supervise a research group at KAU and 
spend a week or two a year on KAU’s cam-
pus, but that requirement was fl exible, the 
person making the offer wrote in the e-mail. 
What Kirshner would be required to do, 
however, was add King Abdulaziz Univer-
sity as a second affi liation to his name on the 
Institute for Scientifi c Information’s (ISI’s) 
list of highly cited researchers.

“I thought it was a joke,” says Kirshner, 
who forwarded the e-mail to his department 
chair, noting in jest that the money was a lot 
more attractive than the 2% annual raise pro-
fessors typically get. Then he discovered that 
a highly cited colleague at another U.S. insti-
tution had accepted KAU’s offer, adding KAU 
as a second affi liation on ISIhighlycited.com.

Kirshner’s colleague is not alone. Sci-

ence has learned of more than 60 top-ranked 
researchers from different scientific disci-
plines—all on ISI’s highly cited list—who 
have recently signed a part-time employment 
arrangement with the university that is struc-
tured along the lines of what Kirshner was 
offered. Meanwhile, a bigger, more promi-
nent Saudi institution—King Saud Univer-
sity in Riyadh—has climbed several hundred 
places in international rankings in the past 

4 years largely through initiatives specifi cally 
targeted toward attaching KSU’s name to 
research publications, regardless of whether 
the work involved any meaningful collabora-
tion with KSU researchers.

Academics both inside and outside Saudi 
Arabia warn that such practices could detract 
from the genuine efforts that Saudi Arabia’s 
universities are making to transform them-
selves into world-class research centers. For 
instance, the Saudi government has spent bil-
lions of dollars to build the new King Abdul-
lah University of Science and Technology in 
Thuwal, which boasts state-of-the-art labs 
and dozens of prominent researchers as full-
time faculty members (Science, 16 October 
2009, p. 354).

But the initiatives at KSU and KAU are 
aimed at getting speedier results. “They are 
simply buying names,” says Mohammed Al-
Qunaibet, a professor of agricultural eco-
nomics at KSU, who recently criticized the 
programs in an article he wrote for the leading 
Saudi newspaper, Al Hayat. Teddi Fishman, 
director of the Center for Academic Integ-
rity at Clemson University in South Carolina, 
says the programs deliberately create “a false 
impression that these universities are produc-
ing great research.”

Academics who have accepted KAU’s 
offer represent a wide variety of faculty 
from elite institutions in the United States, 
Canada, Europe, Asia, and Australia. All 
are men. Some are emeritus professors who 
have recently retired from their home insti-

tutions. All have changed their affi liation on 
ISI’s highly cited list—as required by KAU’s 
contract—and some have added KAU as an 
affi liation on research papers. Other require-
ments in the contract include devoting “the 
whole of your time, attention, skill and abili-
ties to the performance of your duties” and 
doing “work equivalent to a total of 4 months 
per contract period.”

Neil Robertson, a professor emeritus 
of mathematics at Ohio State University in 
Columbus who has signed on, says he has 
no concerns about the offer. “It’s just capi-
talism,” he says. “They have the capital 
and they want to build something out of it.” 
Another KAU affiliate, astronomer Gerry 
Gilmore of the University of Cambridge in 
the United Kingdom, notes that “universities 
buy people’s reputations all the time. In prin-
ciple, this is no different from Harvard hiring 
a prominent researcher.”

Officials at KAU did not respond to 
Science’s request for an interview. But 
Surender Jain, a retired mathematics pro-
fessor from Ohio University in Athens who 
is an adviser to KAU and has helped recruit 
several of the adjuncts, provided a list of 61 
academics who have signed contracts simi-
lar to the one sent to Kirshner. The fi nancial 
arrangements in the contracts vary, Jain says: 
For instance, some adjuncts will receive their 
compensation not as salary but as part of a 
research grant provided by KAU.

Jain acknowledges that a primary goal of 
the program—funded by Saudi Arabia’s Min-
istry of Higher Education—is to “improve 
the visibility and ranking of King Abdulaziz 
University.” But he says KAU also hopes the 
foreign academics will help it kick-start indig-
enous research programs. “We’re not just giv-
ing away money,” he says. Most recruits will 
be expected to visit for a total of 4 weeks in a 
year to “give crash courses”; they will also be 
expected to supervise dissertations and help 
KAU’s full-time faculty members develop 
research proposals. Even the “shadows” of 
such eminent scholars would inspire local stu-
dents and faculty members, he says.

The recruits Science spoke to say they 
have a genuine interest in promoting research 
at KAU, even though none of them knew how 
their individual research plans would match 
up with the interests and abilities of KAU’s 
faculty members and students. Ray Carlberg, 
an astronomer at the University of Toronto in 
Canada who accepted the offer, says he had 
to Google the university after he received the 
e-mail. He admits that he was initially con-

Saudi Universities Offer Cash

In Exchange for Academic Prestige
Two Saudi institutions are aggressively acquiring the affi liations of overseas scientists 
with an eye to gaining visibility in research journals
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Shiny. King Abdulaziz University’s steps to gain 
visibility are controversial.
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At first glance, Robert Kirshner took the 
e-mail message for a scam. An astronomer 
at King Abdulaziz University (KAU) in Jed-
dah, Saudi Arabia, was offering him a con-
tract for an adjunct professorship that would 
pay $72,000 a year. Kirshner, an astrophysi-
cist at Harvard University, would be expected 
to supervise a research group at KAU and 
spend a week or two a year on KAU’s cam-
pus, but that requirement was fl exible, the 
person making the offer wrote in the e-mail. 
What Kirshner would be required to do, 
however, was add King Abdulaziz Univer-
sity as a second affi liation to his name on the 
Institute for Scientifi c Information’s (ISI’s) 
list of highly cited researchers.

“I thought it was a joke,” says Kirshner, 
who forwarded the e-mail to his department 
chair, noting in jest that the money was a lot 
more attractive than the 2% annual raise pro-
fessors typically get. Then he discovered that 
a highly cited colleague at another U.S. insti-
tution had accepted KAU’s offer, adding KAU 
as a second affi liation on ISIhighlycited.com.

Kirshner’s colleague is not alone. Sci-

ence has learned of more than 60 top-ranked 
researchers from different scientific disci-
plines—all on ISI’s highly cited list—who 
have recently signed a part-time employment 
arrangement with the university that is struc-
tured along the lines of what Kirshner was 
offered. Meanwhile, a bigger, more promi-
nent Saudi institution—King Saud Univer-
sity in Riyadh—has climbed several hundred 
places in international rankings in the past 

4 years largely through initiatives specifi cally 
targeted toward attaching KSU’s name to 
research publications, regardless of whether 
the work involved any meaningful collabora-
tion with KSU researchers.

Academics both inside and outside Saudi 
Arabia warn that such practices could detract 
from the genuine efforts that Saudi Arabia’s 
universities are making to transform them-
selves into world-class research centers. For 
instance, the Saudi government has spent bil-
lions of dollars to build the new King Abdul-
lah University of Science and Technology in 
Thuwal, which boasts state-of-the-art labs 
and dozens of prominent researchers as full-
time faculty members (Science, 16 October 
2009, p. 354).

But the initiatives at KSU and KAU are 
aimed at getting speedier results. “They are 
simply buying names,” says Mohammed Al-
Qunaibet, a professor of agricultural eco-
nomics at KSU, who recently criticized the 
programs in an article he wrote for the leading 
Saudi newspaper, Al Hayat. Teddi Fishman, 
director of the Center for Academic Integ-
rity at Clemson University in South Carolina, 
says the programs deliberately create “a false 
impression that these universities are produc-
ing great research.”

Academics who have accepted KAU’s 
offer represent a wide variety of faculty 
from elite institutions in the United States, 
Canada, Europe, Asia, and Australia. All 
are men. Some are emeritus professors who 
have recently retired from their home insti-

tutions. All have changed their affi liation on 
ISI’s highly cited list—as required by KAU’s 
contract—and some have added KAU as an 
affi liation on research papers. Other require-
ments in the contract include devoting “the 
whole of your time, attention, skill and abili-
ties to the performance of your duties” and 
doing “work equivalent to a total of 4 months 
per contract period.”

Neil Robertson, a professor emeritus 
of mathematics at Ohio State University in 
Columbus who has signed on, says he has 
no concerns about the offer. “It’s just capi-
talism,” he says. “They have the capital 
and they want to build something out of it.” 
Another KAU affiliate, astronomer Gerry 
Gilmore of the University of Cambridge in 
the United Kingdom, notes that “universities 
buy people’s reputations all the time. In prin-
ciple, this is no different from Harvard hiring 
a prominent researcher.”

Officials at KAU did not respond to 
Science’s request for an interview. But 
Surender Jain, a retired mathematics pro-
fessor from Ohio University in Athens who 
is an adviser to KAU and has helped recruit 
several of the adjuncts, provided a list of 61 
academics who have signed contracts simi-
lar to the one sent to Kirshner. The fi nancial 
arrangements in the contracts vary, Jain says: 
For instance, some adjuncts will receive their 
compensation not as salary but as part of a 
research grant provided by KAU.
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the program—funded by Saudi Arabia’s Min-
istry of Higher Education—is to “improve 
the visibility and ranking of King Abdulaziz 
University.” But he says KAU also hopes the 
foreign academics will help it kick-start indig-
enous research programs. “We’re not just giv-
ing away money,” he says. Most recruits will 
be expected to visit for a total of 4 weeks in a 
year to “give crash courses”; they will also be 
expected to supervise dissertations and help 
KAU’s full-time faculty members develop 
research proposals. Even the “shadows” of 
such eminent scholars would inspire local stu-
dents and faculty members, he says.

The recruits Science spoke to say they 
have a genuine interest in promoting research 
at KAU, even though none of them knew how 
their individual research plans would match 
up with the interests and abilities of KAU’s 
faculty members and students. Ray Carlberg, 
an astronomer at the University of Toronto in 
Canada who accepted the offer, says he had 
to Google the university after he received the 
e-mail. He admits that he was initially con-

Saudi Universities Offer Cash

In Exchange for Academic Prestige
Two Saudi institutions are aggressively acquiring the affi liations of overseas scientists 
with an eye to gaining visibility in research journals

C I TAT I O N  I M PAC T

Shiny. King Abdulaziz University’s steps to gain 
visibility are controversial.
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• shifts in the competitive aspects 
of science, universities, and 
scientists: reputation 
tournaments in omnipresent 
competition arenas

• organizational shifts in the business structure of research universities

LETTERS

Quantifying social group evolution
Gergely Palla1, Albert-László Barabási2 & Tamás Vicsek1,3

The rich set of interactions between individuals in society1–7

results in complex community structure, capturing highly con-
nected circles of friends, families or professional cliques in a social
network3,7–10. Thanks to frequent changes in the activity and com-
munication patterns of individuals, the associated social and com-
munication network is subject to constant evolution7,11–16. Our
knowledge of themechanisms governing the underlying commun-
ity dynamics is limited, but is essential for a deeper understanding
of the development and self-optimization of society as a whole17–22.
We have developed an algorithm based on clique percolation23,24

that allows us to investigate the time dependence of overlapping
communities on a large scale, and thus uncover basic relationships
characterizing community evolution. Our focus is on networks
capturing the collaboration between scientists and the calls be-
tween mobile phone users. We find that large groups persist for
longer if they are capable of dynamically altering their member-
ship, suggesting that an ability to change the group composition
results in better adaptability. The behaviour of small groups dis-
plays the opposite tendency—the condition for stability is that
their composition remains unchanged. We also show that know-
ledge of the time commitment of members to a given community
can be used for estimating the community’s lifetime. These find-
ings offer insight into the fundamental differences between the
dynamics of small groups and large institutions.

The data sets we consider are (1) the monthly list of articles in the
Cornell University Library e-print condensed matter (cond-mat)
archive spanning 142 months, with over 30,000 authors25, and (2)
the record of phone calls between the customers of a mobile phone
company spanning 52weeks (accumulated over two-week-long per-
iods), and containing the communication patterns of over 4 million
users. Both types of collaboration events (a new article or a phone
call) document the presence of social interaction between the
involved individuals (nodes), and can be represented as (time-
dependent) links. The extraction of the changing link weights from
the primary data is described in Supplementary Information. In
Fig. 1a, b we show the local structure at a given time step in the
two networks in the vicinity of a randomly chosen individual
(marked by a red frame). The communities (social groups repre-
sented by more densely interconnected parts within a network of
social links) are colour coded, so that black nodes/edges do not
belong to any community, and those that simultaneously belong to
two or more communities are shown in red.

The two networks have rather different local structure: the collab-
oration network of scientists emerges as a one-mode projection of the
bipartite graph between authors and papers, so it is quite dense and
the overlap between communities is very significant. In contrast, in the
phone-call network the communities are less interconnected and are
often separated by one ormore inter-community nodes/edges. Indeed,
whereas the phone record captures the communication between two
people, the publication record assigns to all individuals that contribute
to a paper a fully connected clique. As a result, the phone data are

dominated by single links, whereas the co-authorship data have many
dense, highly connected neighbourhoods. Furthermore, the links in
the phone network correspond to instant communication events, cap-
turing a relationship as it happens. In contrast, the co-authorship data

1Statistical and Biological Physics ResearchGroup of theHAS, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Center for ComplexNetwork Research andDepartments of Physics and
Computer Science, University of Notre Dame, Indiana 46566, USA. 3Department of Biological Physics, Eötvös University, Pázmány P. stny. 1A, H-1117 Budapest, Hungary.
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Figure 1 | Structure and schematic dynamics of the two networks
considered. a, The co-authorship network. The figure shows the local
community structure at a given time step in the vicinity of a randomly selected
node. b, As a but for the phone-call network. c, The filled black symbols
correspond to the average size of the largest subset of members with the same
zip-code, Ænrealæ, in the phone-call communities divided by the same quantity
found in randomsets, Ænrandæ, as a function of the community size, s. Similarly,
the open symbols show the average size of the largest subset of community
members with an age falling in a three-year time window, divided by the same
quantity in random sets. The error bars in both cases correspond to Ænrealæ/
(Ænrandæ1srand) and Ænrealæ/(Ænrandæ2srand), where srand is the standard
deviation in the case of the random sets. d, The Ænrealæ/s as a function of s, for
both the zip-code (filledblack symbols) and theage (open symbols).e, Possible
events in community evolution. f, The identificationof evolving communities.
The links at t (blue) and the links at t1 1 (yellow) aremerged into a joint graph
(green). Any CPM community at t or t1 1 is part of a CPM community in the
joined graph, so these can be used to match the two sets of communities.
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200+ years
S. Wuchty, B. F. Jones, B. Uzzi. The increasing dominance

of teams in production of knowledge. Science 316, 1036-9 (2007)

• shifts away from tenure towards shorter-term contracts + bottle 
neck in the number of tenure-track positions available 

• redefining the role of teaching -vs- research faculty

Chait RP, ed. The Questions of Tenure. (Harvard University 
Press, Cambridge USA, 2002).
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... articles on the academic labor market

S cientists who attain a PhD are rightly 
proud — they have gained entry to 
an academic elite. But it is not as elite 
as it once was. The number of science 
doctorates earned each year grew by 
nearly 40% between 1998 and 2008, 

to some 34,000, in countries that are members 
of the Organisation for Economic Co-opera-
tion and Development (OECD). The growth 
shows no sign of slowing: most countries are 
building up their higher-education systems 
because they see educated workers as a key 
to economic growth (see ‘The rise of doctor-
ates’). But in much of the world, science PhD 
graduates may never get a chance to take full 
advantage of their qualifications. 

In some countries, including the United 
States and Japan, people who have trained at 
great length and expense to be researchers con-
front a dwindling number of academic jobs, and 
an industrial sector unable to take up the slack. 
Supply has outstripped demand and, although 
few PhD holders end up unemployed, it is not 
clear that spending years securing this high-
level qualification is worth it for a job as, for 
example, a high-school teacher. In other coun-
tries, such as China and India, the economies 
are developing fast enough to use all the PhDs 
they can crank out, and more — but the quality 
of the graduates is not consistent. Only a few 
nations, including Germany, are successfully 
tackling the problem by redefining the PhD as 

training for high-level positions in careers out-
side academia. Here, Nature examines graduate-
education systems in various states of health.

JAPAN: A SYSTEM IN CRISIS
 Of all the countries in which to graduate with a 
science PhD, Japan is arguably one of the worst. 
In the 1990s, the government set a policy to 
triple the number of postdocs to 10,000, and 
stepped up PhD recruitment to meet that goal. 
The policy was meant to bring Japan’s science 

capacity up to match that of the West — but 
is now much criticized because, although it 
quickly succeeded, it gave little thought to 
where all those postdocs were going to end up. 

Academia doesn’t want them: the number 
of 18-year-olds entering higher education has 
been dropping, so universities don’t need the 
staff. Neither does Japanese industry, which has 
traditionally preferred young, fresh bachelor’s 
graduates who can be trained on the job. The 
science and education ministry couldn’t even 
sell them off when, in 2009, it started offering 
companies around ¥4 million (US$47,000) 
each to take on some of the country’s 18,000 

unemployed postdoctoral students (one of 
several initiatives that have been introduced 
to improve the situation). “It’s just hard to find 
a match” between postdoc and company, says 
Koichi Kitazawa, the head of the Japan Science 
and Technology Agency.

This means there are few jobs for the current  
crop of PhDs. Of the 1,350 people awarded 
doctorates in natural sciences in 2010, just over 
half (746) had full-time posts lined up by the 
time they graduated. But only 162 were in the 
academic sciences or technological services,; of 
the rest, 250 took industry positions, 256 went 
into education and 38 got government jobs. 

With such dismal prospects, the number 
entering PhD programmes has dropped off 
(see ‘Patterns of PhD production’). “Everyone 
tends to look at the future of the PhD labour 
market very pessimistically,” says Kobayashi 
Shinichi, a specialist in science and technol-
ogy workforce issues at the Research Center 
for University Studies at Tsukuba University. 

CHINA: QUANTITY OUTWEIGHS QUALITY?
The number of PhD holders in China is going 
through the roof, with some 50,000 people 
graduating with doctorates across all disci-
plines in 2009 — and by some counts it now 
surpasses all other countries. The main prob-
lem is the low quality of many graduates. 

Yongdi Zhou, a cognitive neuroscientist at 
the East China Normal University in Shanghai, 

THE PHD FACTORY 
The world is producing more 

PhDs than ever before. 
Is it time to stop?

“EVERYONE TENDS TO LOOK AT 
THE FUTURE OF THE PHD LABOUR 
MARKET VERY PESSI MISTICALLY.”
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academic sciences or technological services,; of 
the rest, 250 took industry positions, 256 went 
into education and 38 got government jobs. 

With such dismal prospects, the number 
entering PhD programmes has dropped off 
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RETHINKING PHDS
Fix it, overhaul it or skip it completely — institutions 
and individuals are taking innovative approaches to 

postgraduate science training.
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Only a minor spark was needed to set off 
an online firestorm about the precari-
ous state of US biomedical research 

funding. In late January on the blog Extra-
mural Nexus, Sally Rockey, deputy director 
for extramural research at the US National 
Institutes of Health (NIH), announced the 
creation of a committee to advise the NIH on 
the future needs of the biomedical workforce. 
Daniel Noonan, a molecular biologist at the 
University of Kentucky in Lexington, wrote in 
response what he terms a “spontaneous post”, 
outlining what he believes to be 
problems with current NIH poli-
cies that have disproportionately 
affected funding for mid-career 
biomedical scientists. 

His sentiments struck a chord 
— resonant to some, and off-key 
to others. Noonan’s post made the 
e-mail rounds of academic depart-
ments and touched off heated 
online debates about whether the 
NIH system is ‘broken’ or headed 
for disaster, given looming budget 
concerns. The agency is facing flat-
tened budgets for fiscal years 2011, 
2012 and beyond; grant submis-
sions have the lowest success rates 
in a decade; and policies favour 
new investigators. Mid-career sci-
entists are under funding pressure, 
and the situation is creating a growing number 
of tenured but unfunded professors. Lacking 
a major NIH grant, these researchers may be 
forced to shrink their staff numbers, or shift to 
teaching, administrative or even non-science 
positions.

In the interest of stretching funds further, 
Noonan advised the NIH to delay large initia-
tives such as building the National Center for 
Advancing Translational Science; limit individ-
ual investigators to three grants or US$1 million 
a year; implement a formula that gives inves-
tigators with multiple grants less per grant for 
indirect costs from university overheads; fac-
tor in an investigator’s non-NIH funding when 
deciding whether to provide a grant; and limit 
or eliminate funds for construction projects.

Applications for NIH grants are scored for 
scientific merit; for investigators beyond the 
early stages of their careers, only those scoring 
in roughly the top 10% get funded. In 2010, 
success rates for R01 grants — the NIH’s pri-
mary grant for individual investigators — were 

around 15–25%. “If you lose that one grant-
renewal opportunity, it’s hard to recover in this 
day and age,” says Noonan. The pool of money 
dedicated to investigator-initiated grants has 
shrunk, he says, and with limited state and 
federal budgets, the NIH needs to find ways to 
generate money from within.

Rockey has pledged to forward the online 
discussions to the workforce advisory commit-
tee, which will be chaired by Shirley Tilghman, 
a molecular biologist and president of Prince-
ton University in New Jersey. But Rockey says 
that no decisions have been made to cap appli-
cations from individuals. “There are a lot of  

different thoughts about how one might go 
about this,” she says. “We want to have data and 
facts and information before we resort to any 
social engineering of the workforce.”

Ideas for reform extend beyond unhappy 
individual investigators. The 12,000-member  
American Society for Biochemistry and Molec-
ular Biology (ASBMB) in Bethesda, Maryland, 
has proposed some recommendations, says 
Benjamin Corb, the society’s director of public 
affairs. The ASBMB seeks a cap on the fund-
ing going to any one person, and suggests that 
money be redirected to the R01 pool from large 
initiatives that have not made medical break-
throughs, such as the Genome-Wide Asso-
ciation Studies programme and the Protein 
Structure Initiative. The ASBMB also proposes 
that the NIH adopt a sliding scale, to partially 
fund lower-scoring but meritorious grants. 
The society presented its recommendations to 
six institute directors and Lawrence Tabak, the 
NIH’s deputy director, on 14 March.

The idea of capping the number of awards to 

individuals has received some attention. Sev-
eral investigators receive multiple NIH grants: 
a 2008 analysis by Nature found 200 scientists 
who held 6 or more (see Nature 452, 258–259; 
2008). And the ASBMB calculates that in fiscal 
year 2009, 1,600 scientists each received $1 mil-
lion or more from the NIH. Rockey points out 
that the National Institute of General Medical 
Sciences already has a capping policy — an 
investigator already receiving $750,000 or 
more from any source must justify new grant 
submissions. 

But she emphasizes that such multiple-grant 
holders are rare. “Contrary to popular belief, the 

average NIH-funded scientist holds 
1.4 grants at any one time,” she says. 
“So there is not a huge cadre of people 
who have eight, nine or ten grants.” 
But she concedes that compared 
with a decade ago, more researchers 
are fighting over the same sized slice 
of pie, as a result of budget doubling 
that has now levelled off.

“It’s a difficulty for just about 
every body — early-, mid- or late-
career — in sustaining NIH fund-
ing,” says Rockey, noting that 
scientists’ frustrations stem from “a 
lot of pent-up good science going on 
that we are unable to fund.” Tilgh-
man’s workforce advisory commit-
tee will try to determine the size 
and composition of the biomedical 
workforce that the NIH can support.

Not everyone thinks that the NIH needs to 
reconsider how grant funding is apportioned. 
Several scientist bloggers believe that Noonan’s 
comments imply that scientists should have 
access to NIH resources regardless of ability 
or outcomes; they counter that meritocracy 
should rule. One contributor wrote that with 
budgets shrinking, researchers really should be 
concentrating on communicating the value of 
research to the public.

Rockey advises mid-career scientists facing 
an R01 renewal to consider a no-cost exten-
sion (stretching out existing grant funds) for 
another year to gather data or publish results; 
or to try making contingency plans, such as 
seeking bridge funding from their institutions. 
“Your reviewer is taking into account what 
you have already accomplished, so be sure to 
highlight how well your research is going and 
the strengths of your research team,” she says. 
Rockey’s top recommendation, she says, is to 
seek advice from the relevant grant-review 
programme officer. ■

U N I T E D  S TAT E S

Mid-career crunch
Some senior scientists feel neglected by the National Institutes of Health’s  grant formula.
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seek advice from the relevant grant-review 
programme officer. ■

U N I T E D  S TAT E S

Mid-career crunch
Some senior scientists feel neglected by the National Institutes of Health’s  grant formula.
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Biologist Rafael Carazo Salas doesn’t have 
tenure — nor is he expecting to pursue 
the tenure-track system any time soon. 

As a faculty member at a UK institution, he 
doesn’t have that option — academic tenure 
per se in the United Kingdom was abolished 
more than 20 years ago. 

But Carazo Salas, a group leader at the Uni-
versity of Cambridge, UK, isn’t lying awake at 
night trying to dream up ways to manoeuvre 
himself into a tenured or tenure-track research 
position. Funded by a portable five-year grant 
from the European Research Council, he is 
pleased with what he calls a high level of scien-
tific independence conferred by the grant, even 
though he’s well aware that he has no guarantee 

of a continuing position at Cambridge at the 
end of the next four years. 

“Everyone would like to have job security,” 
says Carazo Salas, who moved this year from 
ETH Zurich in Switzerland after his partner 
secured a Cambridge post. But Carazo Salas 
is fine with his current position. He may not 
have job security in perpetuity, but he has 
autonomy, few administrative duties, and no 
teaching obligations. “If I secure funds to con-
tinue paying my own salary, I can conceivably 
stay here as long as I want,” he says.

Although most academics strive for ten-
ure, experiences such as Carazo Salas’s sug-
gest that it is not the only satisfying career 
course. Early-career academic researchers in 
the United States, the European Union (EU) 
and elsewhere are wrestling with major shifts 
in tenure’s definition, availability and value. 
Seen for decades as the only route to long-term 
job security and academic freedom, its long-
standing symbol as the ultimate prize for aca-
demic researchers has been eroding on many 
fronts. Tenured and tenure-track positions, 
already hard to secure, have become rarer in 
some areas because of budget concerns. Other 
regions are seeing increased interest, as gov-
ernments and institutions try to attract top 
talent. Tenure is no longer what it once was, 
and young scientists might want to survey the 
features of a changing landscape.

TENURE’S DECLINE
At most North American institutions, tenure 
is typical for senior faculty appointments such 
as professors and associate professors. Achiev-
ing tenure generally requires a strong record 
of published research and administrative work 
including committee membership (see ‘How to 
get tenure’). Most tenure systems allow junior 
tenure-track faculty members a period of sev-
eral years to establish such a record. In addition 
to job security, academic tenure aims to pro-
tect academic freedom; faculty members can 
disagree with popular opinion, express nega-
tive views about their institution, or research 
unpopular topics.

Nevertheless, tenure is receding in the 
United States, where tight budgets have 
prompted universities to hire more adjunct 
faculty members. In 1970, roughly three-quar-
ters of all faculty members were in the tenure 
stream in the United States, according to fig-
ures amassed by the American Association of 
University Professors (AAUP). By 1975, that 
number had dropped to 56%, and it continued 
to fall. Only 42% received tenure in 1995, 

A C A D E M I A

The changing  
face of tenure
Although still highly desirable, tenure is not as prevalent as 
it was in some places — and that may not be a bad thing.
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CREDIT: Kelly Krause, AAAS Undergraduates also carry an
increasing share of the load, she
adds: Their tuition, often paid with
student loans, rises as more funds
go to research. Their teachers,
meanwhile, increasingly are
cut-rate adjuncts rather than the
famous professors the recruiting
brochures boast about.

http://sciencecareers.sciencemag.org

Issues & Perspectives  

Academia's Crooked Money
Trail
“Follow the money!”
According to the film All the
President's Men
(http://www.imdb.com/title
/tt0074119/quotes

%E2%80%9D)) , this advice from the shadowy informant
known as Deep Throat guided Washington Post reporters Bob
Woodward and Carl Bernstein in cracking the Watergate
conspiracy.

The strategy also serves Georgia State University economist
Paula Stephan (http://www2.gsu.edu/~ecopes/) extremely
well in her illuminating and accessible new book, How
Economics Shapes Science (http://www.hup.harvard.edu
/catalog.php?recid=31302) . A leading expert on the
scientific labor market, Stephan isn’t looking to sniff out
high-level government corruption. Rather, using the “tool bag”
economics provides for “analyzing the relationships between
incentives and costs,” she penetrates the financial structure of
university-based science, explaining the motivation and behavior of everyone from august university presidents and
professors to powerless and impecunious graduate students and postdocs.

It's a remarkably revealing approach. Most of what the public hears about the arrangements that govern research comes
from reports by blue-ribbon commissions, prestigious panels, and university-oriented advocacy organizations. Such reports
rarely use hard-headed economic analysis; rather, the groups writing them tend to consist of top administrators at leading
universities, eminent faculty members in major science and engineering departments, and high executives of large
corporations -- “not,” Stephan pointedly notes, “students and postdocs who could not find jobs.”

The documents that result from those high-end studies lean toward self-congratulatory invocations of science’s role in
advancing human welfare. Their suggestions generally favor solving what ails universities by giving them more of what they
already have: funding, grants, graduate students, and postdocs. But, warns Stephan with an astringency that she infuses
throughout the book, when “assessing recommendations, one should be leery of those coming from groups who have a
vested interest in keeping the system the way it is.”

The consequences of cost and risk

The troubles plaguing academic science -- including fierce competition for funding, dismal career opportunities for young
scientists, overdependence on soft money, excessive time spent applying for grants, and many more -- do not arise,
Stephan suggests, from a shortage of funds. In 2009, she notes, the United States spent nearly $55 billion on university-
and medical school–based research and development, far more than any other nation.
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soft money positions.” Stephan also wants more attention paid to the potential advantages and disadvantages of funding
systems that support researchers over time, as the Howard Hughes Medical Institute has done with great success, rather
than for specific, short-term projects. Importantly, she notes, “universities and faculty members do not respond to
recommendations that lack teeth.”

The short space at my disposal allows me to present just a hint of the penetrating discoveries waiting in this book: How and
to what extent does patenting enrich some faculty members and universities? What incentives encourage universities to
import increasing numbers of foreign students and postdocs -- and to insist that there are shortages of both -- while a
growing surplus of native-born scientists struggle to find jobs that allow them to pay off student loans? How do universities
continue to attract students into graduate programs despite poor odds of attaining the careers they desire? Why does
supporting scientists over time, rather than individual grant-funded projects, appear to produce better science?

These and many other apparent quandaries yield to Stephan’s rigorous and clear-eyed examination of the money trail. She
conveys her findings in clear, comprehensible prose. If you want to understand what is really happening in American
academic science today, here’s my advice: Read this enlightening book.

Beryl Lieff Benderly writes from Washington, D.C.

10.1126/science.caredit.a1200001
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Persistency and Uncertainty 
Can a quantitative picture of career dynamics shed 

light on the saying: “publish or perish” ?

1. Empirical Facts

Longitudinal career data:
Set A: 100 most-cited physicists, average h-index〈h〉= 61 ± 21 

Set B: 100 additional highly-prolific physicists,〈h〉 = 44 ± 15 

Set C: 100 current assistant professors from 50 US physics depts.,〈h〉 = 15 ± 7 

An analysis of the citation impact of these 300 scientists is available in:

A. M. Petersen,  H. E. Stanley, S. Succi. “Statistical regularities in the rank-
citation profile of scientists.” Scientific Reports 1, 181 (2011).
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The career trajectory in science: 
a tale of knowledge, collaboration, and reputation spillovers
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ball Association (NBA) careers during the 63-year period
1946–2008.

We model the career as an aggregation of output op-
portunities which arrive at the variable rate ni(t). Since
the reputation of a scientist is typically a cumulative rep-
resentation of his/her contributions, we consider the cu-
mulative production Ni(t) ≡

�t
t�=1 ni(t�) as a proxy for

career achievement. Fig. 1 shows the cumulative produc-
tion Ni(t) of six notable careers which display a scaling
relation Ni(t) ≈ Aitαi . However, there are also cases of
Ni(t), see Fig. S1, which do not exhibit such regular-
ity, instead displaying marked non-stationarity and non-
linearity arising from significant exogenous career shocks.
We justify this 2-parameter model in the SI text using
scaling methods and data collapse (see Figs. S2 and S3)
to show that most Ni(t) can be modeled by this common
functional form. Careers with αi ≈ 1 have relatively
constant ni(t), whereas careers with αi > 1 show accel-
erated growth which reflects the benefits of learning and
collaboration spillovers which constitute a portion of the
cumulative advantage held by experienced and reputable
individuals [7]. Fig. S4 shows the distribution P (αi)
with average exponent �α� > 1. For each dataset, we
calculate �αi� = 1.42 ± 0.29 (s. d.) [A], 1.44 ± 0.26 [B],
and 1.30± 0.31 [C].

Individuals are constantly entering and exiting the pro-
fessional market, with birth and death rates depending
on complex economic and institutional factors. Due to
the high level of competition and risk, early carer perfor-
mance has long lasting consequences [7, 10]. By analyz-
ing the careers that survive the highly competitive entry
and turnover process, we search for statistical patterns
that can give insight into the relative roles of persistency
and career shocks in the growth of careers. To better
understand career uncertainty portrayed by the common
saying “publish or perish,” we analyze the outcome fluc-
tuation

ri(t) ≡ ni(t)− ni(t−∆t) (1)

of career i in year t over the time interval ∆t = 1 year.
Output fluctuations arise naturally from the lulls and
bursts in both the mental and physical capabilities of
humans [11].

We define for each scientific career the normalized pro-
duction change

r�
i(t) ≡ [ri(t)− �ri�]/σi(r) , (2)

which is measured in units of a fluctuation scale σi(r)
that is unique to each individual. We calculate the av-
erage �ri� and standard deviation σi(r) using the first
Li available years for each scientist i. r�

i(t) is a better
measure for comparing career uncertainty, since individ-
uals have production factors that depend on the type of
research, the size of the collaboration team, and the po-
sition within the team. Figs. S5 and S6 show that the
distribution P (r�) is well approximated by a Gaussian
distribution. In academics, the production of scientific

publications depends on many factors, such as cumula-
tive advantage [7, 9, 12], which is an external institu-
tional mechanism, and the “sacred spark,” which is an
internal effect that represents an individual’s ambitious
internal drive for success [13, 14]. For instance, a re-
cent case study on the impact trajectories of nobel prize
winners has found that “scientific shocks” marked by the
publication of an individual’s “magnum opus” work(s)
can trigger future recognition and reward, resembling the
cascading dynamics of earthquakes [15].

Collaboration is a strong factor underlying the vary-
ing fluctuation scales σi(r) in career growth. In science,
the ability to attract future opportunities is strongly re-
lated to production spillovers and knowledge spillovers
[16–18] that are mediated by the collaboration network
[4, 5, 19, 20]. One reason to collaboration is the credibil-
ity signal associated with working with a leading scien-
tists, which can increase an individual’s reputation above
the track record of accomplishment [3]. But possibly the
most value in collaborations, which also applies to the
case for long-term employment, comes from increase re-
turns on investment, since it is over time and through
the scientific network that an individual benefits from
the spillovers she generates that can further accelerate
her career trajectory. In this sense, there is a tipping
point in a scientific career that occurs when (i) a scien-
tist becomes an attractor (as opposed to a pursuer) of
new collaboration-production opportunities and (ii) the
knowledge investment reaches a critical mass. To account
for production spillover via collaboration, we calculate
for each author the number ki(t) of distinct coauthors
per year and relate this fundamental input factor to the
annual output ni(t).

Fig. 2(a) shows the relation between the average an-
nual production �ni� and median annual coauthorship
Si ≡ Med[ki] used here as a proxy for the size Si of
each scientific career. This measure is more statistically
stable than the average ki(t) because there can be ex-
tremely large outlier ki(t) values in high-energy and as-
tronomy collaborations. For dataset [A] scientists we
find an input-output scaling relation �ni� ∼ Sψ

i with
ψ = 0.74 ± 0.04 (s.e.m.), which shows the increasing
economies of scale α > 1 for these prolific scientists may
be largely due to a relatively high collaboration efficiency.
In Fig. 2(b) we further test the growth fluctuation scaling
relation

σ2
i (r) ≈ V Sψ

i (3)

and calculate the scaling exponents ψ/2 ≈ 0.40 ± 0.03
(R = 0.77) for dataset [A], ψ/2 ≈ 0.22± 0.04 (R = 0.51)
[B], and ψ/2 ≈ 0.26 ± 0.05 (R = 0.45) [C]. The agree-
ment of the ψ values calculated in Fig. 2 (a) and (b) in-
dicates that the two consecutive n(t) values constituting
each r(t) value are drawn from an approximately stable
underling distribution Pi(n) with sequential production
values ni(t) and ni(t + 1) that are largely independent,
resulting in the empirical observation that σ2

i (n) ∼ σ2
i (r).

Professional athletes attract future opportunities
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Individuals are constantly entering and exiting the pro-
fessional market, with birth and death rates depending
on complex economic and institutional factors. Due to
the high level of competition and risk, early carer perfor-
mance has long lasting consequences [7, 10]. By analyz-
ing the careers that survive the highly competitive entry
and turnover process, we search for statistical patterns
that can give insight into the relative roles of persistency
and career shocks in the growth of careers. To better
understand career uncertainty portrayed by the common
saying “publish or perish,” we analyze the outcome fluc-
tuation

ri(t) ≡ ni(t)− ni(t−∆t) (1)

of career i in year t over the time interval ∆t = 1 year.
Output fluctuations arise naturally from the lulls and
bursts in both the mental and physical capabilities of
humans [11].

We define for each scientific career the normalized pro-
duction change

r�
i(t) ≡ [ri(t)− �ri�]/σi(r) , (2)

which is measured in units of a fluctuation scale σi(r)
that is unique to each individual. We calculate the av-
erage �ri� and standard deviation σi(r) using the first
Li available years for each scientist i. r�

i(t) is a better
measure for comparing career uncertainty, since individ-
uals have production factors that depend on the type of
research, the size of the collaboration team, and the po-
sition within the team. Figs. S5 and S6 show that the
distribution P (r�) is well approximated by a Gaussian
distribution. In academics, the production of scientific

publications depends on many factors, such as cumula-
tive advantage [7, 9, 12], which is an external institu-
tional mechanism, and the “sacred spark,” which is an
internal effect that represents an individual’s ambitious
internal drive for success [13, 14]. For instance, a re-
cent case study on the impact trajectories of nobel prize
winners has found that “scientific shocks” marked by the
publication of an individual’s “magnum opus” work(s)
can trigger future recognition and reward, resembling the
cascading dynamics of earthquakes [15].

Collaboration is a strong factor underlying the vary-
ing fluctuation scales σi(r) in career growth. In science,
the ability to attract future opportunities is strongly re-
lated to production spillovers and knowledge spillovers
[16–18] that are mediated by the collaboration network
[4, 5, 19, 20]. One reason to collaboration is the credibil-
ity signal associated with working with a leading scien-
tists, which can increase an individual’s reputation above
the track record of accomplishment [3]. But possibly the
most value in collaborations, which also applies to the
case for long-term employment, comes from increase re-
turns on investment, since it is over time and through
the scientific network that an individual benefits from
the spillovers she generates that can further accelerate
her career trajectory. In this sense, there is a tipping
point in a scientific career that occurs when (i) a scien-
tist becomes an attractor (as opposed to a pursuer) of
new collaboration-production opportunities and (ii) the
knowledge investment reaches a critical mass. To account
for production spillover via collaboration, we calculate
for each author the number ki(t) of distinct coauthors
per year and relate this fundamental input factor to the
annual output ni(t).

Fig. 2(a) shows the relation between the average an-
nual production �ni� and median annual coauthorship
Si ≡ Med[ki] used here as a proxy for the size Si of
each scientific career. This measure is more statistically
stable than the average ki(t) because there can be ex-
tremely large outlier ki(t) values in high-energy and as-
tronomy collaborations. For dataset [A] scientists we
find an input-output scaling relation �ni� ∼ Sψ

i with
ψ = 0.74 ± 0.04 (s.e.m.), which shows the increasing
economies of scale α > 1 for these prolific scientists may
be largely due to a relatively high collaboration efficiency.
In Fig. 2(b) we further test the growth fluctuation scaling
relation

σ2
i (r) ≈ V Sψ

i (3)

and calculate the scaling exponents ψ/2 ≈ 0.40 ± 0.03
(R = 0.77) for dataset [A], ψ/2 ≈ 0.22± 0.04 (R = 0.51)
[B], and ψ/2 ≈ 0.26 ± 0.05 (R = 0.45) [C]. The agree-
ment of the ψ values calculated in Fig. 2 (a) and (b) in-
dicates that the two consecutive n(t) values constituting
each r(t) value are drawn from an approximately stable
underling distribution Pi(n) with sequential production
values ni(t) and ni(t + 1) that are largely independent,
resulting in the empirical observation that σ2

i (n) ∼ σ2
i (r).

Professional athletes attract future opportunities

number of publications in year t

[A] 100 “top” physicists  (ᾱ =1.28 ± 0.01 )

[B] 100 (prolific) control physicists (ᾱ =1.31 ± 0.01 )

[C] 100 asst. professors (physics) (ᾱ =1.15 ± 0.02 )

knowledge, reputation, and collaboration 
spillovers contribute to the increasing 
returns across the academic career

Cumulative advantage: Successful leaders 
become “attractors” of new opportunities

Cumulative production, a proxy for career reputation

Annual production of individual i

for many 
prolific careers!
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Productivity Growth Dynamics

Output change (“growth fluctuation”),

A proxy for career “uncertainty”
(“risk” or “volatility),

std. dev.

The “tent-shaped” double-exponential distribution P(r) is leptokurtic, 
similar to what is observed for the growth patterns of diverse economic 
systems (country GDP, company market capitalization, etc.)

3

N �
i(t) belonging to each dataset,

�N �(t)� ≡
�Ni(t)
�ni�

�
≡ 1

100

100�

i=1

Ni(t)
�ni�

. (1)

The standard deviation σ(N �(t)) shown in Fig. S2(B)
begins to decrease after roughly 20 years for dataset [A]
and [B] scientists. Over this horizon, the stochastic ar-
rival of career shocks can significantly alter the career
trajectory [20, 23, 26, 27].

Each N �
i(t) exhibits robust scaling corresponding to

the scaling law �N �(t)� ∼ tα. This regularity reflects the
abundance of of careers with αi > 1 corresponding to ac-
celerated career growth. This acceleration is consistent
with increasing returns arising from knowledge and pro-
duction spillovers. Notably, this is not true for sports
careers which show α ≈ 1 corresponding to relatively
constant ni(t). In fact, annual production in professional
sports is capped by the limited number of opportunities
available per season.

B. Fluctuations in scientific output over the
academic career

Individuals are constantly entering and exiting the
professional market, with birth and death rates depend-
ing on complex economic and institutional factors. Due
to competition, decisions and performance at the early
stages of the career can have long lasting consequences
[16, 28]. To better understand career uncertainty por-
trayed by the common saying “publish or perish” [29],
we analyze the outcome fluctuation

ri(t) ≡ ni(t)− ni(t−∆t) (2)

of career i in year t over the time interval ∆t = 1 year.
Fig. 2(A) and (B) show the unconditional pdf of r values
which are leptokurtic but remarkably symmetric, illus-
trating the endogenous frequencies of positive and nega-
tive output growth. Output fluctuations arise naturally
from the lulls and bursts in both the mental and physical
capabilities of humans [30, 31]. Moreover, the statistical
regularities in the annual production change distribution
indicate a striking resemblance to the growth rate distri-
bution of countries, firms, and universities [32, 33].

To better account for individual growth factors, we
next define the normalized production change

r�i(t) ≡ [ri(t)− �ri�]/σi(r) (3)

which is measured in units of the fluctuation scale σi(r)
unique to each career. We measure the average �ri� and
the standard deviation σi(r) of each career using the first
Li available years for each scientist i. r�i(t) is a better
measure for comparing career uncertainty, since individ-
uals have production factors that depend on the type
of research, the size of the collaboration team, and the
position within the team. Fig. 2(C) show that P (r�),

the probability density function (pdf) of r� measured in
units of standard deviation, is well approximated by a
Gaussian distribution with unit variance. The data col-
lapse of each P (r�) onto the predicted Gaussian distribu-
tion (solid green curve) indicates that individual output
fluctuations are consistent with a proportional growth
model. We note that the remaining deviations in the
tails for |r�| ≥ 3 are likely signatures of the exogenous
career shocks that are not accounted for by an endoge-
nous proportional growth model.

The ability to collaborate on large projects, both in
close working teams and in extreme examples as remote
agents (i.e. Wikipedia [34]), is one of the foremost prop-
erties of human society. In science, the ability to attract
future opportunities is strongly related to production and
knowledge spillovers [27, 35, 36] that are facilitated by
the collaboration network [7, 12, 37–41]. Indeed, there is
a tipping point in a scientific career that occurs when a
scientist’s knowledge investment reaches a critical mass
that can sustain production over a long horizon, and
when a scientist becomes an attractor (as opposed to a
pursuer) of new collaboration/production opportunities.
To account for collaboration, we calculate for each au-
thor the number ki(t) of distinct coauthors per year and
then define his/her collaboration radius Si as the median
of the set of his/her ki(t) values, Si ≡ Med[ki(t)]. We
use the median instead of the average �ki(t)� since ex-
tremely large ki(t) values can occur in specific fields such
as high-energy physics and astronomy.

Given the complex scientific coauthorship network, we
ask the question: what is the typical number of unique
coauthors per year? Fig. 2(D) shows that the cumu-
lative distribution function CDF (Si) of Si values for
each data set. The approximately linear form on log-
linear axes indicates that Si is exponentially distributed,
CDF (Si) ∼ exp[−λSi]. We calculate λ = 0.15 ± 0.01
[A], λ = 0.11 ± 0.01 [B], and λ = 0.11 ± 0.01 [C]. The
exponential size distribution has been shown to emerge
in complex systems where linear preferential attachment
governs the acquisition of new opportunities [42]. This
result shows that the leptokurtic “tent-shaped” distribu-
tion P (r) in Fig. 2 follows from the exponential mixing
of heterogenous conditional Gaussian distributions [43].

The exponential mixture of Gaussians decomposes the
unconditional distribution P (r) into a mixture of condi-
tional Gaussian distributions

P (r|Si) = exp[−r2/2V Sψ
i ]/

�
2πV Sψ

i , (4)

each with a fluctuation scale σi(r) depending on Si by
the scaling relation

σ2
i (r) ≈ V Sψ

i . (5)

Hence, the mixture is parameterized by ψ

Pψ(r) =
� ∞

0
P (r|S)P (S)dS ≈

�

i=1

Pi(r|Si)P (Si) . (6)
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FIG. 3: Quantitative relations between career growth, career

risk, and collaboration efficiency. The fluctuations in produc-

tion reflect the unpredictable horizon of “career shocks” which

can affect the ability of a scientists to access new creative op-

portunities. (A) Relation between average annual production

�ni� and collaboration radius Si ≡ Med[ki] shows a decreasing

marginal output per collaborator as demonstrated by sublin-

ear ψ < 1. Interestingly, dataset [A] scientists have on average

a larger output-to-input efficiency. (B) The production fluc-

tuation scale σi(r) is a quantitative measure for uncertainty

in academic careers, with scaling relation σi(r) ∼ Sψ/2
i . (C)

Over time, there is an increasing returns evident in the annual

production ni(t) since α > 1. Management, coordination, and

training inefficiencies can result in a γ < 1 corresponding to a

decreasing marginal return with each additional coauthor in-

put. The significantly larger γ value for dataset [A] scientists

seems to suggest that managerial abilities related to output

efficiency is a common attribute of top scientists.

D. A Proportional growth model for scientific
output

We develop a stochastic model as a heuristic tool to
better understand the effects of long-term versus short-
term contracts. In this competition model, opportunities
(i.e. new scientific publications) are captured according
to a general mechanism whereby the capture rate Pi(t)
depends on the appraisal wi(t) of an individual’s record
of achievement over a prescribed history. We define the
appraisal to be an exponentially weighted average over a
given individual’s history of production

wi(t) ≡
t−1�

∆t=1

ni(t−∆t)e−c∆t , (8)

which is characterized by the appraisal horizon 1/c. We
use the value c = 0 to represent a long-term appraisal
(tenure) system and a value c � 1 to represent a short-
term appraisal system. Each agent i = 1...I simultane-
ously attracts new opportunities at a rate

Pi(t) =
wi(t)π

�I
i=1 wi(t)π

. (9)

until all P opportunities for a given period t are allo-
cated. We assume that each agent has the production
potential of one unit per period, and so the total number
of opportunities allocated per period P is equal to the
number of competing agents, P ≡ I.

We use Monte Carlo (MC) simulation to analyze this
2-parameter model over the course of t = 1...T sequen-
tial periods. In each production period (representing a
timescale on the order of half a human year), a fixed
number of P production units are captured by the com-
peting agents. At the end of each period, we update each
wi(t) and then proceed to simulate the next preferential
capture period t + 1. Since Pi(t) depends on the relative
achievements of every agent, the relative competitive ad-
vantage of one individual over another is determined by
the parameter π. In the SI Appendix text we elaborate
in more detail the results of our simulation of synthetic
careers dynamics. We vary π and c for a labor force of
size I ≡ 1000 and maximum lifetime T ≡ 100 periods as
a representative size and duration of a real labor cohort.
Our results are general, and for sufficiently large system
size, the qualitative features of the results do not depend
significantly on the choice of I or T .

The case with π = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are cap-
tured at a Poisson rate λp = 1 per period. The results
of this model (see Fig. S13) shows that almost all ca-
reers obtain the maximum career length T with a typical
career trajectory exponent �αi� ≈ 1. Comparing to sim-
ulations with π > 0 and c ≥ 0, the null model is similar
to a “long-term” appraisal system (c → 0) with sublin-
ear preferential capture (π < 1). In such systems, the

sports careers

academic careers
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Collaboration Radius and team efficiency
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Not surprisingly, there is a decreasing marginal 
returns with increasing collaboration radius, likely 
attributable to team management inefficiencies

4

The independent case ψ = 0 results in a Gaussian Pψ(r)
and the linear case ψ = 1 results in a Laplace (double-
exponential) Pψ(r). See the SI Appendix text and ref.
[43] for further discussion of the ψ dependence of Pψ(r).

C. The size-variance relation and group efficiency

The values of ψ for scientific and athletic careers follow
from the different combination of physical and intellec-
tual inputs that enter the production function for the
two distinct professions. Academic knowledge is typi-
cally a non-rival good, and so knowledge-intensive pro-
fessions are characterized by spillovers, both over time
and across collaborations [35, 36], consistent with αi > 1
and ψ > 0. Interestingly, Azoulay et al. show evidence
for production spillovers in the 5–8% decrease in output
by scientists who were close collaborators with a “super-
star” scientists who died suddenly [27].

We now formalize the quantitative link between scien-
tific collaboration [37, 38] and career growth given by the
size-variance scaling relation in Eq. [5] visualized in the
scatter plot in Fig. 3(B). Using ordinary least squares
(OLS) regression of the data on log-log scale, we cal-
culate ψ/2 ≈ 0.40 ± 0.03 (R = 0.77) for dataset [A],
ψ/2 ≈ 0.22± 0.04 (R = 0.51) [B], and ψ/2 ≈ 0.26± 0.05
(R = 0.45) [C]. Interdependent tasks characteristic of
group collaborations typically involve partially overlap-
ping efforts. Hence, the empirical ψ values are signifi-
cantly less than the value ψ = 1 that one would expect
from the sum of Si independent random variables with
approximately equal variance V . Collectively, these em-
pirical evidences serve as coherent motivations for the the
preferential capture growth model that we propose in the
following section.

Alternatively, it is also possible to estimate ψ using
the relation between the average annual production �ni�
and the collaboration radius Si. The input-output re-
lation �ni� ∼ Sψ

i quantifies the collaboration efficiency,
with ψ = 0.74 ± 0.04 (R = 0.87) for dataset [A] and
ψ = 0.25±0.04 (R = 0.37) for dataset [B]. If the autocor-
relation between sequential production values ni(t) and
ni(t + 1) is relatively small, then we expect the scaling
exponents calculated for �ni� and σ2

i (r) to be approxi-
mately equal. This result follows from considering ri(t)
as the convolution of an underlying production distribu-
tion Pi(n) for each scientist that is approximately stable.
Interestingly, the larger ψ values calculated for dataset
[A] scientists suggests that prestige is related to the in-
creasing returns in the scientific production function [44].

Next we use an alternative method to estimate the
annual collaboration efficiency by relating the number
of publications ni(t) in a given year to the number of
distinct coauthors ki(t) over the same year. We use a
single-factor production function,

ni(t) ≈ qi[ki(t)]γi , (7)

to quantify the relation between output and labor in-
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FIG. 2: Empirical evidence for the proportional growth model
of career production. (A) Probability density function (pdf)
of the annual production change r in the number of papers
published over a ∆t = 1 year period. In the bulk of each P (r),
the growth distribution is approximately double-exponential
(Laplace). (B) To test the stability of the distribution over
career trajectory subintervals, we separate ri(t) values into 5
non-overlapping 10-year periods and verify the stability of the
Laplace P (r). For each P (r), we also plot the corresponding
Laplace distribution (solid line) with standard deviation σ
and mean µ ≈ 0 calculated using the maximum likelihood
estimator method. To improve graphical clarity, we vertically
offset each P (r) by a constant factor. For visual comparison,
we also plot a Normal distribution (dashed black curve) with
σ ≡ 1 which instead decays parabolically on the log-linear
axes. (C) Accounting for individual production factors by
using the normalized production change r�, the resulting pdfs
P (r�) collapse onto a Gaussian distribution with unit variance.
Deviations in the tails likely correspond to extreme “career
shocks.” (D) The cumulative distribution CDF (X ≥ Si) is
exponential, indicating that the unconditional distributions
P (r) in (A) and (B) follow from an exponential mixing of
conditional Gaussian distributions P (r|Si).

puts with a scaling exponent γi. We estimate qi and
γi for each author using OLS regression, and define the
normalized output measure Qi ∝ ni(t)/ki(t)γi using the
best-fit qi and γi values calculated for each scientist i.
Fig. 3(C) shows the efficiency parameter γ calculated
by aggregating all careers in each dataset, and indicates
that this aggregate γ is approximately equal to the av-
erage �γi� calculated from the γi values in each career
dataset: γ = 0.68 ± 0.01 [A], γ = 0.52 ± 0.01 [B], and
γ = 0.51± 0.02 [C]. Furthermore, the ψ and γ values are
approximately equal, which is not surprising, since both
scaling exponents are efficiency measures that relate the
scaling relation of output ni(t) per input ki(t).
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FIG. 3: Quantitative relations between career growth, career

risk, and collaboration efficiency. The fluctuations in produc-

tion reflect the unpredictable horizon of “career shocks” which

can affect the ability of a scientists to access new creative op-

portunities. (A) Relation between average annual production

�ni� and collaboration radius Si ≡ Med[ki] shows a decreasing

marginal output per collaborator as demonstrated by sublin-

ear ψ < 1. Interestingly, dataset [A] scientists have on average

a larger output-to-input efficiency. (B) The production fluc-

tuation scale σi(r) is a quantitative measure for uncertainty

in academic careers, with scaling relation σi(r) ∼ Sψ/2
i . (C)

Over time, there is an increasing returns evident in the annual

production ni(t) since α > 1. Management, coordination, and

training inefficiencies can result in a γ < 1 corresponding to a

decreasing marginal return with each additional coauthor in-

put. The significantly larger γ value for dataset [A] scientists

seems to suggest that managerial abilities related to output

efficiency is a common attribute of top scientists.

D. A Proportional growth model for scientific
output

We develop a stochastic model as a heuristic tool to
better understand the effects of long-term versus short-
term contracts. In this competition model, opportunities
(i.e. new scientific publications) are captured according
to a general mechanism whereby the capture rate Pi(t)
depends on the appraisal wi(t) of an individual’s record
of achievement over a prescribed history. We define the
appraisal to be an exponentially weighted average over a
given individual’s history of production

wi(t) ≡
t−1�

∆t=1

ni(t−∆t)e−c∆t , (8)

which is characterized by the appraisal horizon 1/c. We
use the value c = 0 to represent a long-term appraisal
(tenure) system and a value c � 1 to represent a short-
term appraisal system. Each agent i = 1...I simultane-
ously attracts new opportunities at a rate

Pi(t) =
wi(t)π

�I
i=1 wi(t)π

. (9)

until all P opportunities for a given period t are allo-
cated. We assume that each agent has the production
potential of one unit per period, and so the total number
of opportunities allocated per period P is equal to the
number of competing agents, P ≡ I.

We use Monte Carlo (MC) simulation to analyze this
2-parameter model over the course of t = 1...T sequen-
tial periods. In each production period (representing a
timescale on the order of half a human year), a fixed
number of P production units are captured by the com-
peting agents. At the end of each period, we update each
wi(t) and then proceed to simulate the next preferential
capture period t + 1. Since Pi(t) depends on the relative
achievements of every agent, the relative competitive ad-
vantage of one individual over another is determined by
the parameter π. In the SI Appendix text we elaborate
in more detail the results of our simulation of synthetic
careers dynamics. We vary π and c for a labor force of
size I ≡ 1000 and maximum lifetime T ≡ 100 periods as
a representative size and duration of a real labor cohort.
Our results are general, and for sufficiently large system
size, the qualitative features of the results do not depend
significantly on the choice of I or T .

The case with π = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are cap-
tured at a Poisson rate λp = 1 per period. The results
of this model (see Fig. S13) shows that almost all ca-
reers obtain the maximum career length T with a typical
career trajectory exponent �αi� ≈ 1. Comparing to sim-
ulations with π > 0 and c ≥ 0, the null model is similar
to a “long-term” appraisal system (c → 0) with sublin-
ear preferential capture (π < 1). In such systems, the

Si is median number 
of coauthors per year

std. deviation of 
publication change 

team efficiency 
parameter ψ

Towards a micro-level production function:

3

N �
i(t) belonging to each dataset,

�N �(t)� ≡
�Ni(t)
�ni�

�
≡ 1

100

100�

i=1

Ni(t)
�ni�

. (1)

The standard deviation σ(N �(t)) shown in Fig. S2(B)
begins to decrease after roughly 20 years for dataset [A]
and [B] scientists. Over this horizon, the stochastic ar-
rival of career shocks can significantly alter the career
trajectory [20, 23, 26, 27].

Each N �
i(t) exhibits robust scaling corresponding to

the scaling law �N �(t)� ∼ tα. This regularity reflects the
abundance of of careers with αi > 1 corresponding to ac-
celerated career growth. This acceleration is consistent
with increasing returns arising from knowledge and pro-
duction spillovers. Notably, this is not true for sports
careers which show α ≈ 1 corresponding to relatively
constant ni(t). In fact, annual production in professional
sports is capped by the limited number of opportunities
available per season.

B. Fluctuations in scientific output over the
academic career

Individuals are constantly entering and exiting the
professional market, with birth and death rates depend-
ing on complex economic and institutional factors. Due
to competition, decisions and performance at the early
stages of the career can have long lasting consequences
[16, 28]. To better understand career uncertainty por-
trayed by the common saying “publish or perish” [29],
we analyze the outcome fluctuation

ri(t) ≡ ni(t)− ni(t−∆t) (2)

of career i in year t over the time interval ∆t = 1 year.
Fig. 2(A) and (B) show the unconditional pdf of r values
which are leptokurtic but remarkably symmetric, illus-
trating the endogenous frequencies of positive and nega-
tive output growth. Output fluctuations arise naturally
from the lulls and bursts in both the mental and physical
capabilities of humans [30, 31]. Moreover, the statistical
regularities in the annual production change distribution
indicate a striking resemblance to the growth rate distri-
bution of countries, firms, and universities [32, 33].

To better account for individual growth factors, we
next define the normalized production change

r�i(t) ≡ [ri(t)− �ri�]/σi(r) (3)

which is measured in units of the fluctuation scale σi(r)
unique to each career. We measure the average �ri� and
the standard deviation σi(r) of each career using the first
Li available years for each scientist i. r�i(t) is a better
measure for comparing career uncertainty, since individ-
uals have production factors that depend on the type
of research, the size of the collaboration team, and the
position within the team. Fig. 2(C) show that P (r�),

the probability density function (pdf) of r� measured in
units of standard deviation, is well approximated by a
Gaussian distribution with unit variance. The data col-
lapse of each P (r�) onto the predicted Gaussian distribu-
tion (solid green curve) indicates that individual output
fluctuations are consistent with a proportional growth
model. We note that the remaining deviations in the
tails for |r�| ≥ 3 are likely signatures of the exogenous
career shocks that are not accounted for by an endoge-
nous proportional growth model.

The ability to collaborate on large projects, both in
close working teams and in extreme examples as remote
agents (i.e. Wikipedia [34]), is one of the foremost prop-
erties of human society. In science, the ability to attract
future opportunities is strongly related to production and
knowledge spillovers [27, 35, 36] that are facilitated by
the collaboration network [7, 12, 37–41]. Indeed, there is
a tipping point in a scientific career that occurs when a
scientist’s knowledge investment reaches a critical mass
that can sustain production over a long horizon, and
when a scientist becomes an attractor (as opposed to a
pursuer) of new collaboration/production opportunities.
To account for collaboration, we calculate for each au-
thor the number ki(t) of distinct coauthors per year and
then define his/her collaboration radius Si as the median
of the set of his/her ki(t) values, Si ≡ Med[ki(t)]. We
use the median instead of the average �ki(t)� since ex-
tremely large ki(t) values can occur in specific fields such
as high-energy physics and astronomy.

Given the complex scientific coauthorship network, we
ask the question: what is the typical number of unique
coauthors per year? Fig. 2(D) shows that the cumu-
lative distribution function CDF (Si) of Si values for
each data set. The approximately linear form on log-
linear axes indicates that Si is exponentially distributed,
CDF (Si) ∼ exp[−λSi]. We calculate λ = 0.15 ± 0.01
[A], λ = 0.11 ± 0.01 [B], and λ = 0.11 ± 0.01 [C]. The
exponential size distribution has been shown to emerge
in complex systems where linear preferential attachment
governs the acquisition of new opportunities [42]. This
result shows that the leptokurtic “tent-shaped” distribu-
tion P (r) in Fig. 2 follows from the exponential mixing
of heterogenous conditional Gaussian distributions [43].

The exponential mixture of Gaussians decomposes the
unconditional distribution P (r) into a mixture of condi-
tional Gaussian distributions

P (r|Si) = exp[−r2/2V Sψ
i ]/

�
2πV Sψ

i , (4)

each with a fluctuation scale σi(r) depending on Si by
the scaling relation

σ2
i (r) ≈ V Sψ

i . (5)

Hence, the mixture is parameterized by ψ

Pψ(r) =
� ∞

0
P (r|S)P (S)dS ≈

�

i=1

Pi(r|Si)P (Si) . (6)
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 Preferential Capture Model

c → 0 : appraisal over all lifetime achievements ( ~ tenure system)
c >1 : appraisal over only recent achievements (short-term contract system)

1) For a given allocation period t,  choose random individual to 
capture an output opportunity, so that  

the individual i is chosen with probability            proportional to 
the quantity 

2) In each period, the capture rate of a given individual i is 
calculated by an appraisal of the achievement history

3) The cohort of I competing individuals compete for a fixed 
number of opportunities ∝ I in each period over a lifespan 
spanning  t = 1... T periods.

7

2) We run the Monte Carlo (MC) simulation for T ≡ 100 time periods and all agents are by construction from the

same age cohort (born at same time).

3) Each time period corresponds to the allocation of P ≡
�I

i=1 n0,i opportunities, sequentially one at a time, to

randomly assigned agents i, where n0,i ≡ 1 is the potential production capacity of a given individual.

4) The assignment of a given opportunity is proportional to the time-dependent weight (capture rate) wi(t) of each

agent. Hence, the assignment of 1 opportunity to agent i at period t results in the production (achievement)

ni(t) to increase by one unit: ni(t)→ ni(t) + 1. In the next time period t + 1, we update the weight wi(t + 1)

to include the performance ni(t) in the current period.

B. Initial Condition

The initial weight at the beginning of the simulation is wi(t = 0) ≡ nc for each agent i with nc ≡ 1. The value

nc > 0 ensures that competitors begin with a non-zero production potential, and corresponds to a homogenous system

where all agents begin with the same production capacity. Hence, we do not analyze the more complicated model

wherein external factors (i.e. collaboration factors) can result in a heterogeneous production capacity across scientists.

By construction, each agent begins with one unit of achievement ni(t = 1) ≡ 1.

C. System Dynamics

1) In each Monte Carlo step we allocate one opportunity to a randomly chosen individual i so that ni(t)→ ni(t)+1

2) The individual i is chosen with probability Pi(t) proportional to [wi(t)]π

Pi(t) =
wi(t)π

�I
i=1 wi(t)π

(S16)

where the value wi(t) is given by an exponentially weighted sum over the entire achievement history

wi(t) ≡
t−1�

∆t=1

ni(t−∆t)e−c∆t . (S17)

The parameter c ≥ 0 is a memory parameter which determines how the record of accomplishments in the past

affect the ability to obtain new opportunities in the current period, and therefore, the future. The limit c = 0

rewards long-term accomplishment by equally weighting the entire history of accomplishments. Conversely, when

c� 1 the value of wi(t) is largely dominated by the performance ni(t−1) in the previous period, corresponding

to increased emphasis on short-term accomplishment in the immediate past. Intermediate values 0 < c < 1

weight more equally the immediate past and the entire history of accomplishment.

3) The exponent π determines how the relative ability to attract opportunities Pi/Pj = [wi(t)/wj(t)]π depends

on the weights wi(t) and wj(t) between two individuals i and j. The linear capture case follows from π = 1,

uniform capture π = 0, super linear capture π > 1, and sub-linear capture π < 1.

4) At the end of each time period, the weight wi(t) is recalculated and used for the entirety of the next MC time

period corresponding to the allocation of the next I × nc achievement opportunities.

D. Model Results

We simulate this system for a realistic labor force size I = 1000 with the assumption that in any given period,

an individual has the capacity for one unit of production (nc ≡ 1). We evolve the system for T = 100 periods

corresponding to I×nc×T Monte Carlo time steps. The timescale T represents the (production) lifetime of individuals

with finite longevity. In this model we do not include exogenous shocks (career hazards) that can result in career

death [16]. Here we analyze four quantities:

1) The distribution P (N) of the total number of opportunities Ni(T ) ≡
�T

t=1 ni(t) captured by agent i over the

course of the T− period simulation.
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FIG. 3: Quantitative relations between career growth, career

risk, and collaboration efficiency. The fluctuations in produc-

tion reflect the unpredictable horizon of “career shocks” which

can affect the ability of a scientists to access new creative op-

portunities. (A) Relation between average annual production

�ni� and collaboration radius Si ≡ Med[ki] shows a decreasing

marginal output per collaborator as demonstrated by sublin-

ear ψ < 1. Interestingly, dataset [A] scientists have on average

a larger output-to-input efficiency. (B) The production fluc-

tuation scale σi(r) is a quantitative measure for uncertainty

in academic careers, with scaling relation σi(r) ∼ Sψ/2
i . (C)

Over time, there is an increasing returns evident in the annual

production ni(t) since α > 1. Management, coordination, and

training inefficiencies can result in a γ < 1 corresponding to a

decreasing marginal return with each additional coauthor in-

put. The significantly larger γ value for dataset [A] scientists

seems to suggest that managerial abilities related to output

efficiency is a common attribute of top scientists.

D. A Proportional growth model for scientific
output

We develop a stochastic model as a heuristic tool to
better understand the effects of long-term versus short-
term contracts. In this competition model, opportunities
(i.e. new scientific publications) are captured according
to a general mechanism whereby the capture rate Pi(t)
depends on the appraisal wi(t) of an individual’s record
of achievement over a prescribed history. We define the
appraisal to be an exponentially weighted average over a
given individual’s history of production

wi(t) ≡
t−1�

∆t=1

ni(t−∆t)e−c∆t , (8)

which is characterized by the appraisal horizon 1/c. We
use the value c = 0 to represent a long-term appraisal
(tenure) system and a value c � 1 to represent a short-
term appraisal system. Each agent i = 1...I simultane-
ously attracts new opportunities at a rate

Pi(t) =
wi(t)π

�I
i=1 wi(t)π

. (9)

until all P opportunities for a given period t are allo-
cated. We assume that each agent has the production
potential of one unit per period, and so the total number
of opportunities allocated per period P is equal to the
number of competing agents, P ≡ I.

We use Monte Carlo (MC) simulation to analyze this
2-parameter model over the course of t = 1...T sequen-
tial periods. In each production period (representing a
timescale on the order of half a human year), a fixed
number of P production units are captured by the com-
peting agents. At the end of each period, we update each
wi(t) and then proceed to simulate the next preferential
capture period t + 1. Since Pi(t) depends on the relative
achievements of every agent, the relative competitive ad-
vantage of one individual over another is determined by
the parameter π. In the SI Appendix text we elaborate
in more detail the results of our simulation of synthetic
careers dynamics. We vary π and c for a labor force of
size I ≡ 1000 and maximum lifetime T ≡ 100 periods as
a representative size and duration of a real labor cohort.
Our results are general, and for sufficiently large system
size, the qualitative features of the results do not depend
significantly on the choice of I or T .

The case with π = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are cap-
tured at a Poisson rate λp = 1 per period. The results
of this model (see Fig. S13) shows that almost all ca-
reers obtain the maximum career length T with a typical
career trajectory exponent �αi� ≈ 1. Comparing to sim-
ulations with π > 0 and c ≥ 0, the null model is similar
to a “long-term” appraisal system (c → 0) with sublin-
ear preferential capture (π < 1). In such systems, the
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capture period t + 1. Since Pi(t) depends on the relative
achievements of every agent, the relative competitive ad-
vantage of one individual over another is determined by
the parameter π. In the SI Appendix text we elaborate
in more detail the results of our simulation of synthetic
careers dynamics. We vary π and c for a labor force of
size I ≡ 1000 and maximum lifetime T ≡ 100 periods as
a representative size and duration of a real labor cohort.
Our results are general, and for sufficiently large system
size, the qualitative features of the results do not depend
significantly on the choice of I or T .

The case with π = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are cap-
tured at a Poisson rate λp = 1 per period. The results
of this model (see Fig. S13) shows that almost all ca-
reers obtain the maximum career length T with a typical
career trajectory exponent �αi� ≈ 1. Comparing to sim-
ulations with π > 0 and c ≥ 0, the null model is similar
to a “long-term” appraisal system (c → 0) with sublin-
ear preferential capture (π < 1). In such systems, the

appraisal system:
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“heavy tails” emerge

c → 0 : appraisal over the lifetime of achievements ( ~ tenure system): career is better protected from 
intrinsic negative production shocks (periods of lull) and as a result, most careers sustain production 
throughout the career, reaching the maximum career lifespan T.

c >1: appraisal over only recent achievements (short-term contract system): most individuals 
experience “sudden death” termination relatively early in the career.  Meanwhile, a small number of 
“kings” survive the initial selection process, which is governed primarily by random chance, and dominate 
the system.

Distributions of 4 career measures:
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emergence of increasing returns / cumulative adv.

c → 0 : appraisal over the lifetime of achievements ( ~ tenure system): career is better protected from 
intrinsic negative production shocks (periods of lull) and as a result, most careers sustain production 
throughout the career, reaching the maximum career lifespan T.

c >1: appraisal over only recent achievements (short-term contract system): most individuals 
experience “sudden death” termination relatively early in the career.  Meanwhile, a small number of 
“kings” survive the initial selection process, which is governed primarily by random chance, and dominate 
the system.

Distributions of 4 career measures:
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c → 0 : appraisal over the lifetime of achievements ( ~ tenure system): career is better protected from 
intrinsic negative production shocks (periods of lull) and as a result, most careers sustain production 
throughout the career, reaching the maximum career lifespan T.

c >1 : appraisal over only recent achievements (short-term contract system): most individuals 
experience “sudden death” termination relatively early in the career.  Meanwhile, a small number of 
“kings” survive the initial selection process, which is governed primarily by random chance, and dominate 
the system.
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• Knowledge, reputation, and collaboration spillovers are major factors behind the increasing 
returns that are possible within the scientific career trajectory

• An institutional setting that neglects specific features of academic career trajectories 
(increasing returns from knowledge spillovers and cumulative advantage, collaboration 
factors, career uncertainty) may inadvertently expose temporarily “cold” careers, leaving 
them out to freeze.

• nano-sociology :  A quantitative picture of Science at the level of single individuals can 
improve academic policies aimed at increasing career sustainability  

• There are many analogies between the superstars in science and the superstars in 
professional sports, possibly arising from the generic aspects of competition.  However, the 
contract length, compensation, and appraisal timescale in these two professions are VERY 
different. Is Science becoming more like professional sports?

i)  A. M. Petersen, Woo-Sung Jung, Jae-Suk Yang, and  H. E. Stanley. “Quantitative and empirical 
demonstration of the Matthew effect in a study of career longevity.” PNAS 108, 18-23 (2011).

ii) A. M. Petersen,  H. E. Stanley, and S. Succi. “Statistical regularities in the rank-citation profile of 
scientists.” Scientific Reports 1, 181 (2011).

iii) A. M. Petersen, M. Riccaboni, H. E. Stanley, and F. Pammolli. “ʻPersistence and Uncertainty in the 
Academic Career.” Forthcoming, PNAS.

Take home messages
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Persistency and Uncertainty Across the Academic Career

Alexander M. Petersen,1, 2 Massimo Riccaboni,1 H. Eugene Stanley,2 and Fabio Pammolli1, 2
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2Center for Polymer Studies and Department of Physics,
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Abstract

Recent shifts in the business structure of universities and a bottleneck in the supply of tenure

track positions are two issues that threaten to change the longstanding patronage system in

academia and affect the overall potential of science. The shift away from long term towards

short term contracts necessitates that the employment review process account for coauthorship

factors and the coexistence of cumulative advantage and uncertainty in the annual production

ni(t) of a given scientist i. Here we analyze the longitudinal publication rate ni(t) on the 1-year

time scale for 300 physicists i = 1...300 and show that the productivity of many physicists accel-

erates, Ni(t) ≈ Ait
αi , with αi > 1, reflecting the benefits of learning and collaboration spillovers

which constitute a cumulative advantage. We find that the variance in production scales with

“collaboration radius” size Si as σ2
i ∼ Sψ

i with 0.4 < ψ < 0.8. To compare intellectual labor

with manual labor, we analyze in parallel two comprehensive sports leagues comprising 21,156

careers. We use a preferential growth model to gain insight into the relation between career persis-

tency and career uncertainty. This model shows that excessive emphasis on nonstop production,

a consequence of short-term contract systems, results in a significant number of “sudden death”

careers that terminate due to unavoidable negative production shocks. Altogether, our results

indicate that short-term contracts may increase the strength of “rich-get-richer” mechanisms in

competitive professions and hinder the upward mobility of young scientists.

1
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Preferential Capture with Appraisal

7

B. Initial Condition

The initial weight at the beginning of the simulation is wi(t = 0) ≡ nc for each agent i with nc ≡ 1. The value

nc > 0 ensures that competitors begin with a non-zero production potential, and corresponds to a homogenous system

where all agents begin with the same production capacity. Hence, we do not analyze the more complicated model

wherein external factors (i.e. collaboration factors) can result in a heterogeneous production capacity across scientists.

By construction, each agent begins with one unit of achievement ni(t = 1) ≡ 1.

C. System Dynamics

1) In each Monte Carlo step we allocate one opportunity to a randomly chosen individual i so that ni(t)→ ni(t)+1

2) The individual i is chosen with probability Pi(t) proportional to [wi(t)]π

Pi(t) =
wi(t)π

�I
i=1 wi(t)π

(S16)

where the value wi(t) is given by an exponentially weighted sum over the entire achievement history

wi(t) ≡
t−1�

∆t=1

ni(t−∆t)e−c∆t . (S17)

The parameter c ≥ 0 is a memory parameter which determines how the record of accomplishments in the past

affect the ability to obtain new opportunities in the current period, and therefore, the future. The limit c = 0

rewards long-term accomplishment by equally weighting the entire history of accomplishments. Conversely, when

c� 1 the value of wi(t) is largely dominated by the performance ni(t−1) in the previous period, corresponding

to increased emphasis on short-term accomplishment in the immediate past. Intermediate values 0 < c < 1

weight more equally the immediate past and the entire history of accomplishment.

3) The exponent π determines how the relative ability to attract opportunities Pi/Pj = [wi(t)/wj(t)]π depends

on the weights wi(t) and wj(t) between two individuals i and j. The linear capture case follows from π = 1,

uniform capture π = 0, super linear capture π > 1, and sub-linear capture π < 1.

4) At the end of each time period, the weight wi(t) is recalculated and used for the entirety of the next MC time

period corresponding to the allocation of the next I × nc achievement opportunities.

D. Model Results

We simulate this system for a realistic labor force size I = 1000 with the assumption that in any given period,

an individual has the capacity for one unit of production (nc ≡ 1). We evolve the system for T = 100 periods

corresponding to I×nc×T Monte Carlo time steps. The timescale T represents the (production) lifetime of individuals

with finite longevity. In this model we do not include exogenous shocks (career hazards) that can result in career

death [7]. Here we analyze four quantities:

1) The distribution P (N) of the total number of opportunities Ni(T ) ≡
�T

t=1 ni(t) captured by agent i over the

course of the T− period simulation.

2) The distribution P (α) of the career trajectory scaling exponent αi defined in Eq. S7 which quantifies the

(de)acceleration of production over the course of the career.

3) The distribution P (r) of production outcome change r defined in Eq. 1 which quantifies the size of endogenous

production shocks.

4) The distribution P (L) of career length Li which measures the active production period of each career starting

from t = 0. We define activity as the largest period value Li for which ni(Li) = 0, which in other words,

corresponds to truncating all 0 production values from the end of the trajectory ni(t) and defining Li as the

length of this time series.

The details of the appraisal determines how much the past record of 
accomplishment determines the ability to capture new opportunities

If the appraisal timescale is  too short, then a Nobel worthy phd 
thesis loses it's weight overnight ! In sports this is exemplified
by the “sudden death” careers which occur in sports so frequently!

Reputation and knowledge spillovers are cumulative → history dependent
Numerous Nobel Prizes awarded for work primarily done during the PhD
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