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Appendix S1. Author name disambiguation. 

 

An important challenge in the career dataset is name disambiguation for authors and co-authors. 

Ambivalence primarily stems from the inconsistent use of suffixes and middle names or initials. Within 

the collaboration profile of ℱ𝑖, there are 𝐽0
𝑖  raw name strings, 𝑁𝑎𝑚𝑒𝑗

𝑖, indexed by 𝑗. The following steps 

outline the disambiguation procedure we applied to address name conflicts: 

 

A. Clean last names: Remove strings at the end of 𝑁𝑎𝑚𝑒𝑗
𝑖 that are not last names, and which may not 

be consistently listed for pollinator 𝑗 across the profile of ℱ𝑖 - e.g., “Jr.”, “III”, and the like. At the end 

of this removal process, each pollinator’s name string 𝑁𝑎𝑚𝑒𝑗
𝑖 would ideally consist of a first name 

string 𝐹𝑁𝑗
𝑖, possibly a middle name string 𝑀𝑁𝑗

𝑖, and a last name string 𝐿𝑁𝑗
𝑖. 

 

B. Disambiguate middle initial strings within each ℱ profile: Within the profile of each ℱ𝑖, search 

for inconsistencies in the use of 𝑀𝑁𝑗?
𝑖 . For example, sometimes pollinator 𝑗? may be listed as Amanda M 

Price, some other times as Amanda Price, and yet some other times as Amanda Miranda Price. In this 

example, the last name string 𝐿𝑁𝑗? = 𝑃𝑟𝑖𝑐𝑒 and the first name string 𝐹𝑁𝑗? = 𝐴𝑚𝑎𝑛𝑑𝑎 are consistent. 

However, the middle name string set {_, 𝑀, 𝑀𝑖𝑟𝑎𝑛𝑑𝑎} introduces ambiguity, as it includes instances of 

no middle name 𝑀𝑁𝑗?
𝑖 ≡ ∅, middle initial 𝑀𝑁𝑗?

𝑖 ≡ ℐ, and full middle name 𝑀𝑁𝑗?
𝑖 ≡ ℐ𝑛𝑎𝑚𝑒, compatible 

with the middle initial instances. Depending on the type of middle name ambiguity for pollinator 𝑗?, 

apply the following rules: 

 

• If the middle name ambiguity set for pollinator 𝑗? has instances of no middle name and middle 

initial only {∅, ℐ}, then transform all name instances of pollinator 𝑗? to ⟨𝐹𝑁𝑗
𝑖  ℐ  𝐿𝑁𝑗

𝑖⟩, firmly 

assigning them the 𝑗 index. 

 

• If the middle name ambiguity set for pollinator 𝑗? has instances of no middle name, middle initial, 

and full middle name, compatible with the middle initial instances {∅, ℐ, ℐ𝑛𝑎𝑚𝑒}, then transform 

all name instances of pollinator 𝑗? to ⟨𝐹𝑁𝑗
𝑖  ℐ𝑛𝑎𝑚𝑒  𝐿𝑁𝑗

𝑖⟩, firmly assigning them the 𝑗 index. 

 

• If the middle name ambiguity set for pollinator 𝑗? has instances of no middle name and two 

different middle initials {∅, ℐ1, ℐ2}, then check if ⟨𝐹𝑁𝑗?
𝑖   𝐿𝑁𝑗?

𝑖 ⟩ and ⟨𝐹𝑁𝑗?
𝑖   ℐ1  𝐿𝑁𝑗?

𝑖 ⟩ are co-authors 

in the same paper within the ℱ profile 𝑖. If they are, then transform ⟨𝐹𝑁𝑗?
𝑖   𝐿𝑁𝑗?

𝑖 ⟩ to 

⟨𝐹𝑁𝑗2

𝑖   ℐ2  𝐿𝑁𝑗2

𝑖 ⟩, assigning to the consolidated subset a 𝑗2 index. 

  If the first test fails, then check if ⟨𝐹𝑁𝑗?
𝑖   𝐿𝑁𝑗?

𝑖 ⟩ and ⟨𝐹𝑁𝑗?
𝑖   ℐ2  𝐿𝑁𝑗?

𝑖 ⟩ are co-authors in the same 

paper within the ℱ profile 𝑖. If they are, then transform ⟨𝐹𝑁𝑗?
𝑖   𝐿𝑁𝑗?

𝑖 ⟩ to ⟨𝐹𝑁𝑗1

𝑖   ℐ1  𝐿𝑁𝑗1

𝑖 ⟩, assigning 

to the consolidated subset a 𝑗1 index. 

  If both tests fail, then compare the co-authors among ⟨𝐹𝑁𝑗?
𝑖   𝐿𝑁𝑗?

𝑖 ⟩, ⟨𝐹𝑁𝑗?
𝑖   ℐ1  𝐿𝑁𝑗?

𝑖 ⟩, and 

⟨𝐹𝑁𝑗?
𝑖   ℐ2  𝐿𝑁𝑗?

𝑖 ⟩ within the ℱ profile 𝑖. Transform the no middle name instances to the middle 

name variety with which it shares more co-authors. 

   

C. Disambiguate pollinators across ℱ profiles: Let 𝑗 and 𝑗′ be pollinators in ℱ profiles 𝑖 and 𝑖′, 
respectively. Check if 𝑗 and 𝑗′ are likely the same person, 𝑗 ≡ 𝑗′, in order to establish (or not) a mediated 

association link between 𝑖 and 𝑖′. Depending on the type of ambiguity, apply the following rules: 

• If the ambiguous pollinators have the same first names, 𝐹𝑁𝑗
𝑖=𝐹𝑁𝑗′

𝑖′, and the same last names, 

𝐿𝑁𝑗
𝑖 = 𝐿𝑁𝑗′

𝑖′, and the middle name ambiguity set consists of no middle name plus at least two 

different middle names {∅, ℐ𝑛𝑎𝑚𝑒1, ℐ𝑛𝑎𝑚𝑒2, … }, then compare the common co-authors among 



the no middle name instances and the other instances, assigning the no middle name instance to the 

case with which it shares the most common co-authors. 

• If the first name of a pollinator 𝑗 is hyphenated 𝐹𝑁𝑗
𝑖 ≡ 𝐹𝑁1𝑗

𝑖 − 𝐹𝑁2𝑗
𝑖, and has only 2 letters i.e., 

𝐹𝑁1 and 𝐹𝑁2 are one letter, check for any other pollinator 𝑗′ that has hyphenated first name with 

the same first letter 𝐹𝑁1𝑗
𝑖 and the first letter after the hyphen starts with 𝐹𝑁2𝑗

𝑖. Then transform the 𝑗 

pollinator to 𝑗′ who has the longest such hyphenated first name. 

• If the first name of a pollinator 𝑗 is hyphenated 𝐹𝑁𝑗
𝑖 ≡ 𝐹𝑁1𝑗

𝑖 − 𝐹𝑁2𝑗
𝑖, check for any other 

pollinator 𝑗′ that has 𝐹𝑁𝑗′
𝑖′ = 𝐹𝑁1𝑗

𝑖, ℐ′ = 𝐹𝑁2𝑗
𝑖, and 𝐿𝑁𝑗′

𝑖′ = 𝐿𝑁𝑗
𝑖. If such a pollinator 𝑗′ does exist 

and shares at least one common co-author with 𝑗, then transform the 𝑗 pollinator to 𝑗′, assigning the 

second part of her/his original hyphenated first name to be her/his middle name. 

• If the name of a pollinator 𝑗 has only two letters 𝐹𝑁𝑗
𝑖 ≡ ℒ1𝑗

𝑖 − ℒ2𝑗
𝑖, check for any other pollinator 𝑗′ 

that has 𝐹𝑁𝑗′
𝑖′ = ℒ1𝑛𝑎𝑚𝑒𝑗

𝑖, ℐ′ = ℒ2𝑛𝑎𝑚𝑒𝑗
𝑖, and 𝐿𝑁𝑗′

𝑖′ = 𝐿𝑁𝑗
𝑖. If such a pollinator 𝑗′ does exist and 

shares at least one common co-author with 𝑗, then transform the 𝑗 pollinator to 𝑗′. 
 

Appendix S2. Connectivity of the ℱ network. 

 

How does the ℱ network depend on the direct ℱ connectivity? To investigate this, we randomly 

removed a fraction 𝑞 of the links, incrementing 𝑞 over the range [0,1], and monitoring the effect on the 

network’s giant and non-giant components. This method of random link removal is drawn from the 

theory of phase transitions in the connectivity of networks (62,63). For each 𝑞, we performed the link 

percolation 40 times and reported the mean and standard deviation of the following network 

connectivity descriptors: 

 

Giant component size: 

For the ℱ collaboration network, the initial size of the largest connected component (aka giant 

component) is 𝑆𝐺(𝑞 = 0) = 3,869, meaning that 321 ℱ nodes are initially disconnected from the giant 

component. Figure S1a shows the ratio 𝑆𝐺(𝑞)/𝑆𝐺(𝑞 = 0) as a function of 𝑞, demonstrating the 

robustness of the collaboration network - even after 80% of the links are removed, roughly 60% of the ℱ 

are still connected within the network. Of course, the fragmentation of the network depends on how we 

remove the links. We compared the results for random uniform removal of links and for random 

removal according to the weight 𝑊𝑖𝑖′. For each 𝑊𝑖𝑖′ definition, we removed the links according to 

increasing weight and also according to the inverted weight 𝑊𝑖𝑖′
𝑟 = max

𝑖𝑖′
[𝑊𝑖𝑖′] − 𝑊𝑖𝑖′ (‘reverse’). We 

used three definitions for the link weights 𝑊𝑖𝑖′: (a) 𝑊𝑖𝑖′ ≡ max[𝑃𝑅𝑖 , 𝑃𝑅𝑖′], where 𝑃𝑅𝑖 and 𝑃𝑅𝑖′ are the 

PageRank centralities of node 𝑖 and 𝑖′, respectively, using the common damping factor 0.85; (b) 

𝑊𝑖𝑖′ ≡ max[𝐵𝑖 , 𝐵𝑖′], where 𝐵𝑖 and 𝐵𝑖′ are the betweenness centralities of nodes 𝑖 and 𝑖′, representing the 

number of shortest paths in the network that traverse 𝑖 and 𝑖′, respectively; (c) 𝑊𝑖𝑖′ ≡ 𝑂𝑖𝑖′, where 

𝑂𝑖𝑖′ ∈ [0,1] is the overlap fraction in the first-degree neighbors of nodes 𝑖 and 𝑖′, calculated as 𝑂𝑖𝑖′ =
𝑠𝑖𝑖′/[(𝑘𝑖 − 1) + (𝑘𝑖′ − 1) − 𝑠𝑖𝑖′], where 𝑠𝑖𝑖′ is the number of shared first-degree neighbors, and 𝑘𝑖 and 

𝑘𝑖′ are the degrees of nodes 𝑖 and 𝑖′, respectively (64). Consistent with expectations, the link removal 

methods that exhibited the sharpest fragmentation were 𝑃𝑅𝑖𝑖′ and 𝐵𝑖𝑖′. 

 

Susceptibility to fragmentation: 

For each 𝑞 we calculated the size 𝑆𝑖 of all the 𝑁𝑞 fragments, where by definition 𝑆𝐺(𝑞) = max
𝑖

(𝑆𝑖(𝑞)). 

The severity of the fragmentation (percolation) process can be further illustrated by analyzing the 

fragment size distribution 𝑃(𝑆𝑖), i.e., by calculating the distribution’s second moment 𝜎𝑞
2 =

∑ 𝑆𝑖
2𝑁𝑞−1

𝑖|𝑆𝑖<𝑆𝐺
𝑃(𝑆𝑖). By construction, 𝜎𝑞

2 does not include the giant component 𝑆𝐺. The fluctuation scale 

𝜎𝑞
2 diverges when the network shatters into pieces of varying sizes. Indeed, fig. S1b shows how the 



network’s susceptibility to fragmentation peaks - depending on the link removal weights – when there is 

a precipitous drop in the connectivity of the giant component (fig. S1a). The fragmentation peak is 

associated with the critical point of the network, and is achieved at a smaller 𝑞 value when the links 

associated with the most central ℱ are removed first (blue and black curves in fig. S1b). 

  



 
 

 

Fig. S1. Robustness of the ℱ network with respect to link removal. (a) The ratio 𝑆𝐺(𝑞)/𝑆𝐺(𝑞 = 0) 

measures the size of the largest remaining fragment 𝑆𝐺(𝑞), relative to the size of the initial giant 

component 𝑆𝐺(𝑞 = 0). The slow decay until 𝑞 = 0.6 indicates that this network is robust to variation in 

the connectivity of scholars. For a given 𝑞, we repeated the fragmentation process 40 times, and plotted 

the error bars to indicate the mean and standard deviation. (b) Detection of the critical point at which the 

college disassociates. For each 𝑞 we also monitor the size 𝑆𝑖 of all the 𝑁𝑞 disconnected network 

fragments, where by definition 𝑆𝐺(𝑞) = max
𝑖

(𝑆𝑖(𝑞)). As a limiting example, complete disassociation 

occurs for 𝑞 = 1 (all links removed), corresponding to a completely disconnected ensemble of nodes 

with 𝑁𝑞 = 4,190 and 𝑆𝑖 = 1 for all 𝑖. The fluctuation scale of the fragmentation process is illustrated by 

the variation of the fragment size distribution, 𝜎𝑞
2, which diverges when the network ‘shatters’ into 

pieces of highly variable sizes. The peak in 𝜎𝑞
2 signals the onset of the shattering process. 

  

 

 



 
 

Fig. S2. ℱ network distributions for direct and mediated associations. for a. biology and b. 

computing. Each panel shows the frequency distribution (counts) of faculty ℱ with a given link degree 

counting the number of links for a given node, 𝑑𝑖 ≡C𝑖
𝐷(𝑡), within a particular definition of the ℱ 

network (vertical lines indicate distribution means). The direct subnetworks only include direct links, 

which are established whenever two ℱ collaborate on at least one publication. The mediated 

subnetworks only include indirect links between two ℱ who have both collaborated with a common 

pollinator (i.e., are associated via triadic closure - see Fig. 1). On average, 97% in biology and 92% in 

computing are pollinator co-authors, i.e., researchers not included in the ℱ set. The significantly 

different scale of the degree distributions demonstrates the connectivity power of the pollinators within 

the invisible college. 

 

 

 

 

Fig. S3. Three perspectives on the centrality of ℱi in the direct collaboration network. Shown is the 

giant connected component of the faculty network ℱ using all data up to 2015. The nodes and links 

across each network are fixed, only the node sizes vary according to the indicated centrality measure: (a) 

degree C𝑖
𝐷

, (b) PageRank C𝑖
𝑃𝑅

, (c) betweenness C𝑖
𝐵

. Notably, the most central ℱ𝑖 according to each of 

the three measures is Eric Lander, one of the leaders of the HGP. 



 

Fig. S4. Evolution of the nongiant components in the ℱ network. Green and magenta nodes represent 

faculty ℱ𝑖 with 𝐵𝐼𝑂ℱ and 𝐶𝑆ℱ affiliation, respectively; black nodes represent faculty ℱ𝑖 that by time 𝑡 

collaborated with at least one faculty from the opposite department and thus joined the 𝑋𝐷ℱ group. 

 

 



 
 

Fig. S5. Distribution of normalized citation impact by departmental affiliation and time period. 

Probability distribution 𝑃(𝑧|𝑠, 𝑡) calculated by separating the publications of the career dataset into 

subsets according to the departmental affiliation of ℱ𝑖 and publication year. Shown are the empirical 

distribution (red bins) and baseline normal distribution 𝑁(0,1) (blue curve), which demonstrates the 

time-independence of the normalized citation impact variable. 

  



Table S1. Set of 155 biology and computing departments in the United States. for the formation of 

the career dataset. Ranks are per the 2014 U.S. News & World Report. 
 

Rank Biology Departments Rank Computing Departments 

1 Harvard University 1 Carnegie Mellon University 
1 Massachusetts Institute of Technology 1 Massachusetts Institute of Technology 
1 Stanford University 1 Stanford University 
4 University of California, Berkeley 1 University of California, Berkeley 
5 California Institute of Technology 5 University of Illinois, Urbana Champaign 
5 Johns Hopkins University 6 Cornell University 
7 University of California, San Francisco 6 University of Washington 
7 Yale University 8 Princeton University 
9 Princeton University 9 Georgia Institute of Technology 
9 Scripps Research Institute 9 University of Texas, Austin 

11 Cornell University 11 California Institute of Technology 
11 Duke University 11 University of Wisconsin, Madison 
11 Washington University in St. Louis 13 University of California, Los Angeles 
14 Columbia University 13 University of Michigan, Ann Arbor 
14 Rockefeller University 15 Columbia University 
14 University of California, San Diego 15 University of California, San Diego 
14 University of Chicago 15 University of Maryland, College Park 
18 University of Wisconsin, Madison 18 Harvard University 
19 University of California, Davis 19 University of Pennsylvania 
19 University of California, Los Angeles 20 Brown University 
19 University of Michigan, Ann Arbor 20 Purdue University, West Lafayette 
19 University of Pennsylvania 20 Rice University 
19 University of Texas Southwestern Medical Center 20 University of Southern California 
19 University of Washington 20 Yale University 
25 Baylor College of Medicine 25 Duke University 
26 Cornell University (Weill) 25 University of Massachusetts, Amherst 
26 Northwestern University 25 University of North Carolina, Chapel Hill 
26 University of North Carolina, Chapel Hill 28 Johns Hopkins University 
26 Vanderbilt University 29 New York University 
30 Emory University 29 Pennsylvania State University, University Park 
30 University of Colorado, Boulder 29 University of California, Irvine 
30 University of Illinois, Urbana Champaign 29 University of Minnesota, Twin Cities 
30 University of Texas, Austin 29 University of Virginia 
34 Brown University 34 Northwestern University 
34 Indiana University, Bloomington 34 Ohio State University 
34 University of California, Irvine 34 Rutgers, The State University of New Jersey 
34 University of Minnesota, Twin Cities 34 University of California, Davis 
38 Case Western Reserve University 34 University of California, Santa Barbara 
38 Dartmouth College 34 University of Chicago 
38 Mayo Medical School 40 Dartmouth College 
38 University of Arizona 40 Stony Brook University, SUNY 
42 Carnegie Mellon University 40 Texas A&M University, College Station 
42 Icahn School of Medicine at Mount Sinai 40 University of Arizona 
42 Ohio State University 40 University of Colorado, Boulder 
42 Pennsylvania State University, University Park 40 University of Utah 
42 Rice University 40 Virginia Tech 
42 University of Alabama, Birmingham 40 Washington University in St. Louis 
42 University of Georgia 48 Arizona State University 
42 University of Pittsburgh 48 Boston University 
50 Michigan State University 48 North Carolina State University 
50 University of California, Santa Barbara 48 University of Florida 
50 University of Massachusetts Medical Center 52 Indiana University, Bloomington 
50 University of Virginia 52 Rensselaer Polytechnic Institute 
50 Yeshiva University (Einstein) 52 University of Pittsburgh 
55 Arizona State University 52 University of Rochester 
55 Brandeis University 56 Michigan State University 
55 Georgia Institute of Technology 56 University of California, Riverside 
55 Purdue University, West Lafayette 56 University of California, Santa Cruz 
55 Stony Brook University, SUNY 56 Vanderbilt University 
55 University of California, Santa Cruz 60 Northeastern University 
55 University of Florida 60 University of Illinois, Chicago 
55 University of Iowa 60 University of Notre Dame 
55 University of Maryland, College Park 63 Iowa State University 
55 University of Massachusetts, Amherst 63 University at Buffalo, SUNY 
55 University of Oregon 63 University of Iowa 
55 University of Southern California 63 University of Oregon 
55 University of Utah 67 George Mason University 
68 New York University 67 Oregon State University 
68 Oregon Health and Science University 67 Syracuse University 
68 Rutgers 70 Case Western Reserve University 
68 Tufts University 70 College of William and Mary 
68 University of California, Riverside 70 Colorado State University 
68 University of Kansas 70 Naval Postgraduate School 
68 University of Rochester 70 New York University 

  70 Tufts University 

  70 University of Delaware 

  70 University of Maryland, Baltimore County 

  70 University of Nebraska, Lincoln 

  70 University of Tennessee, Knoxville 

  70 University of Texas, Dallas 

  70 Washington State University 
 

  

http://grad-schools.usnews.rankingsandreviews.com/best-graduate-schools


Table S2. Career data set: Pooled cross-sectional model. The dependent variable is career 

achievement, measured as the natural logarithm of the Google Scholar citations, ln𝐶𝑖 as of 2017. The 

regression model is specified in Eq. (1) and estimated using standard OLS; there are 4,190 ℱ𝑖 

(observations) for the pure CV model and 3,900 observations for the other two models that include 

network attributes, as in these cases we exclude from consideration disconnected ℱ𝑖 nodes. Natural logs 

were used to obtain variables that are approximately normally distributed. Thus, when the independent 

variable enters in ln, then 𝛽 corresponds to the % change in 𝐶𝑖 following a 1% change in the 

independent variable; in the case of the cross-disciplinarity fraction, 𝛽𝜒 represents the % change in 𝐶𝑖 

following a 0.01 shift increase in 𝜒𝑖. The first column cluster shows the estimates using only standard 

CV variables. The combined CV + Network model demonstrates that ℱ𝑖 with larger 𝜒𝑖 correlate with 

higher net citation impact. For the combined model we also report the standardized beta coefficients – 

useful for comparing the relative strength of covariates within the regression. Standard errors were 

calculated using the clustered sandwich estimator, clustering on ℱ𝑖 age-cohort 𝑦𝑖,5
0  (based on 14 non-

overlapping 5-year career birth year groups, e.g., 1940-1944, 1945-1950, etc.) to account for within-age-

cohort correlation. Y indicates additional fixed effects included in the regression model. 

 

 
  



Table S3. Career data set: Pooled cross-sectional model—robustness check. Parameter estimates for 

variants of the ‘CV + Network’ pooled cross-sectional models reported in table S2: (a) Model with 

PageRank centrality. (b) Model with betweenness centrality. (c) Model with degree centrality; (d) 

Model without the number of grants variables; (e) Model without the departmental rank variable. 

Results are not significantly different with respect to the primary covariate of interest, that is, cross-

disciplinarity (𝛽𝜒). 

 

 
  



Table S4. Career data set: Panel model on all faculty ℱ. Each column cluster reports the estimated 

coefficients for a specific model in which the dependent variable is the normalized citation impact of an 

individual article, 𝑧𝑖,𝑝 belonging to faculty ℱ𝑖 - see Eq. (4). The first two column clusters correspond to 

a panel regression without ℱ𝑖 fixed effects, whereas the last two column clusters correspond to a panel 

regression with ℱ𝑖 fixed effects. Estimates in the second and fourth column clusters are calculated using 

standardized variables, where each ‘beta’ coefficient indicates the change in 𝑧𝑖,𝑝 associated with a one 

standard deviation shift in the corresponding independent variable. The model without fixed effects 

incorporates time-independent author-level characteristics, i.e., adding to the specification of Eq. (2) the 

additional terms [𝛽C𝑃𝑅lnC𝑖
𝑃𝑅 + 𝛽𝜆ln𝜆𝑖 + 𝐷(ℱ𝑖)]. This is the reason why we only analyzed the 3,900 

scholars connected within the network for which C𝑖
𝑃𝑅

 is defined; note that these additional variables are 

absorbed into 𝛽𝑖 in the fixed effects model. The additional connectivity variable 𝜆𝑖 is the fraction of the 

total pollinators that are ‘bridge’ pollinators. Robust standard errors are shown in parenthesis, and X 

denotes time-independent variables absorbed by the fixed effects model. Y indicates additional fixed 

effects included in the regression model. 

 

 
  



Table S5. Career data set: Panel model on the XDℱ faculty. Robustness check of panel model 

without and with fixed effects, implemented using only the 1,247 ℱ𝑖 with orientation 𝒪(ℱ𝑖) = 𝑋𝐷ℱ. 

 

 
  



Table S6. Career data set: Panel model on the XDℱ faculty with matched pairs. Robustness check 

of panel model without and with fixed effects, implemented using only the 53 ℱ𝑖 with orientation 

𝒪(ℱ𝑖) = 𝑋𝐷ℱ  who have at least 10 matched pairs of publications. Where possible, we matched each 𝑝 

with 𝐼𝑖,𝑝
𝑋𝐷 = 1 with a publication with 𝐼𝑖,𝑝

𝑋𝐷 = 0 from the same ℱ𝑖, having published within two years 

from each other, and featuring number of co-authors 𝑎𝑝 that do not differ more than 20%. 
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