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Quantitative relations between risk, return and firm size
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Abstract – We analyze —for a large set of stocks comprising four financial indices— the annual
logarithmic growth rate R and the firm size, quantified by the market capitalization MC. For the
Nasdaq Composite and the New York Stock Exchange Composite we find that the probability
density functions of growth rates are Laplace ones in the broad central region, where the standard
deviation σ(R), as a measure of risk, decreases with the MC as a power law σ(R)∼ (MC)−β . For
both the Nasdaq Composite and the S&P500, we find that the average growth rate 〈R〉 decreases
faster than σ(R) with MC, implying that the return-to-risk ratio 〈R〉/σ(R) also decreases with
MC. For the S&P500, 〈R〉 and 〈R〉/σ(R) also follow power laws. For a 20-year time horizon, for
the Nasdaq Composite we find that σ(R) vs. MC exhibits a functional form called a volatility
smile, while for the NYSE Composite, we find power law stability between σ(r) and MC.
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Estimations of risk and return are of interest in both
finance and physics [1–12]. Both risk and return (growth
rate) generally decrease with increasing firm size [4,10,12],
but what are the functional dependences? Does risk or
return decay faster? The distribution of returns is non-
Gaussian, but what is the functional dependence? To
address these questions, we quantify the relationship
between the average growth rate of stock price and firm
size, between risk and firm size, and between return-to-risk
ratio and firm size.
We analyze Bloomberg data on the stocks comprising

four common stock indices, the New York Stock Exchange
(NYSE) Composite Index, the S&P 500, the Nasdaq
Composite Index, and the FTSE All-Share Index [13].
For each stock we know the stock price and market
capitalization (MC) for each year, whereMC is calculated
as the number of stocks outstanding multiplied by the
price of the stock. We define an annual logarithmic growth
rate Rt ≡ ln (St/St−1), where St and St−1 are the stock
prices in two consecutive years. We do not mix data
from different market indices, in contrast to some other
investigations [4], which enables us to investigate possible
differences among these markets.

(a)E-mail: bp@phy.hr

Previous studies found that the broad central region of
the probability density function (pdf) of returns exhibits
slow convergence over a time scale ∆t from a truncated
stable Levy distribution (∆t < 30 minutes) to a Gaussian
distribution, in agreement with the central-limit theo-
rem [1,14,15]. Here we test this convergence, finding that
on the 1-year time scale, the pdf of returns R assumes a
form that is between the stable Levy and the Gaussian
distributions. The form of the pdf for annual returns R
is important, since in practice, financial contracts are
commonly based on times scales that are greater than
3 months into the future. We first analyze 6679 stocks
comprising the Nasdaq Composite Index covering the
6-year time horizon, January 1, 2002 to January 1, 2008
(for which the index content is available). In order to
assess the common properties of the market, we aggregate
all 11836 pairs (Rt,MCt) into one common data set. In
fig. 1(a) we show P (R) for two different ranges of MC
(MC<7.8×107 andMC>8.4×109). Each P (R) displays
a) an approximately double-exponential (Laplace) form,

P (R) =
1√
2 σ(R)

e−(
√
2|R−〈R〉|/σ(R)), (1)

b) the standard deviation σ(R) depends on the MC,
where smaller σ(R) corresponds to larger MC values.
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Fig. 1: The pdf P (Rt) of annual growth rates Rt ≡ ln (St/St−1)
of stock prices St as a function of market capitalization (MC ).
(a) Stocks comprising the Nasdaq Composite Index. For the
6-year time horizon from 1/1/2002 to 1/1/2008, there are
11836Rt values. We subdivide the 11836 pairs (R,MC) into
three groups of equal size, with MC values smaller than 7.8×
107, with MC values 7.8× 107 <MC < 8.4× 109, and MC
values larger than 8.4× 109. Shown are two pdfs P (R) where
the standard deviation σ(R) depends on MC. For comparison
we plot a Gaussian pdf (dashed parabola) with identical σ(R)
as the pdf for the largest MC values. (b) Stocks comprising
the New York Stock Exchange Composite Index for the
5-year period from 1/1/2003 to 1/1/2008. We subdivide the
7524 pairs (R,MC) into three groups, with MC values smaller
than 1.3× 107, with MC values 1.3× 107 <MC < 6.9× 109,
and MC values larger than 6.9× 109. Both pdfs exhibit
tent shapes, implying that P (R) is an exponential function
of R, and σ(R) depends on MC.

For comparison, we also plot a Gaussian pdf (dashed
parabola) in fig. 1(a) with identical σ(R) as the Laplace
pdf for the larger MC values. We emphasize that our
analysis is not focused on rare events (large R values),
which are consistent with power law distributed tails
as reported in refs. [15,16]. In fig. 1(b) we observe
the same properties a) and b) in our analysis of 2469
stocks comprising the NYSE Composite Index covering
a 5-year period from January 1, 2003 to January 1,
2008. Note that these properties were also reported in

microeconomics [17,18] and macroeconomics [19] in the
analysis of firm growth rates and country growth rates,
respectively.
To quantitatively investigate how σ(R) depends onMC,

we bin the data for the Nasdaq Composite Index into
ten equal subintervals of log (MC). For each subinterval
we calculate 〈R〉 and σ(R). Note that in this paper we
analyze the total risk and not the non-diversified risk as
in refs. [4,20], where the total risk refers to uncertainty
measured by standard deviation, and the non-diversified
risk refers to the part of the total risk which cannot be
eliminated by constructing a well-diversified portfolio. In
fig. 2(a) we see that σ(R) decreases with MC, consistent
with our qualitative observations in fig. 1(a). For the time
horizon analyzed, we find that σ(R) is well approximated,
over five orders of magnitude, by the power law

σ(R)∼ (MC)−β (2)

with exponent and twice the standard error

β = 0.10± 0.02, (3)

roughly the same as the scaling exponent β = 0.15
reported for the growth rates of firm size [17] and the
country GDP [19]. This value of β implies that if a
firm increases its MC ten times, this corresponds to a
surprisingly large decrease in risk ≈ 20%. Thus, larger
firms have smaller standard deviations, as was shown
for non-diversified risk [4,20]. Note that the value we
obtain for β at the ∆t= 1 year resolution is half the value
β ≈ 0.2 obtained at the ∆t= 1 day resolution for different
empirical data [21]. As a comparison, besides the power
law fit we also show the best exponential fit. Note the
asymptotic deviation in the last two values of σ(R) in
fig. 2(a) from the power law fit. These two values are
computed from 55 and 17 data points, respectively, and
therefore we attribute the deviation from the power law
fit to lack of sufficient data and finite-size effects.
Using the same binning, we also analyze the stocks

comprising the NYSE Composite and the stocks compris-
ing the S&P500, defined as the 500 largest firms of the
NYSE, over a 5-year horizon. In fig. 2(b) we find that σ(R)
corresponding to the NYSE Composite is well approxi-
mated over four orders of magnitude by a power law of
eq. (2), with

β = 0.13± 0.02. (4)

In fig. 2(c) we repeat the analysis for the S&P500 index,
with the standard deviation σ(R) approximated by a
power law with exponent

β = 0.14± 0.04. (5)

One of the main topics in this paper is to find out
whether risk or return decays faster, and for that reason
we use a unique functional form to fit both risk and return
(later in fig. 3(b)). Hence, for consistency, we fit the data
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Fig. 2: Standard deviation σ(R) of the annual growth rates Rt ≡ ln(St/St−1) of the stock prices St as a function of the
market capitalization (MC ). (a) Stocks comprising the Nasdaq Composite Index over the 6-year time horizon ending in
2008. The numbers of Rt values for each of the 10 bins are: (51, 473, 1496, 3313, 3759, 1926, 549, 196, 55, 17). The solid line
is least-square fit to the data with slope β = 0.10± 0.02. Clearly, the larger is the firm (larger MC ), the smaller is the risk
(smaller σ(R)). To compare, we also show the best exponential fit. (b) Stocks comprising the NYSE Composite Index in the
5-year horizon, and the stocks over 20-year horizon included in 2007. The numbers of Rt values for each of the 10 bins are
(11, 119, 514, 1333, 2042, 1575, 1064, 557, 253, 55) and (81, 634, 2166, 4219, 4745, 3312, 1324, 460, 141, 48), respectively. Note the
similarity in power law exponent for the NYSE Composite over the 5-year horizon and the 20-year horizon. Also, note the
similarity in power law exponent for the NYSE Composite and the Nasdaq Composite (panel (a)) over roughly the same short
horizon. (c) Stocks belonging to the S&P500 in the 5-year horizon ending in 1/1/2008, and the FTSE All-Share Index in the
6-year horizon ending in 1/1/2008. We show power laws between σ(R) and MC. (d) Stocks belonging to the Nasdaq Composite
Index in 2007 in the most recent 20-year (10-year) horizon. We find a “volatility-smile” dependence between σ(R) and MC
over the 20-year (10-year) time horizon.

in fig. 2(c) with a power law, although we agree that the
presumption that all data is well approximated by power
laws is not entirely satisfactory.
In order to test whether this scaling behavior is common

not only to US financial markets, we analyze 988 stocks
in the FTSE All-Share Index over the 6-year horizon from
January 1, 2002 to January 1, 2008. In fig. 2(c) we again
find power law scaling, with β = 0.09± 0.05.
Next we repeat the above scaling analysis for a 20-year

time horizon, using the 3039 stocks comprising the
Nasdaq Composite in 2007. In contrast to the decreasing
functional dependence between σ(R) and MC for the
time horizon 2002–2008, we find in fig. 2(d) that for a

longer 20-year time horizon, σ(R) vs. MC exhibits the
behavior we may term a volatility smile. The right tail of
the smile can be attributed to the crash of the technology
companies and growth companies around 2000, when
large companies were more volatile than small companies,
opposite to what we observe in fig. 2(a). We also show
that σ(R) vs. MC exhibits the same behavior over the
10-year time horizon 1998–2008. Similar volatility smiles
arise in the financial theory of options [2].
In fig. 2(b) we analyze stocks comprising the NYSE

Composite in 2007 over the most recent 20-year time
horizon. We find that the standard deviation σ(R) is
approximated by a power law (β = 0.11± 0.04), with
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Fig. 3: Statistical properties of the annual growth rates Rt ≡
ln (St/St−1) of the stock prices St as a function of the market
capitalization (MC ). (a) For all stocks comprising the Nasdaq
Composite over the most recent 6-year time horizon (see
fig. 2(a)), we show that both the average growth rate 〈R〉 and
〈R〉/σ(R) decrease with increasingMC up to some value ofMC
and then gradually increase. (b) For all stocks comprising the
S&P500 over the 5-year time horizon (see fig. 2(c)), both the
average growth rate 〈R〉 and 〈R〉/σ(R) decrease with increasing
MC according to power laws.

power law exponent in agreement with that obtained for
the 5-year period (β = 0.13± 0.02). This result, termed
power law stability, implies that during more volatile
periods, fluctuations of all stocks are increased such that
the power law between σ(R) and MC does not change. It
is possible that σ(R) vs. MC would be better fit by two
power laws with a crossover around MC 109. However, we
fit with a single power law so as to be consistent in our
analysis of whether risk or return decays faster by fitting
data to a single power law over the entire range.
Besides the graphical approach, we also apply a

maximum-likelihood (ML) approach assuming the
Laplace function of eq. (1) (see fig. 1), where the standard
deviation has the power law form of eq. (2). For time hori-
zons in fig. 1, we obtain the ML estimators for parameter

β which yield the maximum likelihood of generating
the given samples: for Nasdaq Composite β = 0.13, for
NYSE Composite β = 0.11, for S&P500 β = 0.16, and for
FTSE All-Share Index β = 0.09. These values are all in
good agreement with the exponents obtained with the
graphical approach (see fig. 2).
According to portfolio theory [3], an investor must take

into account both 〈R〉 and σ(R) when estimating invest-
ment performance. Sharpe introduced a single measure
defined as Sh ≡ (〈R〉−Rf )/σ(R) [6,11], where Rf is the
risk-free growth rate. The larger is Sh, the better is the
portfolio performance.
Next we test whether 〈R〉 or σ(R) decreases faster

with MC. For the Nasdaq Composite, fig. 3(a) shows
that over the most recent 6-year time horizon both 〈R〉
and 〈R〉/σ(R) —a measure similar to the Sharpe ratio—
decrease with MC only up to a certain value of MC,
≈ 109 USD, and then slowly start to increase. In fig. 3(b),
the S&P500 index shows a power law dependence
〈R〉 ∼ (MC)−α, with exponent

α= 0.46± 0.10. (6)

Hence, we find that moving from small to large values
of MC, the average growth rate (α= 0.46) decreases even
faster than the risk (β = 0.14, see fig. 2(c)). Such cases,
where α> β, are of potential practical interest, as the
inequality implies that the largest return per unit risk is
found in companies with smaller MC. As a consequence,
〈R〉/σ(R) also decreases, with MC following a power law
〈R〉/σ(R)∼ (MC)−γ , with exponent

γ = 0.32± 0.10. (7)

In conclusion, by analyzing the stocks comprising
the Nasdaq Composite and NYSE Composite, we find
that the growth rates follow Laplace distributions in
the broad central region with a standard deviation σ(R)
that decreases with market capitalization MC as a power
law, consistent with the stochastic properties found in
microeconomics and macroeconomics. For the Nasdaq
Composite and S&P500 index, we showed that the average
growth rate decreases faster than risk with MC, implying
that the average return-to-risk ratio decreases with MC.
Our results are potentially valuable: in the approach
where both average growth rate and risk are considered,
a famous statement “All the eggs should not be placed
into the same basket” can now be extended to: “Better
choose baskets with smaller eggs.”
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