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Aggregate Measures for Supertie Impact
In The Apostle Effect I and The Apostle Effect II, we implemented a
regression model that elucidates the role of super ties at the an-
nual level for productivity and at the paper level for citations. To
provide additional quantitative evidence for the apostle effect, in
this section, we develop additional descriptive measures that
compare the contributions by super ties to the contributions from
the rest of the collaborators.

Productivity Premium.A researcher is likely to have a relatively small
number of super ties, corresponding on average to 100hfRi≈ 4% of
his/her coauthors (see Fig. 5A). However, these coauthors, by
definition, contribute to a large fraction of the total output of i
(corresponding on average to 100hfNi≈ 40−75% of all publica-
tions; see Fig. 5B). Thus, it is important to know the relative
contributions of the super ties to nonsuper ties, because there are
typically very many nonsuper tie coauthors whose inputs also
contribute to the output of i.
To facilitate a comparison of productivity at the aggregate career

level, we first separated the sum of the tie strengths,KT
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between the coauthor subsets with Rj = 1 (totaling SR,i coauthors)
and Rj = 0 (totaling S!R,i = Si − SR,i coauthors). This quantity in-
creases as the ratio SR,i=S!R,i decreases (smaller fR,i) and as the
ratio KT

R,i=K
T
!R,i increases; its maximum value is equal to the total

number of publications published by the central scientist, Ni, and
is bounded by the minimum value ðKc

i + 1Þ=Kc
i ≈ 1 for large Kc

i .
Fig. S4C shows the cumulative distribution Pð≤ pNÞ. In all cases,

we observe 2.5≤ pN,i ≤ 33, with average pN,i values between 7 and
10. Interestingly, the Top scientists from biology tend to have
smaller pN,i values than the Other scientists (Mann−Whitney
difference in median test P value = 0.0008, and K-S difference in
distribution test P value = 0.0007). However, the same tests failed
to indicate any significant difference for the Pð≤ pNÞ for physics.
Citation Premium. In economic analyses, to compare nominal
prices across time, it is fundamentally necessary to account for
price inflation/deflation by means of an appropriate deflator
index. For the same reason, it is equally important to use deflators
when comparing success measures derived from other socio-
economic systems. In professional sports, for example, the rate of
achievement can be era dependent—e.g., the nonstationary
home run rate in Major League Baseball is an implication of the
steroids era (42, 43). In science, the publication rate in physics
and biology is growing at roughly a 5% rate (5). Nevertheless,
this persistent growth has been subject to periods of non-
stationary growth spurts, such as during the period of the US
National Institutes of Health budget doubling between 1998 and
2003 (2). Thus, with these considerations in mind, in developing
comparative citation measures, it is important to appropriately
account for two nonstationary features of citation credit.

First, there is the time dependence of citations, arising from the
fact that papers published in different years are at different points
in their citation life cycle in the citation census year Yi. The ci-
tation tallies are also affected by the underlying growth of the
citation supply—due to “inflation” or “secular growth” of sci-
entific output—which also systematically biases the comparison
of raw citation counts for p from different y. Second, it is also
important to divide the citation credit among the ap coauthors of
each publication p, in this way placing a cap on the net credit
introduced by p, and accounting for the slow but steady expo-
nential growth in the mean number of coauthors per paper over
time (7).
To address these two underlying trends, we apply two nor-

malizations to the raw citation count cp,Y ðyÞ (measured in census
year Yi for a paper p published in year y). First, we “deflated”
cp,Y ðyÞ by dividing by the mean citation value for publications
from the same year, hcmY ðyÞi, and then transformed this ratio
into the mean citation values for the (arbitrary) baseline year
y= 2000, giving the rescaled value

~cp ≡ cp,Y ðyÞ
�
cmY ð2000Þ

�
�
cmY ðyÞ

� . [S2]

This also accounts for the fact that more recent publications have
had less time to accrue citations than older publications. Second,
we control for trends in team size, choosing a naive approach that
divides the ~cp citations into equal shares among the ap coauthors
(44). As such, we define the normalized citations credited to
coauthor j of p as

~cj,p ≡
~cp
ap
. [S3]

Similar to the normalization procedure used for the citation z
score zi,p,y in Eq. 7, hcmY ðyÞi is the average number of citations for
publications published in a benchmark set m, choosing m to be
the aggregation of articles appearing in the multidisciplinary
journals Nature, Proceedings of the National Academy of Sciences,
and Science. We restricted our query to publications denoted as
“Articles,” which excludes reviews, letters to the editor, correc-
tions, and other content types. We use these high-impact jour-
nals because they have high citation rates and hence provide a
robust detrending baseline for the time-dependent component of
cp,Y ðyÞ. Again, the choice of baseline year y= 2000 is arbitrary (as
is the deflation year 2000 commonly used in economic analyses)
and is mainly used to recover the units of citations for the ~c
measure. Because the constant factor hcmY ð2000Þi is used for all ~cp
values, it does not affect our results. The advantage of ~cp over
zi,p,y is that the former is a positive number including the value 0,
and hence can be added across p; zi,p,y, however, can be negative
and is centered around 0, and, therefore, summing across p has a
different interpretation that is not suitable for what follows.
We define the cumulative measure of citation impact for co-

authors i and j as

~Ci,j ≡
X

p  with  j

~cj,p, [S4]

where the sum includes only those publications in the profile of i
that also include coauthor j. In the extreme case that j is a co-
author of every publication, Kij =Ni, this pairwise measure has
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the upper limit equal to the citation share of the central scientist,
~Ci,i ≡

P
p~ci,p. The sum across all j including i, ~Ci = ~Ci,i +

P
j
~Ci,j,

yields the net detrended citation value, which is independent of
the distribution of ap.
To define a similar citation premium, we also separated the

citations into the contributions from the SR,i super ties and the
contributions from the S!R,i nonsuper tie collaborators. Because
the total ~Ci is conserved, we split the ~Ci,j into two groups: The
total for the coauthors with Rj = 1 is ~CR,i ≡

P
jjR=1 ~Ci,j, and the

total for the remaining coauthors is ~C!R,i ≡
P

jjR=0 ~Ci,j. We then
define the citation premium to be the ratio of the average citation
shares of the coauthors in each subset,
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which has a minimum possible value equal to 0 and, in principle,
has no upper bound. Fig. S4D shows the distribution of pC,i, with
mean, median, and maximum values across all datasets of 14.1,
11.3, and 134, respectively. We observed only two profiles (2 out
of 473) with pC,i < 1. Thus, using a group-to-group comparison,
this measure shows that the relative citation impact contribution
of super ties to other ties is significantly greater than unity. There
may be a self-selection, because high-quality work may induce
follow-up research, presumably with a similar set of collabora-
tors. Hence, the citation premium is also evidence for the value
of persistent collaboration, which can leverage and build upon
prior experience and cumulative pairwise achievement.
Also of interest, we observe a consistent pattern considering the

distributions of both pN,i and pC,i: The Top scientist profiles have
smaller mean values than their counterparts, and the biology
profiles have smaller mean value than for physics. In the case of
productivity, this may follow from their privileged access to
short-term collaboration opportunities. In the case of the cita-
tion impact, this pattern may emerge due to the reputation
asymmetry of top scientists, who, by way of their prestige, may
have more control over their choice of collaborators, possibly
aimed at reducing redundancy within the team, reducing the
team size, which also increases the citation credit per coauthor,
~cj,p. In large-team efforts, because most collaboration durations
are short with relatively small Kij, increasing ap is most likely to
decrease pC,i by way of decreasing the numerator and increasing
the denominator.
Because pC,i is an aggregate career measure, and the depen-

dent variable zi,p,y in our citation regression model (Eq. 7) is a
normalized measure that does not have the dimensionality of
citations, it is difficult to use these quantities to measure the
citation boost on a per-publication basis. Thus, to estimate the
apostle effect on the long-term citation tally of individual pub-
lications, we separated the set of publications with at least one
super tie coauthor (Rp = 1) from the complementary set of
publications without any super tie coauthors (Rp = 0). To com-
pare p from a similar era, we took all of the publications from the
11-y window 1990−2000. Also, because citation rates are disci-
pline dependent, we distinguished between biology and physics
publications. During this period, 62% (7,814) of the p have
Rp = 1 for biology and 57% (10,128) of the p have Rp = 1 for
physics. From these well-balanced subsets, we then estimated the
citation impact due to Rp = 1 in two ways.
First, we calculated the cumulative citation distribution,

Pð~cjRpÞ, for the publications with Rp = 0,1. Fig. S6 A and B shows
each distribution on log-linear axes, which emphasizes the log-
normal features of Pð~cÞ. On this log-linear scale, the two distri-
butions are characterized by a horizontal offset, which is visible
for the majority of the ~cp range. This graphical feature indicates
that, in distribution, the ~cp for Rp = 1 are larger by an approxi-
mately constant factor αR, i.e., Pð~cjRp = 1Þ≈PðαR~cjRp = 0Þ. We

estimate αR by comparing the means and the median values of
the Pð~cÞ distributions. For example, the ratio between the means
yields the value αR = h~cpjR= 1i=h~cpjR= 0i= 1.17 for biology and
1.16 for physics. Estimating αR using the ratio of the median
values yields approximately the same value. Thus, αR represents
a 16−17% citation boost for p with Rp = 1. For the average-cited
p, this boost translates to a 21-citation difference for biology and
an 8-citation difference for physics. These numbers, however,
arise from an aggregated dataset, so it is not necessarily true that
αR is representative of all scientists.
To confirm the per-publication citation premium at the re-

searcher level, we grouped the publications with Rp = 0,1 within
each profile i. To reduce the sensitivity to fluctuations, we ana-
lyzed only the i with at least 10 publications in the Rp = 0 subset
and at least 10 publications in the Rp = 1 subset. Then, to obtain
a characteristic citation measure for each the two Rp = 0,1 sub-
sets, we calculated the median value, ~cR,i, for the subset of p with
Rp = 1, and the median value, ~c!R,i, for the complementary pub-
lication subset with Rp = 0.
Fig. S6 C and D shows the scatter plot of ~c!R,i and ~cR,i for each

i. The line y= x distinguishes the researchers with ~cR,i >~c!R,i.
There is notable heterogeneity across the i in terms of the cita-
tion premium from super ties. Nevertheless, the majority of re-
searchers have ~cR,i >~c!R,i, with 73% of the biology researchers
and 76% of the physics researchers above the y= x line. We then
obtained a second estimate of the per-publication citation pre-
mium by fitting a least-squares model, ~cR,i = μ~c!R,i + e, where e is
an ordinary least squares (OLS) error term, obtaining best-fit
values μ= 1.21± 0.06 (biology) and μ= 1.24± 0.09 (physics).
Thus, these last two methods provide consistent estimates of

the citation boost at the publication level, μ≈ αR corresponding to
a 16−24% citation boost, pointing to a significant long-term ci-
tation impact attributable to the presence of super ties.

Data Description
Name Disambiguation Strategy. We obtained the top-cited re-
searcher publication data using the Distinct Author Sets function
provided by TRWOK to increase the likelihood that only pub-
lications actually authored by each central author i are analyzed.
On a case by case basis, we performed further author disam-
biguation within each profile. The Other (matched set) profiles
were also downloaded from TRWOK, either by using the Dis-
tinct Author database option, or by collecting distinct researcher
profile data from ResearcherID.com.
In this latter case of ResearcherID.com profiles, we collected

biology and physics profiles by querying the database for profiles
listing any of the following keywords: graphene, neuroscience,
molecular biology, or genomics. For further details on the selec-
tion procedure and for extensive analysis of the statistical prop-
erties of these datasets, see the data descriptions in refs. 45–47.
The data census year Yi refers to the calendar year in which the

researcher profile data were downloaded. Let y0i be the first
calendar year of his/her first publication and yfi be the calendar
year of the last observed publication, so that the total number of
years of data for i is Ti = yfi − y0i + 1. Hence, depending on if the
career i was completed in Yi, there are two possible scenarios
relating Yi and Ti: (scenario a) if the researcher i was still active
in Yi, then Yi = yfi = y0i +Ti − 1 and ΔYi =Yi − yfi = 0; or (scenario
b) if his/her career terminated at some time before Yi, then
Yi = y0i +Ti − 1+ΔYi, with ΔYi > 0 and Ti corresponding to the
final career length. The datasets comprise profiles with census
year Yi varying from 2010 to 2012 (47). These relatively small
variations in Yi do not alter the citation results because all ci-
tation measures are appropriately detrended to make possible
comparisons across time. Moreover, the regression data are
longitudinal, meaning that the observations are made according
to t, and so the results do not depend on Ti or the completeness
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of the career. Furthermore, the regression models each include
an author-level fixed-effect parameter βi,0 that controls for time-
invariant author-specific properties, thereby absorbing factors
related to the starting calendar year y0i and the lag ΔYi.
For a given central author i, we aggregate the TRWOK

publications and create a registry of surname and first/middle-
initial pairs, {Surname, FM}, where FM can consist of one, two,
or three alphabetic first-letter character abbreviations α,
FM ≡ α1α2α3. Because the number of distinct coauthors per i is
relatively small, on the order of 10−1,000 distinct names per
profile, we assume that a name disambiguation problem among
the coauthors does not introduce significant levels of type 1
“splitting” or type 2 “clumping” disambiguation errors. Hence, we
perform a string matching on similar last names and α1, ignoring
α2 and α3 so that publications with variable listing of α2 and α3 do
not result in a type 1 “profile splitting” error. We then aggregate
the publication information into the profile of coauthor j of
central author i. Because our approach is egocentric, we do not
analyze the publications of j that do not include i. Clearly, this
would require nearly comprehensive TRWOK publication data,
which is a major data limitation.

Matched Profile Selection Criteria. To account for possible prestige
effects, we compared top-cited profiles to a set of Other profiles that
we matched within each discipline. To match the datasets, we
collected “not top-cited” researcher profiles that had levels of ca-
reer length and productivity similar to the top-cited profiles. More
specifically, we introduced a productivity criteria requiring that an
Other profile must have at least as many publications, Ni, as all of
the researchers in the corresponding top-cited dataset: For biology,
this minimum threshold value is MinðNijtop− citedÞ= 52, and
for physics, it is MinðNijtop− citedÞ= 46. Altogether, our career
dataset comprised 100 top-cited and 93 matched profiles from
biology, and 100 top-cited and 180 matched profiles from physics.

Throughout our analysis, we introduced various quantities that
summarize the career (career length Ti, total publications Ni, etc.)
and collaboration pattern (mean duration hLii, mean strength
hKii, strength Gini coefficient Gi, etc.) of any given research
profile i. We found that the Top and Other datasets are statisti-
cally well-matched with respect to some variables, using the K-S
test to certify the null hypothesis that the underlying distributions
are statistically similar. For example, the super tie coauthor frac-
tion fR,i exhibits the same distribution across all four datasets, as
shown in Fig. 5A. Other variables were well matched only within
discipline, e.g., hKii, or were well matched only within Top or
Other datasets, e.g., fK ,i.
One variable worth mentioning, for which the Top and Other

datasets were not well matched, was the career length distribu-
tion, PðTiÞ. Because the Top scientists were selected on account
of cumulative citation tallies, they are biased toward longer Ti,
many of which are completed careers. Because the maximum
possible Lij is given by Ti, the hLii variables may be biased toward
longer values for the top-cited researcher profiles. As such, we
avoid making any comparisons on account of this type of mea-
sure. Instead, our comparisons in the manuscript are based on
more intensive measures, e.g., the super tie coauthor fraction fR,
which are less sensitive to biases arising from systematic differ-
ences in Ti and ΔYi.
Moreover, our analysis of the apostle effect, by design, avoids

the potential bias due to Ti. For example, the productivity pre-
mium pN,i and the citation premium pN,i are ratios in which both
the numerator and the denominator should have approximately
the same dependence on Ti, and so the effect cancels out. In the
case of the regression models, the dependent and independent
variables are all specific to a particular career year t.
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Fig. S1. Complex relations between productivity, collaboration, and impact. A−D are for A. K. Geim, who is characterized by an average collaboration
duration of 2.1 y (calculated including the collaborations with Lij = 1 but excluding the collaborations active in the last 2 y), a characteristic tie strength hKii= 3.7
publications, a collaboration radius of Si = 303 coauthors, and Nið2012Þ= 217 total publications; E−F are for D. Acemoglu, who is characterized by an average
collaboration duration of 1.6 y (also calculated including the collaborations with Lij = 1 but excluding the collaborations active in the last 2 y), hKii=2.9
publications, Si = 51 coauthors, and Nið2012Þ= 118 publications. These schematics demonstrate how the visualization of dynamic ego network changes if we
use publication and citation measures that are normalized by Lij, resulting in per-year-of-collaboration (intensity) measures. (A) Collaboration measures cal-
culated per unit time, for comparison with Fig. 1. (B−D) Scatter plots for the profile of A. K. Geim relating collaboration duration (Lij), with (B) collaboration
strength (Kij), (D) pairwise team size (Wij), and (C) citations (Cij). Wij is the total number of coauthors (nondistinct) on publications including i and j, a proxy for
pairwise collaborative input, conditioned on i and j. The dashed line in each panel represents the ordinary least-squares fit of the log of the variables. As such,
the logarithmic slope (scaling exponent) is listed in each panel, and the value in parentheses represents the SE in the last digit reported. (E and F) Economics is a
field not traditionally considered to be collaborative at the rates of physics or biology. Nevertheless, prestige and collaboration life cycles are still important
factors, independent of discipline. To demonstrate this, we show the career profile of the highly cited economist, Daron Acemoglu. Notable landmark
achievements are indicated, including the early partnership with James A. Robinson in 2000, and their groundbreaking book, Economic Origins of Dictatorship
and Democracy, published in 2005 (48). (E) Net collaboration measures for D. Acemoglu, analogous to Fig. 1. (F) Collaboration measures calculated per unit
time, analogous to A.
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Fig. S2. Visualizing the dynamic collaboration profile of individual researchers: the longitudinal coauthor trajectories of (A) Anderson, (B) Geim, (C) Black-
burn, and (D) Goldstein; the cross-sectional rank-citation profiles of (E) Anderson, (F) Geim, (G) Blackburn, and (H) Goldstein. For each discipline, we show the
collaboration profile of two Nobel laureates (A. K. Geim and J. L. Goldstein) whose top-cited research was done with their most intense collaborator, and two
collaboration profiles for two Nobel laureates (P. W. Anderson and E. H. Blackburn) whose top-cited research did not exhibit this feature. Despite their
common achievement, we observe a wide variation in the entry, strength, and saturation of their collaborations. To illustrate the variation in tie strength, both
within and between researcher profiles, we show the rank−coauthor profile Kijðr, tÞ, which is defined for any given t by sorting the coauthors in decreasing
order by rank r, Kijðr = 1, tÞ≥Kijð2, tÞ≥ . . . ≥Kijðr = Si , tÞ. In this way, Kijðr, tÞ provides a cross-sectional representation of KijðtÞ. As such, snapshots of Kijðr, tÞ
taken at different t capture the temporal evolution of a researcher’s tie strength distribution, as illustrated by the gray data points in E−H. (A−D) Longitudinal
growth of KijðtÞ, the cumulative number of publications with coauthor j (colored curves), and the central author’s total number of publications NiðtÞ (black
curve). To reduce graphical clutter, we truncate each KijðtÞ at the year of the last observed collaboration; otherwise, each panel would be dominated by
horizontal lines. The gray dashed line indicates Kc

i , which distinguishes the KijðtÞ trajectories corresponding to super ties. The distance between the vertical
yellow line and the right edge of each panel indicates the mean collaboration duration, hLii, for each researcher. (E−H) To convey the dynamics of the rank-
coauthor profile, we show snapshots of Kijðr, tÞ for t = 5 y, 10 y, and 20 y (increasing gray dot size), in addition to the final Kijðr, t = TiÞ (colored circles) calculated
for the most recently available career year Ti. The lower dashed gray line indicates hKii, which separates the weak from the strong ties. The upper dashed gray
line indicates Kc

i , which distinguishes the SR,i super ties within the subset of strong ties. Recently, the analog of the h-index has been suggested as a way to
measure the “author core” derived from the rank-coauthor distribution (49). For all panels, to facilitate visual comparison, the color scale used in the left and
right column is the same for each i. To identify the coauthors with the highest net citation impact, we plot curves (circles) using thickness (radius) and color that
are scaled proportional to log~Ci,j, which is the log of the total citation share of coauthor j in profile i (see Eq. S4).
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Fig. S3. Collaboration life cycle for the (A and C) Other biology and the (B and D) Other physics datasets. Other datasets: (A and B) Average collaboration
strength, normalized to peak value, measured τ years after the initiation of the collaboration tie. (Insets) On log-linear axes, the decay appears as linear, corre-
sponding to an exponential form. (C and D) For each fxg group, we show the average and SD (error bar) of τ1=2; we use logarithmically spaced fxg groups that
correspond by color to the same fxg as in A and B. The ζ value quantifies the scaling of hτ1=2i as a function of the normalized coauthor strength x ≡Kij=hKii. The
sublinear (ζ < 1) values indicate that collaborations are distributed over a timescale that grows slower than proportional to x; conversely, this means that longer
collaborations are more productive, being characterized by increasing marginal returns (1=ζ >1). Fig. 3 shows the analogous plot for the Top physics and biology
datasets; all four datasets exhibit similar features.

Fig. S4. Additional collaboration profile measures. (A) Cumulative distribution of the number of super ties SR,i. The mean (vertical lines) and SD are18± 13
(Top biology), 16± 13 (Other biology), 7.3± 4.8 (Top physics), and 6.8± 5.1 (Other physics). The K-S test P value calculated by comparing the biology distri-
butions is 0.12, and, for the physics distributions, it is 0.34; in both cases, the null hypothesis that the two compared datasets arise from the same distribution is
not rejected at the 5% level. (B) Cumulative distribution of the empirical (unnormalized) durations Lij (years). The Lij = 1 values dominate the distribution, with
PðLij = 1Þ= 0.73 y (Top biology), 0.78 y (Other biology), 0.61 y (Top physics), and 0.58 y (Other physics). Thus, including the Lij = 1 values, the mean Lij are 2.2 y
(Top biology), 1.8 y (Other biology), 2.7 y (Top physics), and 2.7 y (Other physics). To avoid age cohort bias, collaborations commenced in the final Lci period of
each career profile are excluded from these distributions. (C) Cumulative distribution of the productivity premium pN defined in Eq. S1. The mean and SD are
7.6± 4.4 (Top biology), 8.4±3.6 (Other biology), 8.9± 4.8 (Top physics), and 9.8± 4.5 (Other physics). Only the two physics datasets are significantly similar (K-S
p= 0.35). (D) Cumulative distribution of the citation premium pC defined in Eq. S5. The mean and SD are: 12± 10 (Top biology), 13± 7 (Other biology), 15± 16
(Top physics), and 16± 14 (Other physics). The K-S test P values calculated by comparing the two Top datasets and the two Other datasets are both greater than
0.05. An interesting and consistent pattern emerges when considering the distributions of both pN and pC: The Top scientist profiles have smaller mean values
than their counterparts, and the biology profiles have smaller mean value than for physics. The mean, median, and maximum values across all datasets are 14.1,
11.3, and 134, respectively, with all but two values greater than unity. Because the maximum value is an extreme outlier, we truncate the x axes showing only
values of <38, which represents more than 95% of the data.
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Fig. S5. Distribution of normalized citation impact z. Each panel shows the pdf PðzjyÞ using z values aggregated over successive nonoverlapping 8-y periods.
These panels demonstrate the distribution stability of PðzjyÞ over time, where z is the dependent variable in the citation apostle effect model in Eq. 8.
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Fig. S6. Comparing the citation distribution for papers with and without super ties: (A and C) Top and Other biology datasets combined, and (B and D) Top
and Other physics datasets combined. (A and B) The cumulative citation distribution, Pð~cÞ, of the detrended citations ~cp defined in Eq. S2. The solid orange
curve represents Pð~cÞ for publications with Rp = 1, and the dashed black curve represents Pð~cÞ for publications with Rp = 0. Pairwise comparison of the distri-
butions yield K-S P values less than 10−6, indicating that the distributions are significantly different. The distribution means are indicated by the vertical lines
with corresponding numerical value shown in each panel. The ratio between the means yields the value αR = h~cpjR=1i=h~cpjR=0i= 1.17 for biology and 1.16 for
physics. Estimating αR using the ratio of the median values yields approximately the same value. Thus, αR represents a 16−17% citation boost for p with Rp = 1,
which translates, on average, to a 21-citation difference for biology and an 8-citation difference for physics. (C and D) Scatter plots of the median ~cp,i values for
p with Rp = 0 versus the median ~cp,i values for p with Rp = 1. Values are calculated within researcher profiles; thus each dot represents a single researcher. The
majority of researchers have ~cR,i >~c!R,i, with 73% of the biology researchers and 76% of the physics researchers above the (dashed black) y = x line. The μ value
estimates the per-publication citation premium that accounts for heterogeneity across i. Because αR ≈ μ, these two methods yield consistent estimates of the
citation premium per publication.

Table S1. Apostle effect productivity model (ni,t): Parameter estimates for the fixed-effects regression model in
Eq. 6 with Δt= 3-y-long periods, using robust SEs implemented by the Huber/White/sandwich method

Dataset A lnat Lt GK
t ρt t Nobs. Adj. R2

All 406 0.127±0.044 −0.078±0.013 1.060±0.125 0.152± 0.026 0.029± 0.003 2,890 0.16
(Std. coeff.) 0.169±0.059 −0.218±0.038 0.268±0.032 0.176± 0.030 0.060± 0.005
P value 0.004 0.000 0.000 0.000 0.000

Biology (Top) 99 −0.149±0.092 −0.059±0.045 3.003±0.406 0.175± 0.071 0.035± 0.005 782 0.24
P value 0.110 0.199 0.000 0.016 0.000

Biology (Other) 84 0.126±0.094 −0.067±0.041 2.159±0.504 0.080± 0.055 0.047± 0.008 492 0.31
P value 0.184 0.104 0.000 0.146 0.000

Physics (Top) 99 −0.073±0.112 −0.086±0.022 1.918±0.426 0.159± 0.036 0.024± 0.004 753 0.11
P value 0.514 0.000 0.000 0.000 0.000

Physics (Other) 124 0.152±0.076 −0.072±0.022 1.514±0.327 0.160± 0.043 0.025± 0.006 863 0.13
P value 0.047 0.001 0.000 0.000 0.000

See Table 2 for results with Δt = 1. Only profiles with four or more data values were included in the regression. Values significant at
the p< 0.02 level are indicated in boldface.
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